
Complex unitary spaces

Complex unitary space of dimension n is a vector space Cn with scalar product.
If α = a+ bi, a, b ∈ R we will denote the α∗ number associated with α, i.e. a− bi.

Recall that the scalar product, which we will denote for a moment by the symbol
�, is the mapping Cn × Cn → C satisfying the following relations:

• u� (v + w) = u� v + u� w;
• u� (αv) = α(u� v);
• v � u = (u� v)∗;
• u� u > 0 pro u 6= 0.

The fourth condition silently assumes that u � u is a real number, which is gu-
aranteed by the third condition. The most important thing to realize is that the
conditions yield (αu) � v = α∗(u � v), so the scalar product is not linear in the
first component. However, it is linear in the second component.

The Hilbert space of the dimension n, denoted by the symbol Hn, is actually the
n-dimensional complex unitary space. The difference between the terms unitary
space and Hilbert space is given by the additional condition that Hilbert space
must be complete with respect to the norm defined by the scalar product. However,
this condition is always fulfilled for finite dimensional spaces, and therefore both
concepts coincide on the finite dimension.

The fact that the variable u indicates an element of a vector space is sometimes
referred to as

→
u . We will use the notation introduced by Dirac, common in quantum

physics, which denotes the vector space element by the symbol |u〉.
As we have already said, the scalar product is linear in the second component, i.e.

the mapping ũ : Cn → C given by the formula ũ(v) = u�v, is a linear form, or linear
mapping from vector space to the field (or, equivalently, to one-dimensional vector
space). Linear forms themselves form a vector space called dual space. Because it is,
in matrix notation, a line vector space from Cn, the dual space is isomorphic to Cn,
in which, by convention, we use column vectors. The dual vector ũ to the vector
u is written in Dirac notation as 〈u|. The origin of this notation is that the scalar
product u � v can now be written as 〈u|v〉 after omitting the � sign, which is a
notation commonly used for scalar product. The English word for the parentheses,
bracket, gave rise to the designation bra -vector for elements 〈u| of the dual space
and ket -vector for elements |v〉 of the original space.

In finite-dimensional space, we are used to write vectors as n-tuples using their
coordinates with respect to the chosen base. It is worth noting that in the case
of an arithmetic vector space, such as Cn, and with the choice of the canonical
base K = (e1, . . . , en), a n-tuple understood as a vector is the same as a n-tuple
understood as coordinates with respect to K. Formally,

a1...
an

 =


a1...
an




K

.
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The scalar product is easily expressed using coordinates in the orthonormal basis,
i.e. in the basis B = (b1, . . . ,bn) satisfying 〈bi|bj〉 = δij . Then for

u =

a1...
an


we have

〈u| = (a∗1, . . . , a
∗
n).

We can write this as 〈u| = (|u〉∗)T, which can be abbreviated as 〈u| = |u〉†.
We also have

〈u|u〉 =
n∑

i=1

|ai|2 .

Recall that the scalar product allows you to define the norm of the vector ‖u‖ as√
〈u|u〉. Note that |α| = ‖α‖, if we understand α once as a complex number and

once as a one-dimensional vector.

Spectral properties of linear operators

Linear mappings (or homomorphisms) of vector spaces are also called (especially
in physics) linear operators. Each operator ϕ : Cm → Cn can, as is well known, be
represented as the multiplication by a matrix A of size n×m. This matrix is given
by the choice of bases M and N of spaces Cm and Cn and we have

A · {|u〉}M = {ϕ|u〉}N .
It follows from the previous notation why we will understand vectors Cn as co-
lumns, not rows: it is more natural due to the convention that we multiply the
vector by the matrix of the operator from the left. We are interested in matrices
precisely because they are (along with multiplication) linear operators. So when
we talk about a matrix, we mean the corresponding operator. Therefore, we will
usually write A|u〉, instead of A · {|u〉}M .

