
Shor’s factorization algorithm

The Shor factorization algorithm is the most important application of the quan-
tum Fourier transform and one of the main reasons for the interest in quantum
computers. The algorithm would allow probabilistic polynomial factorization of
large numbers.

From the number theoretical point of view, this is nothing new: the basis of
Shor’s algorithm is Fermat’s factorization algorithm, in which the factorization of .
N is obtained from the knowledge of two numbers a, b, satisfying a2 ≡ b2 mod N ,
thanks to the relation

(a+ b)(a− b) ≡ 0 mod N.

Fermat’s procedure can be used, in particular, if we know some element a and its
even order r in the multiplicative group ZN . Then we have

(a
r
2 + 1)(a

r
2 − 1) ≡ 0 mod N,

which provides factorization of N if and only if a
r
2 is not equal to −1 mod N .

Thus, Shor’s factorization algorithm for composite odd N looks like this:
• choose a ∈ Z∗

N at random (choosing a non-invertible element leads to a
factorization immediately)

• find the order r of the element a in Z∗
N

• if r is odd or if a
r
2 ≡ −1 mod N , then fail

• otherwise return a factor gcd(N, a
r
2 − 1)

We know from the number theory that the number of elements a that do not lead to
failure is sufficient (at least one half). However, the impracticality of this algorithm
stems from the fact that it is difficult to determine the order of the element in the
group Z∗

N . The quantum essence of Shor’s algorithm is thus the search for the order
of the element. For this task, the Fourier transform is suitable, and it is polynomial
on a quantum computer.

Finding the order. The exponentiation of the element a modulo N , i.e. k 7→ ak

mod N , is the mapping f : N → Z∗
N with the period r. This gives a basic idea of

why the Fourier transform can be useful for finding the order.
Quantum exponentiation must take place on finite binary registers. So let n =

⌈logN⌉ be the number of bits in the binary expansion of the number N , and choose
some M = 2m large enough (the size of m will affect the probability of success of
the algorithm).

The exponentiation is simulated by the operator

W : H⊗m
2 ⊗H⊗n

2 → H⊗m
2 ⊗H⊗n

2

|k⟩|y⟩ 7→ |k⟩|yak mod N⟩

where for N ≤ y ≤ 2n − 1, i.e. for elements for which the remainder would be
repeated, we define W |k⟩|y⟩ := |k⟩|y⟩. Because a relatively prime to N , the opera-
tor W permutes base elements and is therefore unitary. Implementation of the W
operator is possible using modular exponentiation. If U is an operator for which we
have controlled powers U2j , then the following circuit exponentiates U , that is, it
realizes the mapping

|k⟩|y⟩ 7→ |k⟩Uk|y⟩,
1



2

in this way:

U2m−1

U2m−2
U4U2U

|k1⟩

|k2⟩

|km−2⟩

|km−1⟩

|km⟩

|y⟩

In the case of the operator W , U corresponds to the multiplication by the element
a in the group ZN , i.e. the transformation

U : H⊗n
2 → H⊗n

2

|y⟩ 7→ |ay mod N⟩,
where again U |y⟩ := |y⟩ pro y ≥ N .

The basic idea of the order-revealing algorithm is the standard one: evaluate W
on all values of |k⟩ simultaneously. Because the exponentiation function is periodic,
we apply the Fourier transform to it and we should get information about the
period. The whole algorithm looks like this:

|0⟩⊗m H⊗m DFT†

|1⟩
n

W

s1 s2 s3 s4

Note that the state |1⟩ (or |y⟩ for y = 1) is a base element of the n-qubit register
with the number 1, ie |0⟩(n−1)|1⟩ = |0 · · · 01⟩. The first three phases give

s1 : |0⟩⊗m|0 · · · 01⟩ s2 :
1√
M

M−1∑
k=0

|k⟩|0 · · · 01⟩ s3 :
1√
M

M−1∑
k=0

|k⟩|ak⟩,

thereby preparing the desired uniform superposition of the values of the function
k 7→ ak. By applying the Fourier transform (that is, IFT = DFT†) to the first
register we get

