
Universal set of gates

In this chapter we will show the basic principle of the construction of the quantum
computer, namely the fact that any unitary operator can be constructed with the
help of one-cubit operators and a single two-cubit CNOT operator, that is, the
controlled negation, which we denote

⊕
Controlled single-qubit operators. The first step is the construction of arbit-
rary controlled single-qubit operators. These correspond to the conditional con-
struction “if the first qubit is one, perform the operation U on the second qubit”,
schematically:

U

The key to the construction is to decompose any operator using X and some ope-
rators A, B and C such that

U = eiαAXBXC, ABC = E.

Thanks to this decomposition, we get the controlled operator U using the circuit

C B A
⊕ ⊕

(
1 0
0 eiα

)

It is straightforward to verify that |0〉 ⊗ |ϕ〉 maps toa |0〉 ⊗ |ϕ〉 and |1〉 ⊗ |ϕ〉 maps
to |1〉 ⊗ U |ϕ〉. Note that the matrix (

1 0
0 eiα

)
applied to the first qubit is equivalent to the controlled multiplication of the scalar
matrix eiα:

(
eiα 0
0 eiα

)
1
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Two-controlled single-qubit operators. Next important step is the construction
of two-checked operators, that is, operators that are executed just when both con-
trolling values are one. Schematically:

U

This requires the square root of the operator U , that is, an operator V =
√
U , such

that V 2 = U (see below). Two-controlled operator U is then implemented by the
circuit

V V V †

⊕ ⊕

Two-controlled operator is actually an operator controlled by the conjunction of
two values. Therefore, we would not need to emphasize its construction if we could
implement an AND circuit, which, as we know, is possible in a reversible way using
the Toffoli gate. But this is actually itself a double-checked negation (and therefore
sometimes also referred to as CCNOT): :

⊕ = T

The Toffoli gate is therefore a special case of this construction and thanks to it we
have all Boolean functions available, because the Toffoli gate is universal. Thus, the
two-checked operator U could also be expressed by a more complex circuit with one
auxiliary cubit as:

⊕
U

|0〉

Similarly, operators controlled by any Boolean function can be constructed. If we
want the operator to be applied if the value of the controlling cubite is zero, not
one, then we will write schematically

U
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which, in fact, is a shortcut for

X X

U

The two options can also be combined, for instance as

U

On the example of the Toffoli gate, we shall show the construction of the operator
V , that is, a “square root” of negation. Finding such an operator is a special case
of application of a function to a normal operator. For any function f : R→ C and
a normal operator A we defined f(A) as an operator satisfying

f(A)|uλ〉 = f(λ)|uλ〉
for each eigenvector uλ of the operator A, where λ is the corresponding eigenvalue.
The negation is given by the Pauli operator

X =

(
0 1
1 0

)
,

which can be written by projections on eigenvectors as

X = |+〉〈+| − |−〉〈−|,
where

|+〉 = 1√
2

(
1
1

)
, |−〉 = 1√

2

(
1
−1

)
.

From here we have
V =

√
1|+〉〈+|+

√
−1|−〉〈−| .

We have four options for choosing the pair of square roots. For
√
1 = 1 a

√
−1 = i

we get

V =
1

2

(
1 1
1 1

)
+
i

2

(
1 −1
−1 1

)
=

1− i
2

(
i 1
1 i

)
.

Conversion of two-level operators to single-qubit controlled operators.
Consider the unitary operator U on a four-dimensional space given by the matrix

U =


a b 0 0
c d 0 0
0 0 1 0
0 0 0 1


The operator acts non-identically only on the basis vectors |00〉 and |01〉, as

follows:

|0〉 ⊗ |0〉 7→ |0〉 ⊗ (a|0〉+ c|1〉), |0〉 ⊗ |1〉 7→ |0〉 ⊗ (b|0〉+ d|1〉).
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If we denote

M =

(
a b
c d

)
it is therefore possible to construct U as

M

Operators acting non-identically on only two base vectors are called two-level.
However, not every two-level operator has such a simple circuit as the U opera-
tor above. E.g., the operator

