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Introduction
Of critical importance to education policy is monitoring trends in education outcomes 
over time. For example, on the international level, the United Nations Sustainable Devel-
opment Goals identified Goal 4 as focusing on quality education for all, with Goal 4.6 
focusing specifically on achieving literacy and numeracy for men and women (UN Gen-
eral Assembly, 2015). International large-scale assessment programs such as the OECD 
sponsored Program for International Student Assessment (PISA) (OECD, 2001) and IEA 
sponsored assessments in mathematics and science (TIMSS) and reading (PIRLS) (Mul-
lis, 2013) can provide information to be used to forecast movement toward the goals set 
by the United Nations.

For the United States, the National Assessment of Educational Progress (NAEP) (US 
Department of Education, 2019) has provided long-term trend data since 1970; at the 
state level, NAEP has provided long-term trend data since 1996, and particularly after 
2001 with the reauthorization of the Elementary and Secondary Education Act. In addi-
tion to the national NAEP, all 50 states and jurisdictions participate in the State NAEP 
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Assessment. Thus, throughout its history, NAEP has provided critical monitoring and 
forecasting information regarding trends in United States population-level academic 
performance.

Issues in trend reporting

A recent chapter by Kaplan and Jude (in press) provided an overview of trend analyses 
and reporting with international large-scale assessments. They argued that an inspec-
tion of trend reporting for PISA, PIRLS, and TIMSS reveals informative but relatively 
simple displays of changes in averages or percentages across time for populations and 
subpopulations of interest. The same holds true for NAEP; and although these displays 
are important for communicating trends to stakeholders, Kaplan and Jude argued that 
more detail could be gleaned from trend data by adopting a predictive model-based view 
of changes in trends over time. Kaplan and Jude (in press) further argued that a predic-
tive model-based view of changes in trends over time could lead to the development of 
forecasting models which could supplement discussions of how countries are moving 
toward (or away from) nationally or internationally agreed-upon aims such as the UN 
Sustainable Development Goals.

The significance of adopting a predictive model-based view of trend analysis is  two-
fold. First, this viewpoint can advance the policy and educational monitoring pur-
poses of large-scale assessments. With respect to international large-scale assessments 
(ILSAs), a recent paper by Braun and Singer (2019) pointed out the problems associ-
ated with common uses of ILSAs. In particular, Braun and Singer (2019, p. 82.) noted 
that the use of ILSAs for evaluating curricular, instructional, and/or educational poli-
cies could be conducted but only with “extreme caution” and that using ILSAs for causal 
inference was “generally impossible”. Braun and Singer (2019) did note however, that 
ILSAs were particularly useful for purposes of “transparency”, to “...spur educational 
reforms” (e.g. the German “PISA shock”), to “describe and compare student achieve-
ment and contextual factors...” (with caveats), and, of relevance to this paper, “[t]o track 
changes over time” (again with some caveats). We agree with many of the issues raised in 
Braun and Singer (2019) and argue that ILSAs or national LSAs such as NAEP have not 
been sufficiently leveraged for one of the major purposes for which they were originally 
intended—namely, monitoring population-level trends in educational achievement. The 
predictive model-based framework that we are proposing in this paper can demonstrate 
the richness of policy information that can be obtained when using Bayesian prediction 
models to study educational trends at the population level.

Second, as described in more detail below, adopting a Bayesian framework allows us 
to directly address uncertainty in the parameters of our models and the models them-
selves. Directly addressing uncertainty has the benefit of yielding models that are known 
to possess optimal long-run predictive properties, and therefore should be preferred to 
more conventional frequentist methods when the goal is policy analysis.

We situate our predictive model-based approach within similar work conducted in 
economics looking at cross-national trends in economic growth (see Fernández et  al., 
2001b). First, perhaps obviously, we recognize that data must be longitudinal in order 
to study changes in trends over time. Clearly, NAEP data are longitudinal at the state 
level and thus, across states, constitute a panel data structure. Second, we follow the 
work of 
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Fernández et al. (2001b) by advocating for an approach toward forecasting that 
accounts for uncertainty in the parameters of change over time by implementing a 
fully Bayes-ian methodology (e.g, Gelman et  al., 2014; Kaplan, 2014). Third, we 
argue along with Fernández et al. (2001b) that to be policy-relevant, it is necessary to 
identify predictors of change over time in educational outcomes of interest while at the 
same time recogniz-ing the uncertainty in choosing any specific set of predictors as the 
“true” predictor set. Recognizing and accounting for the uncertainty in the selection of a 
forecasting model is also handled in a fully Bayesian framework.

The organization of this paper is as follows. In the next section, we provide a brief 
introduction to ideas in Bayesian statistical inference that are needed to set the notation 
and ideas that follow. Next, we discuss Bayesian growth curve modeling as the means by 
which we estimate states’ growth rates accounting for uncertainty in the estimation of 
growth parameters. This is followed by a detailed discussion of Bayesian model averag-
ing which we employ to account for uncertainty in the model used to predict the growth 
rates. Our empirical example using state data from NAEP follows.1 We then turn to the 
results of the empirical example. This is then followed by a detailed sensitivity analy-
sis of the findings, concentrating on the impact of different model and parameter priors 
on measures of predictive accuracy. The paper closes with a summary and conclusion 
focusing on assumptions, alternative methods, policy implications, and directions for 
future research.