s4 :
1

M

M−1∑
k

M−1∑
z

exp

[
2πi

kz

M

]
|z⟩|ak⟩
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We will now measure the first register. The probability that the measurement result
will correspond to some selected |z⟩ is obtained according to the postulate of the
measurement as a square of the size of the projection on the subspace of the result,
i.e. on the vector of components containing |z⟩. It is thus the sum of the squares
of the magnitude of the probability amplitudes for all terms in which |z⟩ occurs.
There are r such terms, namely |z⟩|a0⟩, |z⟩|a1⟩, . . . , |z⟩|ar−1⟩, where the coefficient
at |z⟩|at⟩ is the sum of the coefficients for all |z⟩|ak⟩, where k is of the form sr + t
mod N . So all terms containing some fixed |z⟩ are

1

M

r−1∑
t=0

(
ℓt∑

s=0

exp

[
2πi

(sr + t)z

M

])
|z⟩|at⟩

and the corresponding probability is

P (z) =
1

M2

r−1∑
t=0

∣∣∣∣∣
ℓt∑

s=0

exp

[
2πi

(sr + t)z

M

]∣∣∣∣∣
2

=

=
1

M2

r−1∑
t=0

∣∣∣∣exp [2πi tzM
]∣∣∣∣2
∣∣∣∣∣

ℓt∑
s=0

exp
[
2πi

srz

M

]∣∣∣∣∣
2

=

=
1

M2

r−1∑
t=0

∣∣∣∣∣
ℓt∑

s=0

exp
[
2πi

rz

M
s
]∣∣∣∣∣

2

.

The number ℓt is the largest such that ℓtr + t is less than M , i.e.

ℓt =

⌊
M − 1− t

r

⌋
.

The values of ℓt may differ by one for different t’s. The complication is that r
does not generally divide M ; if it divided it, ℓ would simply be equal to M/r − 1.
This irregularity is of deeper importance. Note that we are performing a Fourier
transform on the group ZM , not ZN ! The result will have some inaccuracy, because
the mapping k 7→ ak mod N is not completely periodic on ZM : around zero, the
periodicity is broken (if r does not divide M). For large M , however, this inaccuracy
will be negligible.

These general considerations are specified in the calculation of the value of P (z).
We will show that the following is true∣∣∣∣∣

ℓt∑
s=0

exp
[
2πi

rz

M
s
]∣∣∣∣∣ ≈


M
r if rz ≈ pM for some integer p,

0 otherwise.
(∗)

In the above-mentioned ideal case, where r divides M , the sum above ranges
over values of some character of the group ZM , and the relation (∗) therefore holds
with equality in the place of ≈. So we will measure z, which is of the form p · M

r ,
where p ∈ {0, 1, 2, . . . , r − 1}. For each such z, the probability P (z) is equal to 1

r ,
as is easily calculated. From z we obtain the fraction

z

M
=

p

r
,

whose denominator is r if p and r are coprime. This occurs for r > 19 with a
probability of at least 1

4
1

log log r . If p s r has a common factor, we get at least some



4

factor of r. By repeating the procedure several times, we will most likely eventually
obtain r.

In the general case, that is, if r does not divide M , the measured z is most likely
close to some multiple of M

r , so that

z

M
≈ p

r
.

An interesting question arises as to how to find all fractions with a limited numerator
that are close to a given value of α. The answer is the continued fraction expansion.
It holds that if the distance between α and the fraction p

r is less than 1
2r2 , then

this fraction is present in a continued fraction convergent of the number α (see the
lecture in Czech on continued fractions within Number Theory and RSA, especially
the application to Shor’s algorithm on page 8, translated at the end of this chapter).
If we assume that z is the rounded value of pM

r , that is, that∣∣∣∣z − p
M

r

∣∣∣∣ ≤ 1

2
,

then ∣∣∣ z
M

− p

r

∣∣∣ ≤ 1

2M
,

which leads to the choice of M to be approximately N2 ensuring the detection of
the corresponding p

r using continued fractions.
It remains to show with what precision the estimate (∗) holds in these circum-

stances. Denote
φ =

rz

M
− p

the aproximation “error”, which, according to our assumption, satisfies

|φ| ≤ r

2M
.