U ′ =


a 0 0 b
0 1 0 0
0 0 1 0
c 0 0 d


acts non-identically on the basis vectors |00〉 a |11〉, which differ in more than
one place, and therefore cannot be simply written as a controlled matrix M . It is
necessary to first change the basis so that the non-identically mapped vectors differ
only in one place. We therefore perform a permutation that swaps |11〉 and |01〉,
which is the CNOT on the first qubit controlled by the second one. Then we can
proceed as in the case of U and then swap back |11〉 and |01〉. The whole circuit
looks like this

M

⊕ ⊕

n the case of a general two-level matrix acting non-identically on basis vectors
b = |kn−1kn−2 . . . k0〉 and b′ = |`n−1`n−2 . . . `0〉, we have to map these vectors
to basis elements that differ only in one cubit. We then perform the controlled
operation on it and convert the base back to its original form. In total, this means a
series of operations controlled by all but one qubit that varies. Suppose, for example,
that the matrix M acts non-identically on qubits b = |0110〉 and b′ = |1001〉. We
can choose base vectors, differing in only one cubit, on which we will perform the
controlled operationM ; for example, choose |1110〉 and |1111〉. So we have to change
the first three cubits: the first in the base vector b, the second and the third in the
base vector b′. The circuit will look like this⊕ ⊕

⊕ ⊕
⊕ ⊕

M

u1 u2 u3 u4 u5 u6 u7
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• u1 and u7: transposition |0110〉 ↔ |1110〉
• u2 and u6: transposition |1001〉 ↔ |1101〉
• u3 and u5: transposition |1101〉 ↔ |1111〉
• u4: transformation |1110〉 7→ a|1110〉+ b|1111〉; |1111〉 7→ c|1110〉+ d|1111〉

Decomposition into two-level operators. It remains to show that any unitary
operator can be decomposed into unitary two-level operators. The process of such
decomposition is similar to the Gaussian elimination, and the two-level matrices
sought are matrices of the corresponding elementary transformations. These are
always two-level: they only manipulate two lines. Unlike the classical Gaussian
elimination, however, we still have to ensure that they are unitary. This is certainly
true if we only swap lines (to get a non-zero element on the diagonal). Let’s study
the case when we want to subtract an element outside the diagonal. Let the matrix
to be modified be of the form

U =


a · · · · ·
· · · · · ·
· · · · · ·
b · · · · ·
· · · · · ·
· · · · · ·

 ,

where U1,1 = a 6= 0 and Uj,1 = b 6= 0 and other elements are arbitrary. We may have
ensured that a is non-zero by a permutation of rows, if needed. We now want to get
rid of the element b, i.e. to set the position (j, 1) to zero. We can do this by adding
an appropriate multiple of the first line to the j-th line. In the case of classical
Gaussian elimination we would use the matrix of elementary transformation

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
−b/a 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Note that if we want to avoid division (e.g. when manipulating an integer matrix),
we can also use the matrix 

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
b 0 0 −a 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Although neither of these matrices is unitary, it is not difficult to complete it to
a unitary one by normalizing j-th row and changing the first line to a orthogonal
unit vector:

U1 =


a∗/c 0 0 b∗/c 0 0
0 1 0 0 0 0
0 0 1 0 0 0
b/c 0 0 −a/c 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,
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where c = ‖(a, b)‖ =
√
aa∗ + bb∗. Multiplying we obtain

U1 · U =


c · · · · ·
· · · · · ·
· · · · · ·
0 · · · · ·
· · · · · ·
· · · · · ·

 .

In this way we gradually convert the matrix U to

U ′ =


a′ · · · · ·
0 · · · · ·
0 · · · · ·
0 · · · · ·
0 · · · · ·
0 · · · · ·

 .

Since the resulting matrix is still unitary (we multiplied it by unitary matrices),
we have |a′| = 1. In addition, it is clear from the last step of the elimination that
a′ = 1. Because also the rows of a unitary matrix have the norm of one, U ′ is
actually of the form

U ′ =


1 0 0 0 0 0
0 · · · · ·
0 · · · · ·
0 · · · · ·
0 · · · · ·
0 · · · · ·

 .

Repeating the procedure for the smaller matrix, we finally get the identity matrix.
We then have

Uk · · ·U2U1 · U = I ,

where Ui are two-level unitary operators (some of them may be permutation mat-
rices swapping rows). Thus we have the desired decomposition of U into two-level
operators

U = U†1U
†
1 · · ·U

†
k .
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