Preliminaries on Bayes theorem and prior distributions
In this section, we set the notation and concepts of Bayesian statistics that will be neces-
sary for later developments. Much more thorough treatments of Bayesian statistics can 
be found in Kaplan (2014) and Gelman et al. (2014).

The goal of statistical inference is to obtain estimates of the unknown parameters, 
denoted as θ.2 The key difference between Bayesian statistical inference and frequentist 
statistical inference concerns the nature of θ . In the frequentist tradition, the assump-
tion is that θ is unknown, but has a fixed value that we wish to estimate. Measures such 
as the standard error or the frequentist confidence interval provide an assessment of the 
uncertainty associated with hypothetical repeated sampling from a population. In Bayes-
ian statistical inference, θ is also considered unknown, however, similar to the data, θ is 
viewed as a random variable possessing a prior probability distribution that encodes our 
subjective or epistemic uncertainty (Howson & Urbach, 2006) about the true value of θ 
before having seen the data. Because both the observed data y and the parameters θ are 
assumed to be random variables, the probability calculus allows us to model the joint 
probability of the parameters and the data as a function of the conditional distribution of 
the data given the parameters, and the prior distribution, namely

(1)p(θ , y) = p(y|θ)p(θ).

1 The District of Columbia is a US Jurisdiction that participates in NAEP. From here on, we simply refer to states and 
jurisdictions as states.
2 We note that θ could be a scalar value, such as a mean, or vector-valued, such as a set of regression coefficients.
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where p(θ , y) is the joint distribution of the parameters and the data, p(y|θ) is the distri-
bution of the data conditional on the parameters—i.e. the model, and p(θ) is the prior 
distribution. Bayes’ theorem (Bayes, 1763; Laplace, 1774/1951) is then defined as

where p(θ |y) is referred to as the posterior distribution of the parameters θ given the 
observed data y representing our updated knowledge about the parameters of interest 
after having encountered the data and is equal to the data distribution p(y|θ) times the 
prior distribution of the parameters p(θ) normalized by p(y) so that the posterior distri-
bution sums (or integrates) to one.

Prior distributions

The general approach to considering the choice of a prior distribution on θ is based on 
how much information we believe we have prior to data collection and how accurate we 
believe that information to be. The strength of Bayesian inference lies precisely in its 
ability to incorporate our uncertainty about θ directly into our statistical models.

Non‑informative priors

In some cases we may not be in possession of enough prior information to aid in draw-
ing posterior inferences. Or, from a policy perspective, it may be prudent to refrain from 
providing subjective probabilities of effects of interest and instead, let the data speak for 
itself. Regardless, from a Bayesian perspective, this lack of information is still important 
to consider and incorporate into our statistical models. In other words, “...it is as equally 
important to quantify our ignorance as it is to quantify our cumulative understanding of 
a problem at hand” (Kaplan 2014, p. 18).

The standard approach to quantifying our ignorance is to incorporate non-informative 
prior distributions into our specification. In the case in which there is no prior knowl-
edge to draw from, perhaps the most extreme non-informative prior distribution that 
can be used is the uniform distribution from −∞ to +∞ , denoted as U (−∞,+∞) The 
uniform distribution essentially signals that we believe that our parameter of interest can 
take on an infinite number of values, each of which is equally likely. The problem with 
this particular specification of the uniform prior is that it is not proper insofar as the 
distribution does not integrate to 1.0. However, this does not always lead to problems, 
and is more of a conceptual issue. Highly diffused priors such as the N(0, 10) distribution 
could also be used.

Weakly informative priors

Situated between non-informative and informative priors are weakly informative priors. 
Weakly informative priors are distributions that provide one with a method for incorpo-
rating less information than one actually has in a particular situation. Specifying weakly 
informative priors can be useful for many reasons. First, it is doubtful that one has com-
plete ignorance of a problem for which a non-informative prior such as the uniform 
distribution is appropriate. Rather, it is likely that one can consider a more reasonable 
bound on the uniform prior, but without committing to much more information about 

(2)p(θ |y) =
p(θ , y)

p(y)
=

p(y|θ)p(θ)

p(y)
,
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the parameter. Second, weakly informative priors are very useful in stabilizing the esti-
mates of a model, particularly in cases of small sample sizes (see, Gelman et al., 2008). 
Specifically, Bayesian inference can be computationally demanding, particularly for hier-
archical models, and so although one may have information about, say, higher level vari-
ance terms, such terms may not be substantively important, and/or they may be difficult 
to estimate, especially in small samples. Therefore, providing weakly informative prior 
information may help stabilize the analysis without impacting inferences.

Informative priors

Finally, it may be the case on the basis of previous research, expert opinion, or both, that 
information can be brought to bear on a problem and be systematically incorporated 
into the prior distribution. Such priors are referred to as informative. Informative prior 
distributions require that the analyst commit to the shape of the distribution. For exam-
ple, if a parameter of interest, such as a regression coefficient is assumed to have a nor-
mal prior distribution, then the analyst must commit to specifying the average value and 
the precision around that value. Given that informative priors are inherently subjective 
in nature, they can be quite incorrect. Fortunately, Bayesian theory provides numerous 
methods for assessing the sensitivity of results to the choice of prior distributions. We 
will address sensitivity to choices of priors in our analysis below.

Bayesian v. frequentist comparisons

It is beyond the scope and purpose of this paper to outline all of the differences between 
Bayesian and frequentist methods, but several important distinctions relevant to this 
paper should be noted. 