We approximate the sum of the geometric series (writing for simplicity ℓ instead of
ℓt):∣∣∣∣∣

ℓ∑
s=0

exp
[
2πi

rz

M
s
]∣∣∣∣∣

2

=

∣∣∣∣∣
ℓ∑

s=0

exp [2πiφs]

∣∣∣∣∣
2

=
|exp [2πiφ(ℓ+ 1)]− 1|2

|exp [2πiφ]− 1|2
=

sin2 πφ(ℓ+ 1)

sin2 πφ
,

where the last equality follows from the relation∣∣eix − 1
∣∣2 = (eix − 1)(e−ix − 1) = 2(1− cosx) = 4 sin2

x

2
.

It is not difficult to verify that the value decreases with increasing φ, which is
consistent with φ being a measure of inaccuracy: the maximum M/r is reached in
our ideal case that corresponds to φ = 0. In addition, since sin2 is an even function,
we get

sin2 πφ(ℓ+ 1)

sin2 πφ
≥

sin2 π
2
r(ℓ+1)

M

sin2 π
2

r
M

.

It follows from the definition of ℓ that M − r < r(ℓ+1) < M + r. The numerator of
the fraction is therefore very close to one (for r/M < 1/100 differs from one by less

http://www.karlin.mff.cuni.cz/~holub/soubory/Retez.pdf
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than a thousandth) and the denominator, which, on the other hand, is very small,
can be upper bounded quite accurately by the relation sinx < x. In total we get∣∣∣∣∣

ℓ∑
s=0

exp
[
2πi

rz

M
s
]∣∣∣∣∣

2

> 0.999 · 4

π2

M2

r2
>

2

5

M2

r2

and

P (z) >
2

5

1

r
.

We can conclude that with a probability of at least 2
5 we measure z, for which is p

r
present in the continued fraction expansion of z

M .
The overall success rate of the algorithm is summarized in the following table:

success condition probability

choosing a suitable a 1
2

z is close to pM
r

2
5

p is coprime with r 1
4

1
log logn

So the total success rate is at least 1
20

1
log logn . E.g. for the RSA module of length

4096, the success rate of one round of the algorithm is at least 0.6%, so four hundred
rounds gives more than 90% probability of success. This estimate is unnecessarily
pessimistic especially in the requirement that r and pare coprime; even if r and p
have common factors, we get some of them in each round and after several attempts
it is likely to reconstruct r as the least common multiple of the factors found.

∗

Example from the lecture on RSA. Continued fractions are an effective tool for
the rational approximation of irrational numbers. However, they are also important
for the approximation of rational numbers. Suppose we have an inaccurate value of a
fraction, caused by, for example, rounding or measurement inaccuracy. An example
of such a situation is Shor’s quantum factorization algorithm. To reveal the original
fraction, we use the continued fraction expansion of an inaccurate value.

Example: We have the value h = 0.15328, which we know is the rounding (to the
nearest hundredth of a thousand) of a proportion of at most eight-bit numbers. The
continued fraction expansion of h is [0, 6, 1, 1, 9, 1, 10] with convergents:(

0,
1

6
,
1

7
,
2

13
,
19

124
,
21

137
,
229

1494
,
479

3125

)
.
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Of the fractions with a denominator and a numerator of at most eight bits, only
21/137 is equal to h when rounded to the nearest hundredth of thousand.

zlomek zaokrouhlení

1
6 0.16667
1
7 0.14286
2
13 0.15385
19
124 0.15323
21
137 0.15328

Of course, the question arises as to whether we have not missed a fraction with
the same rounding in the continued fraction. The following statement is relevant to
this question.

Theorem: If ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

2q2
,

then the fraction p/q is a convergent of α.

In the above example, the denominator is less than 256 and the rounding error
is at most 5 · 10−6. Because

5 · 10−6 <
1

2 · 2562
,

we see that the fraction sought is indeed one of the convergents.
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