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Equivalence of marginal likelihood of the two-parameter normal ogive model in item re-
sponse theory (IRT) and factor analysis of dichotomized variables (FA) was formally proved, 
basic result on the dichotomous variables was extended to multicategory cases, both ordered and
unordered categorical data. Pair comparison data arising from multiple-judgment sampling were
discussed as a special case of the unordered categorical data. A taxonomy of data for the IRT and
FA models was also attempted.
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1. Introduction

Repeated measures designs, broadly construed, are, frequently employed in psycho-
logical investigations. In these designs each of a group of subjects is repeatedly measured
under a set of different conditions, thereby contributing more than one observation per
data set. The conditions may represent different experimental manipulations, different
occasions of measurement or different test items to which the subjects respond. There are
various reasons for the popularity of the repeated measures designs in psychological
research. In experimental-manipulative contexts complete randomization is often difficult
to realize (particularly with human subjects), and an alternative approach based 
matched samples is getting increasingly popular. In more observational settings, an in-
terest may be in how the different measurement conditions (or variables) relate with each
other in the population of subjects. When this latter interest is emphasized, the repeated
measures data are simply called multivariate (profile) data in which each subject 
characterized by a set of measurements taken under different conditions.

Whatever the reason may be for their employment, however, the repeated measures
designs present some methodological problem. The repeated measures data typically
contain both within-subject and between-subject variations. Since these two kinds of
variations behave differently, they should be separated and treated differently. The
between-subject variation, in particular, gives rise to dependencies among observations.
Subject parameters are often introduced in order to account for the dependencies. How-
ever, this causes another problem. Since the number of parameters to be estimated in-
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creases linearly with the number of observations in this case, the usual asymptotic proper-
ties (BAN) of maximum likelihood (ML) or generalized least squares (GLS) estimators
never hold (e.g., Andersen, 1980). The subject effect is therefore introduced as a random
effect with prescribed distributional properties, and is subsequently marginalized out to
obtain the marginal distribution of observations. This distribution is then used to estimate
other parameters such as those related to the measurement conditions, the subject distri-
bution, and so forth. The variables on which the subject distribution is defined are often
called latent variables, or collectively, latent space.

The marginalization of the subject parameters is straightforward, so far as both
within-subject and between-subject effects are assumed to follow the multivariate normal
distribution, and the observed data are continuous and multivariate normal. However, a
complication arises when the data are categorical, presumed to have been obtained by
discretizing continuous multivariate normal processes. For example, in mental test situ-
ations subjects’ responses may be recorded in ones (pass) and zeroes (fail), where 
responses are considered functions of item difficulties and subject abilities assumed to
follow the normal distribution. There have been two marginalization techniques in use for
such situations. One technique is used in the marginal maximum likelihood (MML)
estimation of item parameters in item response theory (IRT), originally proposed by Bock
& Lieberman (1970), and subsequently generalized and improved by Bock (1972), 
and Aitkin (1981) and Thissen (1982). The other technique is used in the factor analysis 
discretized variables (FA), an approach initiated by Christoffersson (1975) and later 
panded by Muth6n (1978, 1983, 1984) and Muth6n and Christoffersson (1981). Although
they differ in their tradition, IRT and FA cover similar types of categorical data, and thus
one may suspect that there is a special relationship between the two approaches. Indeed
they are formally equivalent, as has been alluded to recently by several authors (Bartholo-
mew, 1983, 1985; Bock, 1984; Muth6n, 1983). In this paper we present a formal proof of
the equivalence between the IRT and FA models for a variety of categorical data.

We first discuss the dichotomous case (section 2). The basic result on the dichot-
omous variables will be extended to the general ordered categorical case in section 3, and
to the case of multiple-choice (unordered categorical) data in section 3, and to the case 
multiple-choice (unordered categorical) data in section 4. In section 5, IRT formulations
of the individual differences pair comparison models (Takane, 1985) are derived, which
are equivalent to their original ACOVS (Analysis of Covariance Structures; J6reskog,
1970) formulations of the same models. A taxonomy of the IRT models and the FA
models are also attempted and presented in the final section. The two equivalent ap-
proaches, IRT and FA, closely parallel Thurstone’s two alternative formulations of his
pair comparison model and the model of first choice. This is shown in the appendix.