1. Bayesian inference is the only paradigm of statistics that allows for the quantifica-
tion of subjective uncertainty. This form of uncertainty is not only present in our 
knowledge of the parameters of interest, but also in the very models that are used to 
estimate those parameters. Central to Bayesian theory and practice is that the inter-
vals around parameter estimates (so-called credible intervals) are more accurate and 
models are more predictive if subjective uncertainty is directly addressed rather than 
ignored (Kaplan, 2014). We address both parameter and model uncertainty in this 
paper.

2. In the specific case of model uncertainty, Bayesian approaches can be shown theo-
retically to lead to optimal predictive models under specific assumptions (Clyde and 
Iversen, 2013, see also; Kaplan, 2021). Given that the goal of this paper is to describe 
an approach that can be used to develop optimally predictive models, we argue that 
the Bayesian approach is preferable to frequentist methods which do not incorporate 
subjective uncertainty nor have been shown to be superior to Bayesian methods in 
terms of optimal predictive performance. It should be noted, however, that in any 
single predictive analysis, frequentist methods might be better; nevertheless, Bayes-
ian approaches have better long-run predictive performance on the basis of so-called 
probabilistic scoring rules. We will examine scoring rules for a variety forecasting 
models that vary in terms of their initial conditions.
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3. In large samples, Bayesian approaches and frequentist approaches will converge, 
though their interpretations are different. As noted above, frequentist parameters are 
treated as fixed and only uncertainty due to sampling variability can be estimated 
through reference to the estimate’s standard error. Bayesian estimates are interpreted 
probabilistically, and this, arguably, provides a much richer interpretation than the 
simple decision of whether a parameter estimate is statistically significant or not. We 
will highlight how Bayesian estimates provide interesting probabilistic interpreta-
tions as we proceed through the results.

Bayesian growth curve modeling
Our approach to probabilistic forecasting rests on the use of latent growth curve mod-
eling (e.g., Bollen and Curran, 2006; Kaplan, 2009) wherein we treat the individual states 
as the units of analysis and estimate the trajectories in educational outcomes over time. 
We argue that latent growth curve modeling provides a flexible framework for estimating 
linear and non-linear trajectories and for incorporating predictors of the rate of change 
in academic outcomes. In a related context, the use of latent growth curve modeling for 
ex-post forecasting has been discussed and demonstrated in Kaplan and George (1998).

We situate our paper within the framework of linear growth curve modeling from 
the multilevel modeling perspective (see e.g., Raudenbush and Bryk, 2002). We write 
the intra-state (level-1) model as

where yit is the outcome for state i ( i = 1, . . .N ) at time t ( t = 1, . . .T  ), π0i is the inter-
cept capturing state i’s status on the outcome at time t, π1i is the slope (rate of linear 
growth over time) for state i, and rit is the residual term. The term ai marks the assess-
ment cycles for state i. For this study, we use eight assessment cycles from 2003 to 2017. 
These are coded as at = 0, 2, 4 . . . 14 to reflect that the cycles were every 2 years apart. 
This coding sets the intercept π0i to be the math achievement score for state i in 2003. 
Together π0 and π1 are referred to as growth parameters.

The model in Eq. (3) is flexible enough to allow the growth parameters to be predicted 
by state-level time-invariant covariates. The inter-state (level-2) model can be written as

where the πsi are the growth parameters (intercept and growth rate), xqi are values on Q 
predictors for state i, βsq are the regression coefficients, and ǫsi are errors.

Latent growth curve modeling is very flexible. One important flexibility of latent 
growth curve modeling is the ability to incorporate time-varying covariates. These 
are variables that track the outcome of interest over time and are predictive of time-
specific variation in the outcome. As will be discussed below, our focus will be on 
time-invariant outcomes because we are interested in modeling the average growth 
rate across states and not time-varying features of the growth trajectories.

(3)yit = π0i + π1iai + rti

(4)πsi = βs0 +

Qs
∑

q=1

βsqxqi + ǫsi,
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Another important flexibility in latent variable growth curve modeling allows estima-
tion of non-linear trajectories using latent basis methods. This specification requires 
that some of the time points in ai be fixed to constants (e.g. 0, 2, 4) while allowing the 
remaining time points to be estimated from the data. Latent basis modeling yields data-
based estimates of the time points and provides much better fit of the model to the 
empirical growth trajectories. We will apply latent basis methods in our example. These, 
and other extensions, are discussed in Bollen and Curran (2006).

For this paper, we will select a set of policyrelevant predictors for the latent growth 
curve model. Given that these predictors can change over time along with changes in 
mathematics achievement, we will form difference scores, subtracting 2017 values from 
2003 values for each state and treat these difference scores as time-invariant predictors. 
We recognize that this is not an optimal solution, but present theory of BMA does not 
appear to provide for time-varying predictors in longitudinal models when the focus is 
on a growth parameter such as the linear growth rate.

A Bayesian framework for the growth curve model in Eqs. (3) and (4) first requires a 
specification of the probability model for the outcome—in our case the NAEP mathe-
matics achievement scores. For our study, we will assume a normal probability model for 
mathematics achievement. Next, the Bayesian framework requires placing prior prob-
ability distributions on all model parameters (Kaplan, 2014). The choice of priors for our 
growth curve models are non-informative or weakly-informative (see e.g., Gelman et al., 
2017) and will be discussed in more detail below.

