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The relations among several alternative parameterizations of the binary factor

analysis model and the 2-parameter item response theory model are discussed. It

is pointed out that different parameterizations of factor analysis model parameters

can be transformed into item response model theory parameters, and general

formulas are provided. Illustrative data analysis is provided to demonstrate the

transformations.

The purpose of this article is to discuss the relations among several alternative

parameterizations of the binary factor analysis (FA) model and the two-parameter

item response theory (IRT) model. The relationship between binary FA and the

two-parameter IRT model was clarified by Takane and de Leeuw (1987) and

McDonald (1999), among others; however, this relation has only been described
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BINARY FACTOR ANALYSIS MODEL 137

for a subset of the common parameterizations of the binary FA. Several different

parameterizations of the binary FA model have been described and implemented

in recent years, as noted by Millsap and Yun-Tein (2004) and Muthén and

Asparouhov (2002). This article summarizes four different parameterizations

of a unidimensional FA model with binary outcome variables. Then, the link

between each of these parameterizations and the two-parameter IRT model for

dichotomous items is clarified. This article also provides a general conversion

formula to convert FA model parameters to IRT parameters under other possible

parameterizations. The reader is referred to articles, such as Muthén (1978),

Goldstein and Wood (1989), and Brown (2006) for general descriptions of the

item response model as an FA model for binary outcome variables.

FACTOR ANALYTIC MODEL FOR BINARY VARIABLES

The binary FA model developed through analogy to the continuous factor model.

The key assumption to the binary FA is that there is a continuous underlying

latent response, denoted y�

i , that is an additive combination of the common

factor and item-specific residual. A one-factor model for the latent response

variable can thus be written as

y�

i D �i C œiŸ C ©i ; (1a)

where �i is the intercept, œi is the factor loading, the latent factor score for a

particular person is Ÿ, and ©i is the residual for item i (for compactness, no

person subscript is included). In addition, the residuals ©i are typically assumed

to be normally distributed, but a logistic distribution can also be considered.

A threshold model is then added to the linear latent response model to

accommodate the dichotomous nature of the observed response, yi :

yi D

(

1 if y�

i � £i

0 if y�

i < £i :
(1b)

Here, £i is the threshold for item i. The intercepts �i and thresholds £i are

not jointly identified, so the intercepts are typically dropped from the model

(i.e., assumed to be zero). We thus do not consider the intercepts further here.

Parameterizations for this model can be classified by the scaling of (a) the

continuous latent response variables y�

i , and (b) the continuous common factor Ÿ.

Scaling the Latent Response Variables

In one parameterization, the variance of y�

i is constrained to be 1.0 for all

items. Accordingly, the residual variance of y�

i , V.©i / or V.y�

i jŸ/, is obtained
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as the remainder V.©i / D 1 � œ2
i V.Ÿ/. This parameterization has its origin in

a particular method of estimating the binary FA, which involves the use of

tetrachoric correlations. The tetrachoric correlation matrix can be thought of

as a covariance matrix between underlying latent response variables with unit

variance, hence the assumption of unit variance for y�

i was a natural choice. This

parameterization is common in binary FA (Millsap & Yun-Tein, 2004; Muthén

& Asparouhov, 2002). Because the marginal distribution of the continuous latent

trait score (y�

i ) is standardized, we refer to this parameterization as the marginal

parameterization.

Another convention is to constrain the residuals ©i to have unit variance. The

variances of y�

i are obtained as the sum of the residual variance plus the variance

due to the common factor, or V.y�

i / D œ2
i V.Ÿ/ C 1. This parameterization is

similar to a traditional probit regression model, where the conditional variance of

the latent response is assumed to be 1. This parameterization is less commonly

used with binary FA but is closer to the conventional two-parameter IRT, as we

discuss shortly. Because the conditional distribution of the continuous latent trait

score .y�

i jŸ/ is standardized, we refer to this parameterization as the conditional

parameterization.