Throughout this paper a random variable is denoted by a symbol with a tilde on top,
and a particular realization of the random variable by the same symbol without a tilde.
Scalars are indicated by lowercase italics, vectors by boldface and matrices by uppercase
italics. An uppercase letter will also be used for a region of integration, but it will be clear
from the context when it is used for this purpose.

2. The Dichotomous Case

We first prove the equivalence for the dichotomous case. Although this is a special
case of the general ordered categorical case, and also of the multiple-choice (unordered
categorical) case, it deserves special attention because of its predominance in the item
response theory.

Let i’ -- (£1, --., £,) be a random vector of response patterns to n dichotomous test
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items, where each 2iis defined as

2~ = / 1, if item i is successfully passed

0, otherwise,

for i = 1 .... , n. Let fi be an m-component random vector of subject abilities (m < n) with
its density function denoted by g(u). ~ is unobservable directly, but is assumed to follow
the multivariate normal distribution with mean 0 and covariance I (identity matrix); that
is, ~ ~ N(0, (I). The domain of ~ (denoted by U) is the multidimensional region defined 
the direct product of (- o~, o~).

The two-parameter normal ogive model in IRT specifies the marginal probability of
~ = x (Bock & Aitkin, 1981; Bock & Lieberman, 1970) 

Pr(~ = x) ~vPr( X ] U)~(U) du, (1)

where Pr(:~ = x lu) is the conditional probability of observing response pattern x given
~ = u. Pr(~ = x lu) is further assumed to 

Pr(~ = x lu) = fi (pi(u))~’(1 - 1-x’ (2)
i

(local independence) with

pi(u) ~b(z) dz = ~(a’u + b), (3)

where ~b is the density function of the standard normal distribution and ̄  the normal
ogive function (i.e., the cumulative distribution function of the standard normal distri-
bution).

In factor analysis of dichotomized variables (Christoffersson, 1975), on the other
hand, the marginal probability of response pattern x is specified as

Pr(~ = x) = fR h(y) 
(4)

where R is the multidimensional region of integration (to be more explicitly specified
below) and

~ = c~ + ~. (5)
Model (5) is the usual common factor analysis model with C being the matrix 

factor loadings, ~ the vector of factor scores (which in the present case are the subject
abilities) and ~ the random vector of uniqueness components. It is assumed that ~ --. N(0,
I) as before, ~ ~ N(0, Q2) where Q2 is further assumed to be diagonal (linear local
independence), and ~ and ~ are independent of each other. It follows that

$, ,-~ N(O, CC’ + Q2), (6)

(marginal distribution of $) and

~1 u ~ N(Cu, Q2), (7)
(conditional distribution of ~ given ~ = u). The continuous random variables, ~, are
dichotomized by

.~1, ifjT~_>ri,

0, ifjTi < rl,
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for i = 1, ..., n, where ri is the threshold parameter for variable i. Thus, R, the region of
integration above, is the multidimensional parallelopiped defined by the direct product of
intervals, Ri for variable i, such that Ri = (ri, ~) if ~i = 1 and Ri = (- ~, r~) if ~i 

Now (1) including (2) and (3) is equivalent to (4) with ~ defined in (5). We first 
(4)---, (1). From (4) we 

Pr(i --- x) = fR h(y) 

(8)

where f(~l u) is the conditional density of ~ given ~ = a. (Note that (8) is "completely"
general in that no distributional assumptions are involved. Even the local independence
assumption, so characteristic of the latent variable methods, is not required.) But because
of (7) we have 

fR f(,lu) dy = ~ f~,f~(y, lu) 

= I-I f~(y~ I u) dyi 1 - f~(y~ I u) dyi , (9)

where

U) dyi = (I) c’iu ri , (10)
¯ \ qi

for i = 1 ..... n. Here qi2 is the i-th diagonal element of Q2. Equation (9) is equivalent to (3)
by setting

, ai = -- (11)
q~

and

bi -- rl (12)
q~

for/= 1 ..... n.
The reverse ((1)--* (4)) can be easily proved by simply tracing back the above process.

It looks as if FA with ci, r~ and q~(i = 1 ..... n) had more parameters than IRT with only
ai and bi(i = 1 ..... n). However, when the data are dichotomous, the variance of ~71 cannot
be estimated due to the lack of relevant information in the data, and consequently q~ can
be set to an arbitrary value. Thus, the effective number of parameters is identical in the
two models.