Bayesian model averaging
An important aim of probabilistic forecasting is to identify policy-relevant predictors 
of growth. However, when confronting the problem of constructing probabilistic fore-
casting models, it is common to specify and estimate a set of different forecasting mod-
els and to use various model selection methods such as Akaike’s information criterion 
(AIC) (Akaike, 1985, 1987) or the Bayesian information criterion (BIC) (Kass and Raf-
tery, 1995; Schwarz, 1978) to choose a final model to report. The problem with model 
selection methods is that the analyst often proceeds as though the final selected fore-
casting model was the one considered in advance, and thus the uncertainty in the model 
selection process is ignored. More specifically, the selection of a particular model from a 
universe of possible models can be characterized as a problem of choice under pervasive 
uncertainty. The problem of model uncertainty has been nicely characterized by Draper 
and his colleagues who write (Draper et al., 1987, p. iii):

This [model selection] tends to underestimate Your actual uncertainty, with the 
result that Your actions both inferentially in science and predictively in decision-
making, are not sufficiently conservative. [Capitalization in Draper et al. (1987).]

To address the problem of model uncertainty, we propose to use the method of 
Bayesian model averaging (Hoeting et  al., 1999; Leamer, 1978; Madigan and Raft-
ery, 1994; Raftery et  al., 1997). The essential idea of Bayesian modeling averaging 
(described in more detail below) is to recognize that selecting a single model out of a 
class of possible models that could have been selected effectively ignores the uncer-
tainty inherent in model choice. Model averaging diminishes this uncertainty by 
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taking a weighted average over a selected set of models, with weights that account for 
the quality of the model. These weights are referred to as posterior model probabili-
ties (PMPs). Of importance to this paper is that theory and applications of Bayesian 
model averaging have shown that it provides better long-run predictive performance 
to that of any single model based on a class of scoring rules used in probabilistic 
forecasting analysis (Raftery et al., 1997). Specifically, BMA-based models are better 
calibrated to actual outcomes than any single model that one would choose, and the 
principle of choosing well-calibrated forecasting models is a key goal of predictive 
modeling (Dawid, 1982). Below, we will employ two specific scoring rules that we 
will use to evaluate the predictive performance of our forecasting models.

Bayesian model averaging has had a long history of theoretical developments and 
practical applications. Early work by Leamer (1978) laid the foundation for Bayes-
ian model averaging. Fundamental theoretical work on Bayesian model averaging 
was conducted in the mid-1990s by Madigan and his colleagues (e.g., Hoeting et al., 
1999; Madigan and Raftery, 1994; Raftery et al., 1997). Additional theoretical work 
was conducted by Clyde (1999). Draper (1995) has discussed how model uncer-
tainty can arise even in the context of experimental designs, and Kass and Raftery 
(1995) provide a review of Bayesian model averaging and the costs of ignoring model 
uncertainty. A recent review of the general problem of model uncertainty along with 
applications to LSAs can be found in Kaplan (2021).

In addition to theoretical developments, Bayesian model averaging has been 
applied to a wide variety content domains. A perusal of the extant literature shows 
Bayesian model averaging applied to economics (e.g., Fernández et al., 2001b), bioin-
formatics of gene express (e.g., Yeung et al., 2005), weather forecasting (e.g., Slough-
ter et al., 2013), and propensity score analysis (Kaplan and Chen, 2014) to name just 
a few. An extension of Bayesian model averaging to structural equation modeling 
with applications to education can be found in Kaplan and Lee (2015) and a gen-
eral review of Bayesian model averaging in the context of cross-sectional analyses 
of large-scale educational assessment data can be found in Kaplan and Lee (2018). A 
novel implementation of Bayesian model averaging to multiple imputation was pro-
posed by Kaplan and Yavuz (2019)

This paper is strongly motivated by the work of Fernández et  al. (2001b) who 
developed Bayesian model-averaged (BMA) growth regressions for gross domestic 
product over 140 countries from 1960 to 1992. Fernández et al. (2001b) found BMA-
based growth regressions to be superior to any single model chosen on the basis 
of out-of-sample-predictive performance. In line with Fernández et  al. (2001b), we 
propose to estimate a Bayesian latent growth regression model of NAEP 8th grade 
mathematics performance across the 50 states and the District of Columbia from 
2003 to 2017. We then specify a set of predictors of growth and employ Bayesian 
model averaging to address model uncertainty. The end result will yield predictive 
densities of growth for each state allowing comparison of the actual growth rate 
in mathematics achievement and the growth rate predicted by the model. We will 
explore these models for 8th boys and girls separately.



Page 9 of 31Kaplan and Huang  Large-scale Assess Educ            (2021) 9:15 

Technical background of BMA

Following Madigan and Raftery (1994, see also; Kaplan, 2021), we will denote a future 
outcome of interest (in our case, state-level 8th mathematics achievement) as ỹ . Next, 
consider a set of competing models {Mk}

K
k=1 that are not necessarily nested. The poste-

rior distribution of ỹ given data y can be written as

where p(Mk |y) is the posterior probability of model Mk written as

The important feature of Eq. (6) is that p(Mk |y) will likely be different for different mod-
els, reflecting the relative uncertainty across models. The term p(y|Mk) can be expressed 
as an integrated likelihood

where p(θk |Mk) is the prior distribution of the model parameters θk under model Mk 
(Raftery et al., 1997). Bayesian model averaging thus provides an approach for combin-
ing models specified by researchers, or perhaps elicited by key stakeholders.

