
Tensor product and quantum registers

Tensor product of Hilbert spaces U and V , is the vector space of bilinear forms
on the Cartesian product of dual spaces. That is

U ⊗ V = {f | f : U† × V † → C, f bilinear} .

We associate with each pair (|u⟩, |v⟩) ∈ U × V an element of the tensor product,
denoted |u⟩ ⊗ |v⟩, defined by

|u⟩ ⊗ |v⟩ : (⟨u′|, ⟨v′|) 7→ ⟨u′|u⟩⟨v′|v⟩.

By abuse of notation and terminology, the resulting mapping

U × V → U ⊗ V

(|u⟩, |v⟩) 7→ |u⟩ ⊗ |v⟩,

is also called a tensor product (of vectors). This mapping is bilinear, in the sense
that:

|w⟩ ⊗ (|u⟩+ |v⟩) = |w⟩ ⊗ |u⟩+ |w⟩ ⊗ |v⟩;
(|u⟩+ |v⟩)⊗ |w⟩ = |u⟩ ⊗ |w⟩+ |v⟩ ⊗ |w⟩;
(α|u⟩)⊗ |v⟩ = |u⟩ ⊗ (α|v⟩) = α(|u⟩ ⊗ |v⟩).

Note however that it is not a linear mapping between the two vector spaces, that
is, (|u⟩+ |u′⟩)⊗ (|v⟩+ |v′⟩) is in general not equal to |u⟩ ⊗ |v⟩+ |u′⟩ ⊗ |v′⟩.

We often shorten the tensor product of vectors |u⟩ ⊗ |v⟩ to |u⟩|v⟩ or even (espe-
cially for base vectors) to |uv⟩.

Let n = dimU and m = dimV , and let |bi⟩, i = 1, . . . , n and |ci⟩, i = 1, . . . ,m
be some bases of U and V respectively. Since the bilinear forms from the definition
of the tensor product can be seen as matrices, or, more algebraically, they are
determined by their values on pairs (|bi⟩, |cj⟩), it is easy to see that the dimension
of U ⊗ V is nm, and that vectors |bi⟩ ⊗ |cj⟩, denoted by the above convention also
as |bicj⟩, form its basis, and for the tensor product of vectors |u⟩ ∈ U and |v⟩ ∈ V
we get

|u⟩ ⊗ |v⟩ =

(∑
i

αi|bi⟩

)
⊗

∑
j

βj |cj⟩

 =
∑
i,j

αiβj |bicj⟩.

Finally, we make the tensor product of Hilbert spaces a Hilbert space by defining
the scalar product on U ⊗V by saying that vectors (|bicj⟩)i,j form an orthonormal
basis of U ⊗ V if (|bi⟩)i and (|cj⟩)j form orthonormal bases of U and V resp. We
than get

⟨u⊗ v|u′ ⊗ v′⟩ = ⟨u|u′⟩⟨v|v′⟩
which can be seen as an alternative definition of the scalar product of tensor pro-
ducts, independent of the choice of bases.

Note that “most” elements U ⊗ V are not tensor products |u⟩ ⊗ |v⟩. These are
only the bilinear forms whose matrix is of rank one.

The definition of tensor product is extended on more than two Hilbert spaces
in an obvious way: the tensor product of Hilbert spaces Ui, i = 1, 2, . . . , n, is the
vector space of multilinear forms on the Cartesian product of dual spaces. That is

U1 ⊗ U2 ⊗ · · · ⊗ Un = {f | f : U†
1 × U†

2 × · · · × U†
n → C, f multilinear} .
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We also in a natural way identify (U ⊗V )⊗W , U ⊗ (V ⊗W ) and U ⊗V ⊗W , and
consider the tensor product (of both spaces and vectors) as associative.

∗
In quantum informatics, mainly products of qubits, so-called quantum registers,

are used. A quantum register H⊗n
2 of n qubits has basis |0⟩⊗· · ·⊗|0⟩, |0⟩⊗· · ·⊗|1⟩,

. . . , |1⟩ ⊗ · · · ⊗ |1⟩, which according to the above convention can be shortened to
|0 · · · 0⟩, |0 · · · 1⟩, . . . , |1 · · · 1⟩. If we now understand zeros and ones as digits of
binary notation, we get two different bases of size 2n: one is the basis of the space
H⊗n

2 , the other of the space H2n . We thus obtain a natural tensor decomposition
of the basis |0⟩, |1⟩, . . . , |2n − 1⟩.