Scaling the Common Factor

The conditional and marginal parameterizations scale the latent response distri-

bution, but a choice must also be made for how to scale the common factor. Two

common scaling conventions are to choose a reference indicator or to standardize

the common factor. In the former approach, the threshold and factor loading of

one item are fixed (e.g., £1 D 0 and œ1 D 1). These constraints allow the mean

and the variance of Ÿ to be freely estimated. In the latter approach, the mean and

the variance of Ÿ are constrained (e.g., E.Ÿ/ D 0 and V.Ÿ/ D 1). Consequently,

all œi and £i are freely estimated. These same choices must be made in the

continuous FA model, with the only difference that intercepts (not thresholds)

are involved.

Four Parameterizations

By the combination of the two types of scaling choices already discussed, four

different parameterizations are obtained and summarized in Table 1. Note that

other parameterizations are also possible, but these four alternatives seem to

describe the majority of applications. In Figure 1, we attempt to clarify the

nature of these four alternatives. Equation 1a implies a linear relation between Ÿ

and y�

i , plotted as a regression line in Figure 1. The conditional distribution of

y�

i jŸ (or ©i ) is also shown in the plot. Note that, by Equation 1b, if y�

i exceeds

the threshold £i , then the binary variable yi D 1, otherwise it equals 0. This
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TABLE 1

Assumptions for Four Factor Analysis Parameterizations

Reference

Indicator

Standardized

Factor

Marginal œ1 D 1, £1 D 0 E.Ÿ/ D 0, V.Ÿ/ D 1

V.y�/ D 1 V.y�/ D 1

Conditional œ1 D 1, £1 D 0 E.Ÿ/ D 0, V.Ÿ/ D 1

V.©/ D 1 V.©/ D 1

is shown in Figure 1 by shading the region of the conditional distribution of

y�

i jŸ exceeding £i : The shaded area under the curve gives the probability that

yi D 1. To clarify the nature of the different parameterizations, note that both

Ÿ (x-axis) and y�

i (y-axis) are latent variables, so they have no natural scale.

We must therefore fix the scale of both variables in some sensible fashion, and

whatever choice we make will influence the values of the threshold and factor

loading. One choice would be to select a convenient distribution for y�

i jŸ. If we

fix the variance of this conditional distribution (at 1, for instance, as in the probit

model), then we arrive at the two conditional parameterizations. Alternatively,

we might choose a convenient distribution for the marginal distribution of y�

i ,

shown at the right of the figure. If we fix the variance of the marginal distribution

(e.g., at 1), then we arrive at the two marginal parameterizations. The key is that

FIGURE 1 Graphical representations of key quantities in factor analysis models with

binary variables.
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we must fix one or the other, the conditional variance or the total variance, to set

the scale of y�

i . In both cases, we fix the location of y�

i by setting the intercept

of the regression line to zero, making it possible to estimate the threshold.

Similarly, we must set the scale of the latent factor. One choice would be

to select a convenient distribution for Ÿ, such as a standard normal distribu-

tion with mean 0 and variance 1. This choice leads to the two standardized

parameterizations. Alternatively, we could fix the regression line (threshold and

factor loading) for one item, which would then make it possible to estimate

the mean and variance of the factor. This would lead to the two reference

parameterizations. In some sense, the choice is whether to fix the x-axis and

estimate the regression line, or fix the regression line and estimate the scale and

location for the x-axis. The same probability model is obtained for yi in either

case, but the estimates will again differ depending on the choice that is made.

We now consider how these parameterizations relate to the two-parameter

item response model.

RELATION OF BINARY FA TO TWO-PARAMETER IRT

The two-parameter IRT model can be written as

pi .yi D 1jŸ/ D f .’i Ÿ C “i /;

where ’i is the slope parameter and “i is the intercept parameter for item i , Ÿ

is the latent trait score for a specific person, and f is a cumulative distribution

function (CDF), chosen to be either a normal or logistic CDF.1 Previously,

Takane and de Leeuw (1987) derived the relation between parameters from

the standardized FA and IRT models; that is, when assuming 0 mean and unit

variance for the latent factor. For unidimensional models of the kind considered

here, their formulas reduce to

’i D
œi

qi

and “i D
�£i

qi

;