Computational considerations for BMA

The number of models K appearing in the summation of Eq. (5) can be quite large. For 
example, if a regression model has K = 10 predictors, then there are 210 = 1024 models 
in the model space, M. The problem of reducing the overall number of models that one 
could incorporate in the summation of Eq. (5) has led to two interesting solutions. The 
approach that is used in the R software program BMS (Zeugner and Feldkircher, 2015) 
which we will employ in this paper is based on Markov chain Monte Carlo Model compo-
sition ( MC3)

Markov chain Monte Carlo model composition

The goal of Markov chain Monte Carlo model composition ( MC3 ) is to reduce the space 
of possible models that can be explored with Bayesian model averaging. Following Hoet-
ing et al. (1999), the MC3 algorithm proceeds as follows. First, let M represent the space 
of models of interest; in our case of growth curve modeling this would be the space of all 
possible combinations of variables used to predict the growth rates for each state. Next, 
the theory behind MCMC allows us to construct a Markov chain {M(t), t = 1, 2, . . . , } 
which converges to the posterior distribution of model k, that is, p(Mk |y).

The manner in which models are retained under MC3 is as follows. First, for any given 
model currently explored by the Markov chain, we can define a neighborhood for that 
model which includes one more variable and one less variable than the current model. 
So, for example, if our model has four predictors x1 , x2 , x3 and x4 , and the Markov chain 

(5)p(ỹ|y) =

K
∑

k=1

p(ỹ|Mk)p(Mk |y),

(6)p(Mk |y) =
p(y|Mk)p(Mk)

∑K
l=1 p(y|Ml)p(Ml)

, l �= k .

(7)p(y|Mk) =

∫

p(y|θk ,Mk)p(θk |Mk)dθk ,
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is currently examining the model with x2 and x3 , then the neighborhood of this model 
would include { x2 }, { x3 }, { x2, x3, x4 }, and { x1, x2, x3 }. Now, a transition matrix is formed 
such that moving from the current model M to a new model M′ has probability zero if 
M′ is not in the neighborhood of M and has a constant probability if M′ is in the neigh-
borhood of M. The model M′ is then accepted for model averaging with probability

otherwise, the chain stays in model M.

Sensitivity to parameter and model priors
One of the key steps when implementing BMA for probabilistic forecasting is to evalu-
ate the predictive performance of BMA under different choices of parameter priors and 
model priors (Eicher et al., 2011; Feldkircher and Zeugner, 2009; Fernández et al., 2001a; 
Liang et al., 2008). Thus, for the last step in our analysis, we outline the methods we use 
for model evaluation and present results focusing on the sensitivity of our forecasting 
model utilizing choices that are readily available in the software program that we imple-
mented for this study—BMS (Zeugner and Feldkircher, 2015).

Scoring rules for BMA

As noted earlier, a central characteristic of statistics is to develop accurate predictive 
models (Dawid, 1984). Indeed, as pointed out by Bernardo and Smith (2000), all other 
things being equal, a given model is to be preferred over other competing models if it 
provides better predictions of what actually occurred. Thus, a critical component in the 
development of accurate predictive models is to decide on rules for gauging predictive 
accuracy—often termed scoring rules. Scoring rules provide a measure of the accuracy 
of probabilistic forecasts, and a forecast can be said to be well-calibrated if the assigned 
probabilities of the outcome match the actual proportion of times that the outcome 
occurred.

Following closely the discussion in Kaplan (2021, pp. 222–226), a number of scoring 
rules have been proposed for probabilistic forecasting (see e.g., Bernardo and Smith, 
2000; Gneiting and Raftery, 2007; Jose et al., 2008; Merkle and Steyvers, 2013; Winkler, 
1996); however, for this paper we will primarily evaluate predictive performance under 
different parameter and model prior settings using the log predictive score (Bernardo 
and Smith, 2000; Good, 1952) and the Kullback–Leibler divergence (KLD) ( Kullback, 
1959, 1987; Kullback and Leibler, 1951).

The log predictive score (LPS) is defined as

where in the context of this paper, ỹi is the predictive density for the ith state, x and y 
represent the model information for the remaining states, and x̃i is the information on 
the predictors for state i. The model with the lowest log predictive score is deemed best 
in terms of long-run predictive performance.

(8)min

{

1,
pr(M′|y)

pr(M|y)

}

,

(9)−
∑

i

log [p(ỹi|x, y, x̃i)]
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In addition to the log predictive score we also use the Kullback–Leibler divergence 
(KLD). The KLD between two distributions can be written as

where KLD (f , g) is the “information lost when g is used to approximate f. In our case, 
the estimated growth rate without predictors is compared to predicted growth rate using 
Bayesian model averaging along with different choices of model and parameter priors. 
The forecasting model with the lowest KLD measure is deemed best in the sense that 
the information lost when approximating the “true” outcome distribution with the dis-
tribution predicted on the basis of the model is lowest. For this paper, LPS values will be 
obtained using BMS, and the KLD values will be obtained using the R package Laplaces-
Demon (Statisticat, & LLC 2020).

Parameter priors

The choice of parameter priors available for our sensitivity analyses rest on varia-
tions of Zellner’s g-prior (Zellner, 1986). Specifically, Zellner introduced a natural-
conjugate Normal-Gamma g-prior for regression coefficients β under the normal 
linear regression for model, written as,

where ε is i.i.d. N (0,φ−1) . For a give model, say Mk , Zellner’s g-prior can be written as

Feldkircher and Zeugner (2009) have argued for using the g-prior for two reasons: its 
consistency in asymptotically uncovering the true model in simulation studies, and its 
role as a penalty term for model size.