Lord and Novick (1968, Theorem 16.8.1, p. 374) state a sufficient condition for the
two-parameter normal ogive model for unidimensional ability, which may be interpreted
as a special case of,our general result presented above. More recently Bartholomew (1985)
noted the relationship, (11) and (12). See also Muth6n (1979, Appendix) and Muth6n 
Christoffersson (1979, p. 411).

It is clear from the above discussion that IRT and FA are two alternative formu-
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lations of a same model. Perhaps because of this Bock (1984) now calls his IRT approach
item factor analysis. The only crucial difference is where the marginalization is performed.
In the IRT formulation dichotomization of ~ is done conditionally on u and then the
marginalization is performed. In the FA tradition, the marginalization is undertaken on
continuous ~, followed by the dichotomization. An advantage of the IRT formulation is
that the dichotomization is relatively straightforward (it can be done separately for each

~i given u due to the local independence assumption). The probability of a full response
pattern can be obtained by a multiple integral of dimensionality m, where m is the
dimensionality of the latent space. However, this integration usually involves numerical
integration, which may be quite time consuming. In the FA formulation the margin-
alization is rather trivial, but the dichotomization is extremely difficult. It always involves
integration of n correlated multivariate normal variables over n dimensional parallelo-
piped, no matter what the dimensionality of the latent space is. Thus, most often only
one-way and two-way marginal probabilities (i.e., Pr(£1 xi ) and Pr(~i = xi and~ = x j)
can be evaluated. These considerations largely determine the choice of optimization cri-
teria in the two approaches. Whereas the IRT formulation uses the maximum likelihood
estimation based on the full joint probabilities of response patterns (Bock& Aitkin, 1981;
Bock& Lieberman, 1970), the FA approach typically uses a generalized least squares
(GLS) estimation based on the first and second order marginal probabilities
(Christoffersson, 1975; Muth6n, 1978).

In closing of this section it might be noted that the logistic model proposed by
Birnbaum (Lord & Novick, 1968) is often used to approximate the normal ogive model
(3). The equivalence of marginal probabilities in IRT and FA holds approximately with
the logistic model as well, but only to the extent that the logistic distribution provides a
good approximation to the normal distribution.

3. The Ordered Categorical Case

So far we have discussed the relationship between IRT and FA for dichotomous
data. An analogous relationship is expected to hold for general ordered categorical data,
and indeed it can be shown that the marginal likelihood of the normal ogive model for
graded scores (Samejima, 1969) is formally equivalent to factor analysis of ordered cate-
gorical data recently proposed by Muth6n (1984).

Let :~’ = (~’~, ..., ~’.) be a random vector of response patterns, where :~’~, i-th subvec-
tor of ~, is an nrcomponent vector, ~’~ = (~,1~ ..... ~,.,)) with itsj-th element defined 

, ( 1, if response to item i falls in category j,
x~t/) =~ 0, otherwise,

for j = 1 ..... ni and i = 1 ..... n. We assume Ylt~):~itk) = 0, for j ¢ k and ~7’ ~it/) = 
Note that in the special case of dichotomous variables we have Y,2)= ~ and 2,~)= 

The proof is rather straightforward following the line presented in the previous
section for the dichotomous ease. The factor analysis model (5) remains the same. Let 
be the multivariate region defined as the direct product of intervals R~(i = 1 ..... n), where
R~ = (r~_ ~, r~) if ~ = I. (Note there is only one ~) equal to unity for each i.) 
r~t~) is the category boundary between the (j- 1)-st and j-th successive categories. 
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define ri(o~ = - oo and r,~a = oo. Then (8) is still valid with this new definition of R, and

dy~

(13)

where at = ci/q~ (the same as in (11)) and 3 = -ri o)/qi. (bi to) = oo andb~tn) = -oo.) In
the dichotomous case bito) = oo, b,~) = bi, and b,2) = - 0% so that (13) indeed reduces 
(9) with (10).

The relationship between IRT and FA for ordered categorical data was first noted by
de Leeuw (1983). The above proof generalizes his result to the multidimensional case.