where qi is V.©i /
1=2. Although not explicitly stated by Takane and de Leeuw,

these formulas make clear that the conditional–standardized binary factor model

parameterization is in fact equivalent to the IRT model, except for the reversal

1Parameters in a two-parameter IRT model are typically reported in the form of f Œ’i .Ÿ�•i /�. In

this case, •i D �“i =’i , and •i is referred to as the difficulty parameter, and ’i is the discrimination

parameter. In this article, we deal with ’i and “i parameters directly as some other IRT literature

does, including Zimowski, Muraki, Mislevy, and Bock (1999), Baker and Kim (2004), and Takane

and de Leeuw (1987). In fact, BILOG-MG (Zimowski et al., 1999) estimates “i from data and it is

transformed into •i when estimates are reported.
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of sign for the threshold parameter £i relative to “i (given that qi D 1 in

this parameterization).2 Under the marginal–standardized parameterization, qi D

Œ1 � œ2
i �

1=2, paralleling formulas given in a number of other references (e.g.,

McDonald, 1999, p. 259). These results are very useful for understanding the

relation between FA and IRT models. Takane and de Leeuw’s derivation is

not, however, directly applicable to factor models using the reference indicator

convention for scaling the latent factor. We now provide more general formulas

applicable to all of the binary FA parameterizations discussed already, as well

as other possible parameterizations.

TRANSFORMATION FORMULAS FOR THE FOUR

PARAMETERIZATIONS

To relate the parameter values under different parameterizations, we must simply

recognize that these parameterizations involve only changes in the scales of the

variables in the model. We begin by considering a transformation of scale for

the latent response variables, y�

i . Suppose that we wish to rescale the standard

deviation of y�

i (or equivalently ©i ) for item i by a factor of 1=qi . To do so,

we need only multiply both sides of Equations 1a and 1b by this scaling factor,

yielding:

y�

i

qi

D
�i

qi

C
œi

qi

Ÿ C
©i

qi

;

and

yi D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1 if
y�

i

qi

�
£i

qi

0 if
y�

i

qi

<
£i

qi

:

Note that if we choose qi D V.y�

i /1=2, we are standardizing the latent response

variables (e.g., moving to a marginal parameterization). If we choose qi D

V.©i /
1=2, we are standardizing the residuals (e.g., moving to a conditional or

IRT parameterization). Regardless, the intercepts, thresholds, and factor loadings

2Yet another possible parameterization of the binary factor model is to set all of the thresholds to

0 and estimate the intercepts of the items (rather than the other way around). These intercepts would

have the same values as the previously estimated thresholds, but would be of opposite sign. Thus, a

standardized conditional parameterization with 0 thresholds and estimated intercepts would exactly

mimic the two-parameter IRT. In this case, the estimated intercepts would equal the “i parameters.
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under the new scaling are equal to the values under the old scaling divided by

the value qi .

Now we consider an additional transformation of scale of the common factor,

Ÿ. Suppose that we wish to recenter the common factor by subtracting the

constant r , resulting in Ÿ � r . To accomplish this, we must subtract œi=qi from

both sides of the equation, yielding

y�

i

qi

�
œir

qi

D
�i

qi

C
œi

qi

Ÿ C
©i

qi

�
œi r

qi

;

and simplifying to the desired result

y�

i � œi r

qi

D
�i

qi

C
œi

qi

.Ÿ � r/ C
©i

qi

:

The same constant must of course be subtracted in the threshold model, yielding

yi D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1 if
y�

i � œir

qi

�
£i � œi r

qi

0 if
y�

i � œir

qi

<
£i � œi r

qi

:

Hence if the location of the common factor is changed by the subtraction of a

constant r then the thresholds will change by subtraction of œir . Additionally,

however, we might wish to change the standard deviation of Ÿ by, say, a factor

of 1=s. The equations for the model will now change to

y�

i � œi r

qi

D
�i

qi

C
œis

qi

�

Ÿ � r

s

�

C
©i

qi

:

Note that the scaling factor s for the common factor is absorbed solely by a

change in the factor loadings (multiplication by s), requiring no further modifi-

cation of the threshold model. If s is chosen to be s D V.Ÿ/1=2, we can move from

a reference indicator parameterization to a standardized factor parameterization,

or IRT.