The g-prior is not without criticisms. In particular, Feldkircher and Zeugner (2009) 
have pointed out that prior choices of g can have very large impacts on posterior 
inferences drawn from BMA. In particular, small values of g can yield a posterior 
mass that is spread out across many models while large values of g can yield a poste-
rior mass that is concentrated on fewer models. Feldkircher and Zeugner (2009) use 
the term supermodel effect to describe how values of g impact the posterior statistics 
including posterior model probabilities (PMPs) and posterior inclusion probabilities 
(PIPs).

To account for the supermodel effect, researchers (Eicher et al., 2011; Feldkircher 
and Zeugner, 2009; Fernández et al., 2001a; Liang et al., 2008) have proposed alter-
native priors based on extensions of the work of Zellner (1986). Generally speaking, 
these alternatives can be divided into two categories: fixed priors and flexible priors. 
The list of fixed and flexible model priors used in this study are as follows (Zeugner 
and Feldkircher, 2015):

(10)KLD (f , g) =

∫

f (y)log

(

f (y)

g(y|θ)

)

dx

(11)yi = x′iβ + ε,

(12)βk |σ
2,Mk , g ∼ N

(

0, σ 2g
(

x′kxk
)−1

)

.
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Fixed priors

• Unit information prior: g = N (in our case g = 50 ). This prior was used in our 
empirical example. Liang et  al. (2008) suggested using UIP in combination with 
the uniform model prior to yield the best predictive performance.

• Risk inflation criterion prior (RIC): g = Q2 Foster and George (1994) show that 
the selection of the model with the highest PMP is equivalent to selecting the 
model with the highest RIC as long as g = Q2.

• Benchmark risk inflation criterion (BRIC): g = max (N ,Q2) . This is a combina-
tion of the UIP and RIC. When N ≤ Q2 , Fernández et  al. (2001a) recommend 
using g = Q2 ; When N > Q2 , use g = N  in the variable selection context.

• Hannan and Quinn priors g = log (N )3 : This prior is based on the Hannan–
Quinn criterion for model selection. Hannan and Quinn (1979) advocated the use 
of HQ = 3 for large N.

Flexible priors

• Local empirical Bayes: gk = arg max (0, Fk − 1) , where Fk =
R2k (N−Qk−1)

(1−R2k )Qk
 ; Fk is the 

F-statistic and R2
k is the regression coefficient of determination for model Mk . This 

approach estimates g separately for each model with maximum likelihood meth-
ods based on the observed data (George and Foster, 2000; Hansen and Yu, 2001; 
Liang et al., 2008).

• Hyper-g prior: This family of priors was proposed for data-dependent shrinkage. 
Following Feldkircher and Zeugner (2009), the hyper-g prior is a Beta prior on the 
shrinkage factor g

1+g  , that is p
( g
1+g

)

∼ Beta(1, α2 − 1) , with E
( g
1+g

)

= 2
α

 . Instead of 
eliciting g directly,the hyper-g prior requires the elicitation of the hyperparameter 
α ∈ (2,∞) . As α approaches 2, the prior distribution on the shrinkage factor g

1+g 
will be close to 1; while for α = 4, the prior distribution on the shrinkage factor 
will be uniform distributed. In the context of noisy data, the hyper-g prior will dis-
tribute posterior model probabilities more uniformly across the model space. In 
the case of low noise in the data, the hyper-g prior will be concentrated on a few 
models, and perhaps even more concentrated than in the fixed prior case with 
large g (Feldkircher and Zeugner, 2009). In this study, five types of hyper-g priors 
are examined in line with Liang et al. (2008) and Feldkircher and Zeugner (2009):

• HG-3: Setting α = 3 results in the prior for the shrinkage factor to be 23.
• HG-4: Setting α = 4, results in an approximately uniform prior for the shrink-

age factor.
• HG-UIP: α = 2 + 2

n yields the “g-UIP”-shrinkage where factor to be 
E
( g
1+g

)

= N
1+N .

• HG-RIC: α = 2 + 2
Q2 yields the “g-RIC”-shrinkage factor where E

( g
1+g

)

=
Q2

1+Q2.

• HG-BRIC: sets the prior shrinkage factor E
( g
1+g

)

 to be equivalent to the BRIC.
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Fernández et  al. (2001a) recommended using benchmark priors which belong to the 
class of fixed priors when sample sizes are large. Liang et al. (2008) introduced mixtures 
of g-priors to address the inconsistency when using fixed priors and showed its advan-
tages compared to other default priors. Instead of only employing model-dependent pri-
ors, Feldkircher and Zeugner (2009) proposed a hyper-g-prior that “let the data choose”, 
thus reducing the sensitivity of the prior choice of the g-prior on the posterior mass. In a 
detailed study, Eicher et al. (2011) compared 12 candidate default priors and concluded 
that the unit information prior (UIP) combined with the uniform model prior outper-
formed the other choices. In the following section, we examine how BMA performs 
under Zellner’s g-prior setting based on the LPS and KLD scores.

Model priors

For this paper, three model priors are investigated and are available in the BMS program: 
(a) the uniform model prior, (b) the binomial model prior, and (c) the beta-binomial 
model prior.