As in the dichotomous case the logistic function is often used (e.g., Cox, 1966;
Samejima, 1969; and Takane, 1983a, with some minor modifications) in place of the
normal ogive model in (13). Again, the approximate relationship holds between FA and
the logistic IRT model for ordered categorical data to the extent that the logistic distri-
bution provides a good approximation to (13).

4. The Unordered Categorical Case

The case of unordered categorical data is slightly more complicated. First of all there
is no factor analysis approach ever proposed for this case, although there have been a
couple of significant proposals in the IRT approach (which will be discussed briefly
toward the end of this section). Secondly, an element of ~ should be supplied for each
nominal category of each item. That is, ~’ = (~’~ ..... ~’~,) where each ~’i = (~i~ .... , ~’itni~) 
an nccomponent vector. The factor analysis model is now written as

~’ = m + Cfi + ~, (14)

where m, the mean vector, and C are partitioned in the same way as is ~. That is,
m’ = (m’x ..... m’,) where m[ = (m,:) ..... m~t,,)), and C’ = (C’~ ..... C’~) where C~ = (c,:) 
c~t~,)). Without loss of generality we may assume m’~ l~i = 0 and C’i ln~ --- 0 for each i, where
1,~ is the n~-component vector of ones. These restrictions remove indeterminacies of origin
in m~ and C~ for each i. In the ordered categorical case there was only one )7~ for each item,
and no comparison among 37~’s was involved. Consequently m could be set identically
equal to a zero vector. The response pattern vector x has the identical form as that in the
ordered categorical case.

Let R~o.~ be the region such that )7~o~ = max(jTi~l~ ..... )7~0) and R~ = R~o~ if ~o~ = 1.
Let R be the region defined by the direct product of Ri. Then (8) is still valid with

;a f(ylu)dy = ,l~’I. f~, ~(y~lu)dy~

(15)

Note that in this case R~t/) is not a parallelopiped, but a cone. However, it can be
transformed into a rectangular region, using Lemma 2 in the appendix.
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The same transformation is very effective in showing that when there are only two
response categories, the unordered categorical case reduces to the dichotomous case
discussed earlier. Let i’= (~t ..... ~.) where ~ = )7~t2~- )7~tt~. Then by Lemma 1 in 
appendix,

Pr(i = x) = fR h(y) 

= fR, h*(z) dz,

where R* is a multidimensional parallelopiped defined by the direct product of intervals,
R~’(i = 1 .... , n). where R~* -- (- ~o. 0) if ~,t~ = 1 - ~ = 1 and R~’ = (0, oo) if ~2~ 
1. Furthermore. in (15)

/

where

Thus, we obtain

fo~h~*(z, lu, dz,= "(---~ (18,

by setting ri = mio) - m~2) = 2m~t), e~ = e~2~ - e~l) = -2clot) and q~ = q~) + q~2~.
When the multivariate normal vafiates to ~ integrated over R~ are mutually inde-

pendent with homogeneous variance, there is an excellent approximation method provid-
ed by the multivariate logistic function (Bock, 1975). (Note that ~iu3lu, J = 1 .... , n~, 
mutually independent, but their variances, 2q~u), are generally not equal under the usual
factor analysis assumptions. Thus, we need a more strict assumption of q~ = q~ for all j
for this approximation to be valid.) Namely,

p~u~(U) Pr~iu~ = max(~,o~ ..... ~,~,~l u))

= exp (a,o)u + b~o)) (19)~ exp (a.~ u + b.~)

wherea~u)* and b*~ub are approximately proportional to e~u~ and ml~, res~ctively. It is
interesting to note that (19) provides a multidimensional generalization of Bock’s (1972)
unidimensional IRT model for unordered categorical data. It also generali~s Takane’s
(1983b) multivariate logistic unfolding model, which states

exp(- d?~(u)) 

where d~) = (Vlu) - u)’(v~u~ - u) is the squared euclidean distance between u and the point
representing category j of item i, whose coordinates are given by vi~. If we introdu~ a
bias parameter, w~o~, for category j of item i, and replace exp(-d~u~(u)) by 
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exp(-d/~j~,~), j = 1, ..., hi, in (20), (20) will be identical to (19) with ait/~ ~ and
b,j~ = In w,j~ - v’~tj~ v,j~. (u’u cancels out in the numerator and the denominator.) Model
(20) is considered as a combination of Coombs’ (1964) unfolding model for preference
data and Luce’s (1959) choice model. Alternatively it can be viewed as a probabilistic
generalization of dual scaling (Nishisato, 1980), homogeneity analysis (Girl, 1981) 
multiple correspondence analysis (Greenacre, 1984), which in turn is a special case of the
unfolding model (Takane, 1980a; Heiser, 1981). It can be also regarded as a multiple-
choice (as opposed to binary-choice) extension of Schrnemann-Wang’s (1972) individual
difference preference model. Both Bock (1972) and Takane (1983b) proposed marginal
maximum likelihood estimation methods for their models.