For a operator ϕ we define the adjoint operator ϕ† by the relation

〈ϕ†(u)|v〉 = 〈u|ϕ(v)〉,
where ϕ†(u) is an abbreviation for ϕ†|u〉 for clarity, and ϕ(v) for ϕ|v〉. This notation
may be a bit confusing from a formal point of view (which physicians usually don’t
care so much about), but without Dirac’s notation we can write it as

ϕ†(u)� v = u� ϕ(v).
It is not difficult to verify that in the matrix notation of the operator, the symbol †
has the usual meaning of the Hermite-associated matrix (transposed and complex
conjugated), which we already used above in the characterization of 〈u|. Especially
in the context of quantum mechanics, the Hermite-associated matrix is simply called
the adjoint matrix (although this term is often used in linear algebra for a matrix
defined by subdeterminants).

The eigenvalues and eigenvectors are decisive for the properties of operators. The
eigenvectors (which by definition are non-zero) determine one-dimensional subspa-
ces that are mapped on themselves by the operator (they are therefore an invariant
of the mapping). Therefore, if |u〉 is the eigenvector of an operator ϕ, then

ϕ|u〉 = λ · |u〉,
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where λ is a complex number, called the eigenvalue corresponding to the (linear
space spanned by the) vector |u〉. The set of eigenvalues is called the spectrum of
the operator. The following list characterizes matrices of operators that have some
nice spectral properties.

• The matrix A is diagonalizable if there exists a regular (i.e. invertible)
matrix P such that P−1AP is diagonal. This occurs iff there is a basis of
eigenvectors of the operator A. The matrix P is the matrix of the transition
from the canonical basis to the basis of eigenvectors.

• The matrix A is called normal if the equality

AA† = A†A,

holds, that is, if the mapping commutes with its adjoint mapping. One of
the most important theorems of the complex linear algebra is the theorem
on spectral decomposition of normal operators, which says that an
operator is normal if and only its eigenvectors form an orthonormal basis
(since eigenvectors are given up to a scalar factor, it would be more accurate
to say that it forms an orthogonal basis, which, however, can be conver-
ted into an orthonormal one by normalization). There are two important
subclasses of normal matrices:
– The matrix A is Hermitian, or self-adjoint, if

A = A†.

Hermitian matrices are obviously normal and have real eigenvalues.
– The matrix U is called unitary if it preserves the scalar product. This

is true when
U†U = E,

which is clearly shown by Dirac’s notation:

〈u|v〉 = 〈u|U†U |v〉.
The equality U†U = E also shows that the columns (rows) of the ma-
trix U form an orthonormal basis. The unitary matrices are obviously
normal.

The theorem on spectral decomposition of normal operators can now also
be formulated so that the operator is normal iff it is unitarily diagonaliza-
ble, i.e. when the corresponding transition matrix is unitary. This must be
true because both the initial, i.e. canonical, and target bases of the eigen-
vectors are orthonormal. (The canonical base is orthonormal by definition;
in other words, by convention, we always write operators in the base that
is orthonormal in the given unitary space.)

Dirac notation provides an elegant notation for the projection operators Pv on the
selected vector v. We have:

Pv = |v〉〈v|.
The product of the arithmetic form (i.e. of the expression in coordinates) of the
vectors |v〉 and 〈v| in this order is a square matrix. That this is a projection operator
can be seen from the formula

Pv|u〉 = |v〉〈v|u〉
and from the fact that the scalar product 〈v|u〉 determines the size of the projection
of the vector u on the vector v.
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It is also easy to see that each normal operator can be written as a linear com-
bination of projections on its own vectors v1, v2, . . . , vn (forming an orthonormal
basis). So

A =

n∑
i=1

ai|vi〉〈vi|,

where ai is the eigenvalue of the corresponding vector vi.
This also allows us to extend standard functions of complex numbers to opera-

tors. If f : C→ C is a function, then f(A) means the operator

f(A) =

n∑
i=1

f(ai)|vi〉〈vi|.
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