• Uniform model prior: The uniform model prior is a common default prior for Bayes-
ian model averaging. Specifically, if there are Q predictors, then the prior on the 
space of models is 2−Q . The difficulty with the uniform model prior was pointed out 
by Zeugner and Feldkircher (2015) who noted that the uniform model prior implies 

that the expected model size is 
∑Q

q=0

(

Q
q

)

q2−Q = Q/2 . So, for our analysis, the 

expected model size would be 6/2 = 3 . However, the distribution of model sizes is 
not even—there are more models of size 2 or 5, then there are of size 1 or 6. The 
result is that the uniform model prior actually places more mass on intermediate size 
models. A demonstration of the impact of this problem is given in Zeugner and Feld-
kircher (2015).

• Binomial model prior: To address the problem with the uniform model prior, 
Zeugner and Feldkircher (2015) proposed placing a fixed inclusion probability on 
each predictor in the model, denoted as θ . Then, for model k, the prior probability 
for a model of size q is p(Mk) = θqk (1− θ)Q−qm . Notice that the expected model 
size, say m̄ , is Qθ , and thus the analysts prior expected model size is m̄ . Moreover, if 
θ = .5 , then the binomial model prior reduces to the uniform model prior. In prac-
tice, this suggests that choosing θ < .5 will weight the posterior mass toward smaller 
models, and visa versa (Zeugner and Feldkircher, 2015). For this study, the default 
prior model size for binomial model prior is Q/2 = 6/2 = 3 for this study. Therefore, 
to assess the impact of model prior size when using the binomial model prior, we 
choose one unit lower (model prior size = 2) and higher (model prior size = 4).

• Beta-binomial model prior: The binomial prior discussed above suffers from the fact 
that the inclusion probability θ is fixed. Following Ley and Steel (2009), greater flexi-
bility is provided by treating θ as random. A logical choice for the probability distribu-
tion of θ is the Beta distribution with hyperparameters a, b > 0 , viz. θ ∼ Beta (a, b) . 
Under the Beta-binomial prior the first and second moments of the model size m̄ are, 

(13)E(m̄) =
a

a+ b
Q,
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Empirical example: analysis of state NAEP data, 2003–2017
Two data sources were combined to provide the variables necessary for this analy-
sis. First, a data file was constructed to provide the state NAEP mathematics achieve-
ment and reading data from 2003 to 2017, eight assessment cycles in total. Other data 
sources in the NAEP data file that were used for the predictive modeling (described in 
more detail below) are the National School Lunch Program (NSLP) variables obtained as 
the percentage of students in the state who are NSLP-eligible, and taken as a proxy for 
socio-economic status. In addition, demographic variables such as percentage of gender 
groups were also included in this data file.

The NAEP data file was merged with specific variables in the Common Core of Data 
(CCD) (2020) to obtain information regarding state staff counts in the metric of full-time 
equivalents (FTEs), per pupil state revenue, pupil/teacher ratio. It should be noted that 
Tennessee was excluded from this analysis due to lack of state reported data in the CCD 
file.

Analysis steps

In this section, we provide the analysis steps for estimating our Bayesian probabilistic 
forecasting model. We argue that these steps describe a reasonable workflow for proba-
bilistic forecasting and may be general enough to employ in other relevant contexts. 

1. We began by specifying a simple cross-state latent growth model of 8th grade math-
ematics achievement for states that participated in the state NAEP assessments since 
2003.3 This choice provided the most complete set of panel data possible on which 
to develop our models. We focused our analyses separately for boys and girls. This 
first step was necessary in order to determine the general shape of the achievement 
trends for the states over time. On inspection of the trajectories, we employed the 
flexibility of latent basis growth curve modeling discussed above, and determined the 
choice of the functional form of the model based on a number of model selection 
measures—particularly the Bayesian information criterion (Kass and Raftery, 1995).

 Throughout, we used the blavaan software package (Merkle and Rosseel, 2018). The 
blavaan software package uses the lavaan (Rosseel, 2012) syntax structure to call 
the Bayesian software program rjags (Plummer, 2014). The rjags software program 
implements Markov chain Monte Carlo (MCMC) sampling via the Gibbs sampler 
(see e.g., Gilks et al., 1996). Weak or non-informative priors for the Bayesian growth 
curve parameters are shown in the last column of Table 1. For this study, we used 
two chains with 1000 adaptation steps, 5000 burn-in steps, and 100,000 post burn-

(14)var(m̄) =
ab(a+ b+ Q)

(a+ b)2(a+ b+ 1)
Q

3 Note that state-level estimates published by National Center for Education Statistics (e.g., found in the Nation’s Report 
Card (US Department of Education, 2019) or the NAEP Data Explorer (US Department of Education, 2021)) automati-
cally incorporate plausible values and appropriate weighting. See https:// nces. ed. gov/ natio nsrep ortca rd/ tdw/ for more 
details.

https://nces.ed.gov/nationsreportcard/tdw/
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in iterations. To assess convergence of the chains, we inspected trace plots, density 
plots, and autocorrelation plots, and in all cases, the MCMC algorithm converged. In 
addition, we used the potential scale reduction factor (PSRF) (Brooks and Gelman, 
1998; Gelman and Rubin, 1992) which calculates the ratio of the between-chain vari-
ance to the within-chain variance. Convergence of the chains is achieved when the 
PSRF is less than to 1.01. The R code used for this study is available on our website at 
http:// bmer. wceruw. org/ index. html.