These transformation equations are sufficiently general to allow for con-

version of parameter values from any binary factor analysis parameterization

to any other binary factor analysis parameterization, or to the two-parameter

IRT. Here we demonstrate the latter, showing how each binary factor analysis

parameterization relates to the IRT model parameterization. To do so, we draw

on the previously noted relation between the IRT and standardized conditional

parameterization of the binary factor analysis. Setting qi D V.©i /
1=2, r D E.Ÿ/,
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and s D V.Ÿ/1=2 in the preceding equations, we obtain the following general

transformation formulas:

’i D
œiV.Ÿ/1=2

V.©i /1=2
; (2)

and

“i D
�Œ£i � œiE.Ÿ/�

V .©i /1=2
: (3)

As previously shown in Table 1, the four parameterizations differ only in whether

specific values are assigned to V.©i /
1=2, E.Ÿ/, and V.Ÿ/1=2, or these parameters

are estimated in the model.3

We can then write four sets of conversion formulas for the four different

parameterizations by substituting the appropriate values for these parameters

into Equations 2 and 3. Results of substitutions are summarized in Table 2.

ILLUSTRATIVE ANALYSIS

For illustration purposes, a unidimensional FA model, alternately employing each

of the four parameterizations, was fit to the LSAT6 data (Bock & Aitkin, 1981).

The data consist of five dichotomous items completed by 1,000 examinees.

A summary of the data is shown in Table 3. PROC NLMIXED in SAS was

used to fit the factor model. Although typical uses of the NLMIXED procedure

are for fitting nonlinear mixed models, such as growth models and multilevel

models, it has been shown that latent variable models with categorical outcome

variables can also be fit with the procedure (e.g., Rijmen, Tuerlinckx, De Boeck,

& Kuppens, 2003). Binary factor analysis models can, of course, also be fit by

other software programs (e.g., Mplus, LISREL, and EQS); however, NLMIXED

was chosen here because it makes more transparent how the scaling is done and

provides great flexibility regarding scaling choices. To make the results compa-

rable to a two-parameter logistic IRT model, we used the logistic distribution for

©i in Equation 1a with each parameterization of the factor model.4 SAS code for

each of the four parameterizations is presented and documented in the Appendix.

3We believe these equations will also hold for ordinal factor analysis models relative to the

graded response model, with the exception that more threshold parameters will be required.
4For FA, a normal distribution is more conventional; however we wished to compare these results

to those obtained from BILOG, which uses a logistic. Results from the normal model also matched

one another and are available from the first author on request. Note that results using a logistic

versus a normal distribution will not match one another precisely, given the different distributions,

although comparisons can be made with appropriate scaling corrections.
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TABLE 2

Conversion Formulas for Four Factor Analysis Parameterizations

Reference Indicator Standardized Factor

Marginal ’i D

œi V.Ÿ/1=2

Œ1 � œ2
i V.Ÿ/�1=2

’i D

œi

.1 � œ2
i /1=2

“i D

�Œ£i � œi E.Ÿ/�

Œ1 � œ2
i V.Ÿ/�1=2

“i D

�£i

.1 � œ2
i /1=2

Conditional ’i D œi V.Ÿ/1=2 ’i D œi

“i D �Œ£i � œi E.Ÿ/� “i D �£i

TABLE 3

LSAT6 Data Summary

Pattern Item 1 Item 2 Item 3 Item 4 Item 5 Frequency

1 0 0 0 0 0 3

2 0 0 0 0 1 6

3 0 0 0 1 0 2

4 0 0 0 1 1 11

5 0 0 1 0 0 1

6 0 0 1 0 1 1

7 0 0 1 1 0 3

8 0 0 1 1 1 4

9 0 1 0 0 0 1

10 0 1 0 0 1 8

11 0 1 0 1 1 16

12 0 1 1 0 1 3

13 0 1 1 1 0 2

14 0 1 1 1 1 15

15 1 0 0 0 0 10

16 1 0 0 0 1 29

17 1 0 0 1 0 14

18 1 0 0 1 1 81

19 1 0 1 0 0 3

20 1 0 1 0 1 28

21 1 0 1 1 0 15

22 1 0 1 1 1 80

23 1 1 0 0 0 16

24 1 1 0 0 1 56

25 1 1 0 1 0 21

26 1 1 0 1 1 173

27 1 1 1 0 0 11

28 1 1 1 0 1 61

29 1 1 1 1 0 28

30 1 1 1 1 1 298

M .920 .709 .553 .763 .870
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TABLE 4

