
Quantum decomposition of the Discrete Fourier Transform

Quantum realization of the Discrete Fourier Transform consists in the con-
struction of the circuit calculating the DFT operator, i.e. in the decomposition
of DFT into small operators.

We have defined the DFT for a general group G. The most important and most
common is the DFT for the cyclic group (ZN ,+), and unless explicitly stated
otherwise, the term DFT means this case.

To illustrate the concept and to become familiar with it, however, we first perform
the DFT on the group (Zm

2 ,+). We have M = 2m. The k-th - basis element of HM

is as usual denoted by |k⟩ = |k1k2 . . . km⟩, where k1k2 . . . km is a binary expansion
of k. We will also assume that the numbering of the group Zm

2 corresponds to this
notation, so that the k-th element is just (k1, k2, . . . , km).

According to (⋄) we then have
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However, this is a matrix we already know from the Deutsch-Jozsa algorithm above;
over Zm

2 we therefore get an easy decomposition

DFT = H⊗m.

Let us now turn to the case (ZM ,+). We will use the remark at the end of the
previous section and decompose IFT, where
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he circuit is always defined on the basis elements. So we want to construct a circuit
that maps the input |k⟩ = |k1⟩|k2⟩ · · · |km⟩ to:
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which after the decomposition
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This can be decomposed as the product of m sums of two terms
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The factor at |1⟩ can be expanded as:
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and from the periodicity of the exponential function we get
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
To make the notation more readable, it is convenient to extend the binary expansion
even beyond the decimal (or rather “binary”) dot, and write

0, a1a2 · · · =
∑
j

aj
2j

.

The IFT can then be expressed as:

|k⟩ 7→ |0⟩+ exp [2πi(0, km)] |1⟩√
2

⊗ |0⟩+ exp [2πi(0, km−1km)] |1⟩√
2

⊗ · · ·

⊗|0⟩+ exp [2πi(0, k2 · · · km−1km)] |1⟩√
2

⊗ |0⟩+ exp [2πi(0, k1 · · · km−1km)] |1⟩√
2

.

It is no more difficult to construct a circuit computing the IFT. First note that

|0⟩+ exp [2πi(0, a)] |1⟩√
2

= H|a⟩,

where H is the Hadamard operator. Moreover, we need the relative phase shift
matrices

Rt =

(
1 0

0 e2πi/2
t

)
,

which we apply controlled by the bit on the t-th position beyond the “binary” dot.
The construction of the j-th output qubit now looks like this:

|0⟩ H Rm−j+2 Rm−j+3 Rm−1 Rm

⊕

|km−j+2⟩

|km⟩
|km−1⟩

|km−j+3⟩

|km−j+1⟩

It is enough to use m auxiliary qubits, initially in the state |0⟩, as the output register
of the transformation.

However, it is also possible to save auxiliary qubits if we notice that the first qubit
of the input is needed only to calculate the n-th output qubit, the second qubit of
the input only to calculate the last two output qubits, etc. Using this observation
we can start with the first qubit of the output, and thus gradually construct in the
j-th input qubit the j-th output counted from the back.

We then get the Fourier transform "upside down", which is certainly not a serious
problem. If we also want to remove this inaccuracy, just reverse the order of the
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input qubits at the beginning using
⌊
m
2

⌋
transpositions. The transposition of base

qubits is, of course, unitary (like any permutation), it is denoted as

×

×

and it is easy to see that

×

×
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⊕
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The whole IFT circuit for Z24 is shown in the following picture.
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It is obvious that the complexity of the algorithm (number of gates) is O(m2) =
O( log2M). The fastest classical algorithm, the so-called fast Fourier transform,
has complexity of O(M logM). In this case, therefore, quantum computers bring
exponential speed up.
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