5. Individual Differences Pair Comparison Models

Takane (1985) recently extended the "factorial" model (Takane, 1980b; Heiser & 
Leeuw, 1981) and the wandering vector model (WVM; De Soete & Carroll, 1983) for pair
comparison data to accommodate systematic individual differences in these models. He
first introduced random vectors pertaining to the systematic individual differences (analo-
gous to fi), and then marginalized them out to arrive at ACOVS (Jrreskog, 1970) formu-
lations of these models. This clearly belongs to the FA approach. However, equivalent
IRT formulations are also possible. Pair comparison data can be viewed as a special case
of unordered categorical data with only two response categories, where the two categories
are two stimuli to be compared. (Either stimulus A is chosen or B is chosen.) As such, they
can be also considered as a special type of dichotomous data. (A stimulus is chosen or not
chosen.) Peculiarity~ of the pair comparison data stems from the fact that the response
categories (stimuli) are not nested within items (trials). The same stimuli repeatedly appear
in different combinations.

Let ~’ = (~12, ..-, -~(.- t),) be a random vector of choice patterns, where

~ f 1, if stimulus i is chosen over stimulus j,x~ =~ 0, otherwise,

for i = 1 ..... n - 1 and j --- i + 1 ..... n. (n is the number of stimuli). For the "factorial"
model of pair comparisons, let

~* = a~ + ~* = a(~ + C~) + (21)

be the second order FA (or ACOVS) model, where ~ = m + ~ ~ N(m, Qz), A is 
n(n - 1)/2 by n design matrix for pair comparisons, and ~* -~ N(O, K2) is the error random
vector for pair comparison trials with K2 diagonal. Matrix A takes the difference between

)7~ and 37~ for every distinct combination of stimuli i and j. ~* represents within-subject
variation. The reason for this additional error term (over and above ~ which is part of ~) 
that in the multiple-judgment pair comparison situation, a same stimulus is presented
more than once to a same subject, and consequently a new error term is required that
accounts for within-subject, across-trial variation. We then have

and

~* ~ N(Am, A(CC’ + Q~)A" + Kz),

~* I w ,-~ N(A(s + Cu), K2),

where w’ -- (s’, u’), for the "factorial" model.
In the WVM it is further assumed that m = Cv, where v is the mean of the wandering
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vector, fi* = fi + v. We thus obtain the ACOVS formulation of the WVM as

$’* = A(~ + Cfi*) + 9*.

The marginal distribution of ~* is given by

~* .~ N(ACv, A(CC’ + Q2)A’ K2).

Similarly, the conditional distribution of ~* given w, where w’ = (e’, u*’), is given 

~’* [w ,’-, N(A(e Cu*), K2).

Let R denote the multidimensional region defined by the direct product of unidimen-
sional intervals, Rij, which are either (-oo, 0) or(0, oo) depending on ~ij = 0 or 
respectively. Then (8) is still valid with y and u in (8) replaced by y* and w, respectively, 
both factorial and WV<M. In the present case

f~ f(Y*lW) dY* = I-].. ;~ fiJ(y~’w) dy~j
l, J ij

=i~,~
f~,(y~lw) dy~) t 1- f~,(y~iw) dy~) (23)

In the factorial model, we have

~o _(a’i,(s + Cu,), (24,fo(Y~sl w) dy~ = o) . ko
, ..

whereas in the WVM, we have "

f~(y~ I w) dy~ =tll Cu*)’), (25)

where a’~s is the ij-th row vector of A and k~ the ij-th diagonal element of K2. Equation
(23) along with (24) or (25) used in (8) provides the IRT formulation of the "factorial"
model or the WVM.