Factor Analysis Model Parameter Estimates for LSAT6 Data

Conditional Marginal

Reference Standardized Reference Standardized

œ1 1 .8257 1 .6367

(.2581) (.1184)

œ2 .8754 .7227 .9200 .5858

(.3627) (.1867) (.2367) (.0994)

œ3 1.0790 .8909 1.0448 .6652

(.4351) (.2328) (.2443) (.0969)

œ4 .8337 .6884 .8906 .5670

(.3673) (.1851) (.2480) (.1035)

œ5 .7956 .6569 .8623 .5490

(.3806) (.2099) (.2678) (.1226)

£1 0 �2.7732 0 �2.1385

(.2057) (.1749)

£2 1.4374 �.9902 1.1649 �.8025

(.8740) (.0900) (.6410) (.0703)

£3 2.7431 �.2491 2.0482 �.1860

(1.0769) (.0763) (.6618) (.0563)

£4 1.0273 �1.2848 .8462 �1.0583

(.8790) (.0990) (.6720) (.0796)

£5 .1530 �2.0533 .1279 �1.7162

(.8978) (.1354) (.7409) (.1207)

�Ÿ 2.7732 0 2.1385 0

(.2057) (.1749)

var.Ÿ/ 0.6817 1 .4054 1

(.4262) (.1507)

Note. Values in parentheses are standard errors.

Additionally, the two-parameter logistic IRT model was fit directly by BILOG-

MG software (Zimowski et al., 1999). Parameters were estimated by maximizing

the marginal likelihood by numerical integration with 100 quadrature points.5

The results obtained by fitting each parameterization of the factor model

are summarized in Tables 4 and 5. The results showed that the transformation

formulas worked perfectly for the factor model parameterizations. The largest

5Marginal maximum likelihood estimation (MMLE) with numerical integration has been

commonly used in IRT models. Although MMLE is also becoming increasingly popular for binary

FA models, weighted-least-square-based approaches still are more commonly used for binary FA

models. However, when parameters are estimated with the same principal (MMLE for both IRT and

binary FA models, in this case), the relation between the parameter estimates from the two can be

demonstrated in a more direct manner. Also, we believe that MMLE should be a preferred choice

for binary FA models whenever it is computationally feasible.
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TABLE 5

Transformed Item Response Theory Model Parameter Estimates and

Direct Estimates of IRT Parameters

Factor Analysis

Conditional Marginal

Reference Standardized Reference Standardized

Direct

IRT

’1 0.826 0.826 0.826 0.826 0.826

’2 0.723 0.723 0.723 0.723 0.723

’3 0.891 0.891 0.891 0.891 0.891

’4 0.688 0.688 0.688 0.688 0.689

’5 0.657 0.657 0.657 0.657 0.657

“1 2.773 2.773 2.773 2.773 2.774

“2 0.990 0.990 0.990 0.990 0.990

“3 0.249 0.249 0.249 0.249 0.249

“4 1.285 1.285 1.285 1.285 1.285

“5 2.053 2.053 2.053 2.053 2.054

difference among the four parameterizations was at the fourth decimal place.

When they were rounded to three decimal places, the values matched perfectly.

Also, the transformed parameter estimates from the FA model were very close

to the direct estimates from the IRT model by BILOG. Only three parameters

(’4, “1, and “5) showed differences of .001. These differences were from the

differences at the fourth decimal place and likely reflect only differences in

optimization algorithms between PROC NLMIXED and BILOG.