As noted above, the space U⊗V also contains vectors that cannot be written as a
tensor product of vectors from the original spaces. For example, the state |00⟩+ |11⟩
is indecomposable; we have

(a|0⟩+ b|1⟩)⊗ (c|0⟩+ d|1⟩) = ac|00⟩+ ad|01⟩+ bc|10⟩+ bd|11⟩
and it is easy to see that no a, b, c, d satisfy c = bd = 1 and ad = bc = 0. It is crucial
for quantum phenomena that such entangled states of two or more systems are
physically possible, the corresponding systems can even be spatially quite distant
(e.g. by sending two entangled photons in different directions). The fact that spa-
tially discontinuous particles can form a single system is called nonlocal character
of quantum mechanics.

We can also make tensor products of operators. If A : U1 → U2 and B : V1 → V2

are two operators, their tensor product is a linear mapping A⊗B : U1⊗V1 → U2⊗V2

defined by their values on the generating set of decomposable vectors as follows:

(A⊗B)(|u⟩ ⊗ |v⟩) = (A|u⟩)⊗ (B|v⟩).
From the above properties of the scalar and tensor product, it is not difficult to
verify that the tensor product of unitary operators is again unitary. The matrix of
the operator A ⊗ B of the type mp × nq arises from the matrices A of the type
m×n and B of the type p×q using the so-called Kronecker product, which is given
as follows:

A⊗B =

 a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB


For instance, for

H =
1√
2

(
1 1
1 −1

)
we get

H⊗2 =
1

2


1 1 1 1
1 -1 1 -1

1 1 -1 -1
1 -1 -1 1

 .

The operator H is called the Hadamard operator and we will later encounter its
tensor powers. Let’s see what the tensor power H⊗n looks like. Its matrix is a square
of size 2n × 2n and if we factor out the coefficient

(
1√
2

)n
, we get a matrix with
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entries 1 and −1. Let’s index the rows and columns with the numbers 0, 1, . . . , 2n−1
and look at the sign of the element (H⊗n)i,j . We can take advantage of the fact
that the j-th column is a vector H⊗n|j⟩. If we write j in binary, we get a tensor
decomposition

H⊗n|j⟩ = H⊗n|j1j2 · · · jn⟩ = H⊗n|j1⟩|j2⟩ · · · |jn⟩ =

=

n⊗
k=1

H|jk⟩ =
(

1√
2

)n n⊗
k=1

(|0⟩+ (−1)jk |1⟩).

Multiplying out the last expression we find the required sign as a coefficient for
the vector |i⟩ = |i1i2 · · · in⟩. Minus signs are contributed to the product by the
vectors |ik⟩ for which ik = jk = 1. Indeed, that’s exactly when we take |1⟩ from
k-th expanded parentheses (because ik = 1) and at the same time this |1⟩ has a
coefficient of −1 (because jk = 1). Hence we have

(H⊗n)i,j =

(
1√
2

)n

(−1)i1j1+i2j2+···+injn =

(
1√
2

)n

(−1)i·j ,

where i · j denotes the dot product of the vectors of the binary expansion of digits
i and j, i.e. the sum of i1j1 + i2j2 + · · ·+ injn.

Note that if we understand the scalar product ⟨u|v⟩ as the application of the li-
near form ⟨u| on |v⟩, the definition of the scalar product ⟨u1⊗v1|u2⊗v2⟩ corresponds
to the tensor product of the forms ⟨u1| and ⟨u2|. Similarly, the vector of coordina-
tes of the tensor product |u⟩ ⊗ |v⟩ in the basis (|bicj⟩)i,j is a Kronecker product of
vectors of coordinates in bases (|bi⟩)i an (|cj⟩)j of |u⟩ and |v⟩ respectively.

Note also that for endomorphisms A and B, the eigenvectors of the endomor-
phism A⊗B are vectors |bi⊗cj⟩ with eigenvalues λi ·κj where |bi⟩ is the eigenvector
of A with eigenvalue λi and |cj⟩ is the eigenvector of B with eigenvalue κj . Simi-
larly, |bi⊗cj⟩ is an eigenvector of the endomorphism A⊗ I+ I⊗B with eigenvalue
λi+κj (where I denotes identical operators of the appropriate size ). These relations
provide a handy proof of the commutative algebra fact that the integral elements
of a ring form a ring.
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