Both the ACOVS and the IRT formulations of these two models can be easily
generalized into ordered categorical ratings of pair comparisons (Sjoberg, 1967), although
this case will not be discussed any further in this paper. De Soete, Carroll & DeSarbo (in
press) recently proposed the wandering ideal point model based on Coombs’ unfolding
model. The model is conceptually similar to the WVM, and is applied td the same kind of
pair comparison data. The ACOVS and the IRT formulations of this mddel is possible
using squared euclidean distances (Takane, 1985). In fact they reduce to’forms similar 
those for the WVM, since the difference between two squared euclidean distances from a
common ideal point reduces to a scalar product.

Some attempt has been made to incorporate systematic individual differences into
Thurstone’s pair comparison model (Bock & Jones, 1968, p. 143-161). This attempt
belongs to the ACOVS approach. However, it is confined to the simplest possible covari-
ance structure, namely equal variances and covariances. This corresponds with K2 = 0,
CC’= d2rl 1’ and Q2 = d(1 -r)l in the "factorial" model, where d2 and r are, respec-
tively, the variance and correlation (assumed equal across stimuli).

6. Discussion

There are numerous instances of psychometric models involving subject parameters.
This is because there are almost always some degree of individual differences in every
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psychological phenomenon, and so far as one uses repeated-measures designs, one cannot
get away from the problem of dealing with the systematic individual differences. This
means that it is almost impossible to develop realistic models without incorporating
individual differences components into the models (Takane, 1985).

However, as argued in the introduction section, the subject parameters cause some
difficulties in parameter estimation from a statistical viewpoint. Since they are incidental
to the subjects, the number of parameters to be estimated generally increases with the
number of observations, and consequently the asymptotic properties of ML or GLS
estimators never hold. Marginalization of the subject parameters has been one of the
major techniques to deal with the problem. (For other alternatives, see Basu, 1977.) This
usually involves integrating out the subject parameters by assuming a population distri-
bution on the subject parameters. Then the marginal probability of observed data is
stated solely as a function of other (nonincidental) parameters related to, for example,
stimuli, items, categories, and so forth. For a large sample the ML or GLS estimators
(obtained through the marginal probability of the observed data) enjoy the usual asymp-
totic properties (BAN) of these estimators, provided that the model is correct, including
the distributional assumption made on the subject parameters. Latent structure analysis
(LSA; Lazarsfeld & Henry, 1968) and factor analysis are two classical examples of the
marginalization model. The marginalization is indeed an intrinsic part of these models.
Essentially the same approach has been proposed from a Bayesian perspective (Akaike,
1980) under the name "Bayesian modeling." Here the Bayesian predictive probability is
maximized with respect to Bayesian hyperparameters (which correspond to our noninci-
dental, fixed-effect parameters.) This approach was proposed to deal with a large number
of model parameters (which are not necessarily the subject parameters) and to incorporate
certain desirable properties into the parameters.

Psychological mental testing situations are the ones in which individual differences
are most pertinent. This in fact served as the basic motivation behind the IRT models
developed for the mental testing situations. Curiously, however, i~ was not until 1970
(Bock & Lieberman, 1970) that the marginal maximum likelihood (MML) estimation 
proposed for the IRT models. This is quite a contrast to LSA and FA, which included the
marginalization as part of the models. This probably reflects a difference in the initial
interest of these approaches. Whereas in IRT each subject’s score was of primary interest,
in LSA and FA how observations (response patterns) distributed in the population 
subjects was the focus of interest. However, the MML estimation proposed to deal with
inconsistent estimators in IRT has brought the two approaches together.

When the individual differences (in ability, attitude, preference, personality, etc.) are
of interest, we may use estimates of structural (nonincidental) parameters obtained 
MML to obtain EAP (expected aposteriori or the Bayes) or MAP (maximum aposteriori
or the Bayes modal) estimators of the individual differences parameters (Book & Aitkin,
1981). This corresponds with the estimation of factor scores in FA.