In considering the untransformed estimates in Table 4, it is interesting to

see that our inferences and interpretations might change depending on what

scaling conventions are employed. For instance, in the conditional–reference

parameterization, the variance of the latent ability factor is not statistically

different from zero. In the marginal-reference parameterization, it does differ

from zero, and in the two standardized parameterizations, no such test is available

as the variance is fixed at 1. Similarly, the inferences for the threshold parameters

differ depending on the scaling convention. For example, for the two reference

indicator parameterizations, our tests are with respect to the threshold for the

reference indicator. That is, we are testing whether items have comparable

difficulty to the reference indicator. For the standardized parameterizations, the

thresholds instead represent points on the centered distributions of y�

i . These

differences in interpretation all reflect the fact that although the models are

equivalent, the parameter estimates are on different scales. Despite the difference

in scales, the null hypothesis continues to be zero, and this can lead to some

results being significant in one parameterization but not another. This is not
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problematic, as the estimates also have different interpretations in the different

parameterizations. In general, a parameterization should be chosen that leads

straightforwardly to the desired hypothesis tests.

CONCLUSIONS

This article summarized four different parameterizations for a unidimensional

FA model with binary variables. It was pointed out that one of the four pa-

rameterizations corresponds to the parameterization commonly used for an IRT

model. General transformation formulas were then presented to transform FA

parameters onto different scales, including into IRT parameters. Illustrative anal-

ysis demonstrated that the transformation formulas worked perfectly.

The choice between parameterizations is arbitrary—the results obtained under

one specification can be translated directly into the results under the others.

However, which parameterization one chooses does influence interpretations and

can have implications when extending to more complex models. For instance,

one advantage of the marginal parameterization is that the total variance of

y�

i is held constant as new predictors (either latent factors or item covariates)

are added to the equation for that item. As the explained variance in y�

i goes

up, the residual variance, V.©i /, goes down, just as in a typical linear model.

In contrast, if new predictors are added to the equation in the conditional

parameterization, the residual variance, V.©i /, continues to be held constant

and as the explained variance goes up, the total variance of y�

i must also go

up. As a consequence, all of the coefficients of earlier predictors (e.g., factor

loadings) must be adjusted to the new scale (regardless of whether the old

and new predictors, e.g., factors, are correlated). These adjustments due to

the changing scale of y�

i are nonintuitive for researchers more familiar with

linear models and can make interpretation of the coefficients more difficult.

On the other hand, the conditional parameterization has other advantages. As

discussed by Millsap and Yun-Tein (2004) and Muthén and Asparouhov (2002),

the conditional parameterization might be preferable when extending the binary

FA to make comparisons across multiple groups or over multiple time points.

The reason is that in the conditional parameterization, V.©i / is a parameter in

the model that is directly accessible to the researcher, whereas in the marginal

parameterization it is a remainder involving several other model parameters.

Having direct access to V.©i / can be important if there is reason to believe

this variance might differ over groups or over time, in which case it can be

standardized in one group or time and estimated in another (provided that certain

other constraints are implemented to identify the model).

Regarding the choice between a reference indicator and the standardized

factor, standardizing the factor is a simple and elegant approach that many



148 KAMATA AND BAUER

factor analysts use regularly. Further, when used in concert with the marginal

parameterization and a normal distribution for ©i , the thresholds fall on a standard

normal curve, easing the translation of these estimates into marginal proportions

for the observed responses. Other factor analysts, however, might prefer to use

a reference indicator so that the latent factor will be in the same metric as the

chosen indicator. Although this is a compelling rationale when the indicators

are continuous, for binary items the metric of the latent response variables is

ultimately arbitrary (e.g., depending on the choice of conditional or marginal

parameterizations), so the reference indicator approach does not seem to provide

a similar interpretational advantage in this case. One advantage of the reference

indicator approach is that the mean and variance of the latent factor can be

estimated, which may facilitate across-group or over-time comparisons. Another

possible advantage is that if there is a particular item that one wishes to compare

to other items, this item can be chosen as the referent. The threshold parameters

estimated for the remaining items will then reflect differences in difficulty or

severity relative to the referent item.

There are several other reasons we believe that the results provided in this

article are important. First, they extend the long-running discussion on the

relation between FA and IRT. Recognizing the different parameterizations that

are possible (and are implemented) with the binary FA and how they relate

to IRT might help to avoid confusion on the part of researchers using the

previously published transformation formulas, which apply only to a subset

of parameterizations. Second, if results are to be synthesized across different

studies, it must be possible to put them on the same scale. With the formulas

provided, studies employing different parameterizations can easily be compared.

Further, some studies might include both measurement and structural models

(as in structural equation modeling with binary outcomes), but the measurement

model parameters can still be related to the IRT model using the formulas

given here. Last, users of IRT might not recognize that there are a number of

alternative scaling conventions other than assuming standardized residuals and a

standardized common factor. These parameterizations might prove useful in IRT

for the same reasons that they were developed in binary FA, either by providing

different and useful interpretations or by facilitating alternative extensions of the

model. It is our hope that this article raises researchers’ awareness on scaling

issues for binary FA models, as well as models that include binary FA submodels.
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APPENDIX

SAS NLMIXED CODES

Here we present the SAS syntax we used to fit the binary FA model with each

of the four parameterizations. To fit the model in SAS using the NLMIXED

procedure, a data file was constructed that contained five rows of data for each

person, corresponding to the five items. Variables included a person identifier

(id), the item response (y), and five item indicator variables (d1-d5). The

indicator variable was scored 1 if the item response was for that item; otherwise,

it was scored 0 (e.g., d1=1 when y is a response to Item 1, d2=1 when y is a

response to Item 2, etc.). Accordingly, the data file contained seven variables

with 5,000 entries (five items for 1,000 examinees).

The NLMIXED code for each parameterization, given next, consists of five

main parts. The first part is the line that begins with the main procedure

statement proc nlmixed. It is followed by option specifications, including the

data (data=lsat6), quadrature method (nonadaptive, or noad), the minimum

number of iterations (miniter), convergence criterion (gconv), and the number

of quadrature points (qpoints). These specifications were kept the same for all

four parameterizations.
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The second part of the code begins with parms statement and defines the

parameters to be estimated and their starting values. Notice that in the two

reference parameterizations L1 (œ1) and tau1 (£1) are not estimated (later they

are constrained to be 1 and 0, respectively), allowing kappa (the mean of Ÿ)

and phi (the variance of Ÿ) to be estimated. In contrast, in the two standardized

parameterizations, all factor loadings œ (L1-L5) and thresholds £ (tau1-tau5)

are estimated, but the mean and variance of Ÿ (kappa and phi) are constrained.

The third part of the code begins with the program statement y_star= and

defines the model for y�. Here, d1-d5 are the indicator variables for the five

items in the data file and control which parameters are operative for which items.

Notice that y_star is defined as œ (L1-L5) � Ÿ (ksi), where œ for item 1 (L1)

is constrained to be 1 for the reference parameterization.

In the fourth part of the code, the probability model for y D 1 is defined.

For the two conditional parameterizations, the model is first expressed in the

form of logit = y_star-tau for each item. Note that tau1 is constrained

to be 0 in the conditional-reference parameterization. In contrast, in the two

marginal parameterizations, y_star-tau is divided by the standard deviation

of ©, which is Œ1�œ2 var.Ÿ/�1=2 (again tau1 is constrained to be 0 in the reference

parameterization). This expression appears as sqrt(1-phi*L2**2). However,

notice that L1=1 in the marginal–reference parameterization, and phi (variance

of Ÿ) is constrained to be 1 in the marginal–standardized parameterization.

After defining logit in this way, the probability that y D 1 is defined by the

cumulative standard logistic distribution (p=exp(logit)/(1+exp(logit))).

Finally, the fifth part of the code defines the distribution of the observed

responses and the latent factor (random effect). Here, the observed item response

y is specified as a Bernoulli distributed dichotomous variable by the binary

keyword of the model statement. The distribution of the latent factor (random

effect) and its parameters are specified in the random statement. In our model,

the only random effect is Ÿ (ksi), which is specified as having the mean of

kappa and the variance of phi. However, kappa and phi are constrained to

be 0 and 1, respectively, in the two standardized parameterizations. Also, the

option subject=id indicates that the clustering indicator variable is labeled as

id in the data. Note that the data must be sorted on the subject ID variable prior

to running the NLMIXED code.