There are other models in psychometrics for which the marginalization may be
useful. The unfolding model is designed to account for individual differences in preference.
In this case coordinates of ideal points of subjects appear as incidental parameters.
Perhaps Takane (1983a, 1983b) was the first to point out the necessity of treating the
subject parameters as random effects, and to demonstrate the feasibility of MML in two
specialized cases of the multidimensional unfolding model, drawing close relationships
between his cases and the IRT test models. More recently Takane (1985) proposed the
MML estimation for pair comparison models that take into account systematic individ-
ual differences. (See section 5.) A similar formulation is also possible for the wandering
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Table I. A taxonomy of data for" the IRT and FA models

403

Number of Response Categories

2 >2
(Choice) (Categorlcal Rating)

>2

A. Dichotomous

e.g., pass-fall test
detection experiment
Guttman scale
pick anF/n

Book & Lieberman (1970)
Christoffersson ( 1975~

C. Binary choice

e.K., Dalr comparison
choice
constant method
pick anF/n

Schonemann & Wan~ (1972)

E. Multiple choice

e.g., multiple-choice
questionnaire

Rock (1972~
Takane ( 1983b )

B. Successive categories

e.g., graded dichotomies
(SameJima, 1969)

Muthen (1983, 198q)
Ta~ane (1983a)

D. Pair comoarison ratinK ]

e.g., successive |
categories method |

-- of pair comparisons|
(Sjoherg, 1967)

]
Ta~ane (1985 ]

F. Stimulus ranking

e.g., ran~ed groups
partial ranking
(rank m/n)
total rankin~

ideal point model recently proposed by De Soete, Carroll & DeSarbo (in press). Individ-
ual difference multidimensional scaling (Carroll & Chang, 1970) is another potential area
to which the MML estimation might be effectively applied. As has been demonstrated by
Weinberg, Carroll and Cohen (1984), the usual asymptotic results are too optimistic 
this case. In a Bayesian framework Ramsay (1982) has proposed the marginalization 
subject-specific data transformation parameters in his maximum likelihood multidimen-
sional scaling.

The data and the models discussed in this paper are summarized in Table 1. The
classification was made in terms of two criteria: (a) number of stimuli presented to the
subject in each trial where the stimuli may be test items, categories (mostly unordered), 
cetera, and (b) Number of response categories (usually ordered). There can be one, two, 
more than two stimuli presented, which are either chosen (or not chosen), or rated (or
ranked). Thus by combining the two criteria six data types emerge: (A) dichotomous; 
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successive categories; (C) binary choice; (D) pair comparison rating; (E) multiple choice;
and (F) stimulus ranking. For each data type some representative cases (or situations 
which the specific type of data are typically obtained) are given along with references to
models designed ~forlthe particular type of data. Except for SchSnemann-Wang’s (1972)
model, the models tcited are restricted to those having marginalization elements in the
models.

In the table ~in arrow indicates the data type at its tail is a generalization of the data
type placed at the head of the arrow. For example, successive categories data (B) reduce
to dichotomous data (A) when there are only two observation categories. Likewise multi-
ple choice data (E) reduce to binary choice data (C) when there are only two alternatives
to choose from. Models designed for more general types of data are usually applicable to
more special types of data as well. When choice alternatives are nested within trials the
binary choice data (C) are equivalent to the dichotomous data (A). This is because 
unordered categories can be always arbitrarily ordered to obtain two ordered categories.
(See also section 4.)

In the table (A) and (B) are the data types usually referred to as ordered categorical
data, and (C) and (E) unordered (or nominal) categorical data. This distinction closely
parallels the analogous distinction in models, similar to Bock’s (1975) distinction 
threshold and extremal concepts. In the former stimuli are supposedly compared with
thresholds (or category boundaries), while in the latter "stimuli" are compared against
other "stimuli." Takane (1983a) has shown that pick any/n data can be conceptualized 
either way. That is, in the first approach it is assumed that preference of a stimulus is
compared against a threshold, while in the latter relative strengths of two possible re-
sponses (pick or not pick) are compared against each other to determine if the stimulus 
picked or not.

Relatively little attention has been paid to the two remaining data types (D and F).
No marginalization models have yet been proposed for stimulus ranking. However, some
plausible models may be developed for this case, using Takane & Carroll’s (1981) direc-
tional ranking idea. This, however, is left to future investigations.

In this paper we have shown the equivalence of two marginalization techniques used
to obtain marginal probabilities of observed categorical data in two related areas, item
response test theory,.,a.nd factor analysis. Although useful exchanges of ideas and interplay
between these t.w.o areas have already begun (e.g., Mislevy, in press), we hope this paper
further facilitates this welcome trend.