Conditional–Reference Parameterization

proc nlmixed data=lsat6 noad miniter=20 gconv=.000000000001

qpoints=100;

*defining parameters to be estimated;

parms
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kappa=.5 phi=2

L2=1 L3=1 L4=1 L5=1

tau2=0 tau3=0 tau4=0 tau5=0;

*model for y_star;

y_star =

d1*(1*ksi) +

d2*(L2*ksi) +

d3*(L3*ksi) +

d4*(L4*ksi) +

d5*(L5*ksi);

*model for probability binary y = 1;

logit=

d1*(y_star- 0)+

d2*(y_star-tau2)+

d3*(y_star-tau3)+

d4*(y_star-tau4)+

d5*(y_star-tau5);

p=exp(logit)/(1+exp(logit));

model y ~ binary(p);

*specification of random effect;

random ksi ~ normal(kappa,phi) subject=id;

run;

Conditional–Standardized Parameterization

proc nlmixed data=lsat6 noad miniter=20 gconv=.000000000001

qpoints=100;

*defining parameters to be estimated;

parms

L1=1 L2=1 L3=1 L4=1 L5=1

tau1=0 tau2=0 tau3=0 tau4=0 tau5=0;

*model for y_star;

y_star =

d1*(L1*ksi) +

d2*(L2*ksi) +

d3*(L3*ksi) +

d4*(L4*ksi) +

d5*(L5*ksi);

*model for probability binary y = 1;

logit =
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d1*(y_star-tau1)+

d2*(y_star-tau2)+

d3*(y_star-tau3)+

d4*(y_star-tau4)+

d5*(y_star-tau5);

p=exp(logit)/(1+exp(logit));

model y ~ binary(p);

*specification of random effect;

random ksi ~ normal(0,1) subject=id;

run;

Marginal–Reference Parameterization

proc nlmixed data=lsat6 noad miniter=20 gconv=.000000000001

qpoints=100;

*defining parameters to be estimated;

parms

L2=.9 L3=.9 L4=.9 L5=.9

tau2=0 tau3=0 tau4=0 tau5=0

kappa=0.2 phi=0.5;

*model for y_star;

y_star =

d1*(1*ksi) +

d2*(L2*ksi) +

d3*(L3*ksi) +

d4*(L4*ksi) +

d5*(L5*ksi);

*model for probability binary y = 1;

logit =

d1*(y_star- 0)/sqrt(1-phi* 1**2)+

d2*(y_star-tau2)/sqrt(1-phi*L2**2)+

d3*(y_star-tau3)/sqrt(1-phi*L3**2)+

d4*(y_star-tau4)/sqrt(1-phi*L4**2)+

d5*(y_star-tau5)/sqrt(1-phi*L5**2);

p=exp(logit)/(1+exp(logit));

model y ~ binary(p);

*specification of random effect;

random ksi ~ normal(kappa,phi) subject=id;

run;
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Marginal–Standardized Parameterization

proc nlmixed data=lsat6 noad miniter=20 gconv=.000000000001

qpoints=100;

*defining parameters to be estimated;

parms

L1=.5 L2=.5 L3=.5 L4=.5 L5=.5

tau1=0 tau2=0 tau3=0 tau4=0 tau5=0;

*model for y_star;

y_star =

d1*(L1*ksi) +

d2*(L2*ksi) +

d3*(L3*ksi) +

d4*(L4*ksi) +

d5*(L5*ksi);

*model for probability binary y = 1;

logit =

d1*(y_star-tau1)/sqrt(1-L1**2)+

d2*(y_star-tau2)/sqrt(1-L2**2)+

d3*(y_star-tau3)/sqrt(1-L3**2)+

d4*(y_star-tau4)/sqrt(1-L4**2)+

d5*(y_star-tau5)/sqrt(1-L5**2);

p=exp(logit)/(1+exp(logit));

model y ~ binary(p);

*specification of random effect;

random ksi ~ normal(0,1) subject=id;

run;