’ ~ Appendix

In this appendix we first give a couple of useful lemmas. We then show that two
alternative formulations of the pair comparison model and the model of first choice by
Thurstone (1927, 1945) closely parallel the two approaches (IRT and FA) we have 
cussed in this paper.

Lemma 1. Let 5 and ~ be two continuous random variables, each ranging from - o~
to ~, with their joint density function denoted byf*(u, v). Then

Pr(5 > v’) f*(u, v) dv du fvlv(vlu) dv 
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= h(w) dw = Pr(ff - 6 > 0),

where w -- u - v, and where 9u and 9v are marginal densities of a and 6, respectively, and

fu I v and fv I v are conditional densities of ~7 and 6, respectively, given v and u, respectively.

A proof of the above lemma is rather rudimentary, and will not be presented here.
Note that Lemma 1 does not require either ff or 6 to be normal. There are two important
special cases to Lemma 1.

Suppose a and 6 are independent. Then f*(u, v) = Or(u) x Or(V). WeCorollary 1.
then have

Corollary 2.

where

then

Pr(a > v’) f~_®Ou(u)Gv(u) du

Gv(u) = f~gv(v) dv.

Suppose a and g follow a bivariate normal distribution, namely,

L\mvl kS,~ Sold

Pr(t~ > v’) (z) dz,

where ̄  is the density function of the standard normal distribution, and q = (mu - mv)!
(Su q- Sv -- 2Suv)1/2.

Both Corollaries 1 and 2 were used by Thurstone. Corollary 1 was used for predic-
tion of first choice (Thurstone, 1945), and Corollary 2 is the well known law of compara-
tive j~dgment (Thurstone, 1927). Although Thurstone did not explicitly discuss the re-
lationship of the two, Lemma 1 shows their equivalence when the conditions of both
corollaries are simultaneously met.

A generalization of Lemma 1 to the multiple-choice situation is rather straightfor-
ward, which we state in Lemma 2.

Lemma 2. Let ~, ~1, ..., tTn be continuous random variables, each ranging from - oo
to oo, with their joint density function denoted byf*(u, vl ..... vn). Then

Pr(fi > 61 ..... fi >

= (u "’" f(v~ ..... vnlu) dv~ ... d ~ du

.... h(w~ ..... w~) dw1 "’" dwn,
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where w~ = u - v~(i = 1 ..... n), and where # and f are the marginal density of t~ and the
conditional density of 31 ..... 3n given u, respectively.

Lemma 2 is often used as two alternative formulations of the model of first choice.
With the additional assumption of multivariate normality Lemma 2 is sometimes used as
a reduction formula for multivariate normal integrals with certain patterned covariance
matrices (Johnson & Kotz, 1974, pp. 43-53). Lemma 2 also indicates that there are two
ways to evaluate a probability like Pr(5 > 31, 5 < ~2), namely,

Pr(ti > 3~, 5 < 32) h(w~, w2) dwt dw2

= f(v~, v~lu) dvt dv~ du.

The two ways of evaluating the probability of the above form correspond with the
two ways of evaluating the marginal probability of a response pattern described in the
main body of this paper. We will show this only for dichotomous data in the following.
Generalizations of this argument to other situations are rather trivial.

Let 3~ be the random variable representing item difficulty of item i, where it is
assumed that 3i ~ N(ri, q~), i = 1 ..... n, independent of each other. Let ~i~ = e’~ fi be the
random vector of subject ability relevant to item i. As before, we assume fi ,-, N(0, I). 
further assume a~ and ~ are independent. In accordance with the pair comparison model
we may assume £i = 1 when t~ > 3~, and ~ = 0 when a~ < 6~. Define ~ = y~ - r~ where ~
is the ith variable (pertaining to item i) in the factor analysis model (5). Then,

Pr(~ = x) fwh*(w) dw,

where w is the vector of w~’s and W is the multidimensional region defined by the direct
product of ~, which is obtained by downshifting R~ by r~ (i.e., ~ = (- ~, 0) if ~ = 0 
~ = (0, ~) if Y~ = 1). This is equivalent to (4). The difference fo~ulation in Lemma 
thus corresponds with the FA approach.

If, on the other hand, we use the conditional formulation in Lemma 1, we have

where u* and v are vectors of u~ and v~, respectively, and where

k q~ /)

which is equivalent to (9) with (10). This corresponds with the IRT approach.
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