2. In addition to the 8th grade mathematics achievement measures, we selected a set 
of variables deemed to be policy-relevant predictors of the shape of the trends over 
time. Our choice of predictors was guided by an inspection of the student, teacher, 
and school questionnaires and other data sources. Also for this step, we calculated 
difference scores between the 2017 and 2003 measures of these variables (if available) 
and used these change scores as predictors of growth in 8th mathematics achieve-
ment.

3. We next implemented Bayesian model averaging to our forecasting model and com-
pared the results to the model estimated in Step 2, again on the basis of forecasting 
statistics. This was accomplished in a two-step process by computing the random 
growth parameters for each state and importing them into the Bayesian model aver-
aging software. The results of Bayesian model averaging provide an assessment of 
the impact of the chosen predictors on growth, accounting for model and parameter 
uncertainty.

 For this step, we initially specified the default parameter and model priors available 
in the software program BMS (Zeugner and Feldkircher, 2015). For the priors on 
the model parameters we used the unit information prior discussed earlier (Raftery, 
1998). The unit information prior is a weakly informative prior that is diffused over 
the region of the likelihood where parameter values are considered mostly plausi-
ble, but not overly spread out. This is accomplished by forming the prior based on 
the maximum likelihood estimate of the parameter mean, with variance equal to the 
expected information from one observation. The default prior on the model space is 
1/M, where M is the number of models, reflecting the belief that no model is to be 

Table 1 Bayesian growth curve modeling results for boys and girls

pre() refers to the precision of the parameter, where precision = 1/variance. dnorm is the normal N(µ, τ 2) distribution, where 
τ 2 is the precision. dwish is the Wishart (R, ν) distribution for the precision matrix with shape matrix, R and degrees‑of‑
freedom, ν

Estimate Post.SD HPD.025 HPD.975 PSRF Prior

Boys growth params.

 Intercept 274.782 1.300 272.116 277.226 1.000 dnorm(260,.1)

 Slope 0.931 0.108 0.726 1.149 1.000 dnorm(0,1e−2)

 Pre(intercept) 88.460 19.415 55.216 127.007 1.000 dwish(iden,3)

 Pre(slope) 0.246 0.067 0.132 0.385 1.000 dwish(iden,3)

Girls growth params.

 Intercept 273.707 1.308 271.113 276.219 1.000 dnorm(260,.1)

 Slope 0.902 0.122 0.669 1.142 1.002 dnorm(0,1e−2)

 Pre(intercept) 85.114 19.065 51.593 122.738 1.000 dwish(iden,3)

 Pre(slope) 0.269 0.084 0.126 0.43 1.000 dwish(iden,3)

http://bmer.wceruw.org/index.html
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favored a priori as the true forecasting model. Other priors will be explored in the 
section of this paper on sensitivity analysis.

4. We next used the results from the Bayesian model averaging step to obtain poste-
rior predictive densities of growth rates in 8th mathematics achievement for the boys 
and girls separately across the states. These predictive densities provide a means of 
checking the prediction model of the growth rate against the actual growth, allowing 
examination of problems with the prediction model and/or potential outlier states. 
Also, 95% quantiles around the predicted growth rates are provided.

5. Finally, we examined the sensitivity of our results to different choices of parameter 
and model priors, that serve as initial settings for BMA. We view this step as essen-
tial before utilizing any forecasting model for serious policy analysis.

Bayesian growth curve modeling results
In this section we present the results of the Bayesian growth curve model described 
earlier to fit the mathematics achievement trend data for 2003 thru 2017 and for boys 
and girls separately. Preliminary analyses suggested estimating the latent basis model, 
allowing data-based estimation of the time coefficients so that the slope corresponds to 
the unique shape of the trend. In particular, the first three time points (2003, 2005, and 
2007) were set to fixed values while the remaining time points were estimated from the 
data (see Bollen and Curran, 2006, for a discussion of this method).

The Bayesian growth curve modeling results for boys and girls separately on NAEP 8th 
grade mathematics achievement are shown in Table 1. The “intercept” parameter is set 
to be the average mathematics achievement score in 2003. The posterior parameter esti-
mates are given under the “Estimate” column along with their posterior standard devia-
tions in the next column. This is followed by the 95% highest posterior density (HPD) 
interval.4 The column labeled “PSRF” contains the potential scale reduction factors for 
each parameter and serves as an assessment of the convergence of the MCMC chains.

The final column shows the priors that were used for this analysis. For all but the inter-
cept parameter, non-informative priors were used. Specifically, for the intercept and 
slope, a normal prior was used. For the intercept, a default value of zero led to MCMC 
convergence issues. Because it is known that the average NAEP mathematics achieve-
ment score for our groups is much greater than zero, we placed an informative prior 
on the intercept to help attain convergence. The precision on the normal prior for the 
intercept was set to .1 indicating relatively high certainty regarding the mean value. The 
precision for the normal prior on the slope was set much lower indicating relatively less 
certainty.5 Priors used for the precisions of the intercept and slope were given Wishart 
distributions with non-informative shape and scale parameters (see Kaplan, 2014, for a 
discussion of these priors).

For boys in the top panel of Table 1, we note on the basis of the PSRF that all param-
eters converged to their posterior distributions. We find that the posterior estimate of 

4 The HPD is an interval in which every point inside the interval has a higher probability than any point outside the 
interval (Kaplan, 2014).
5 Note that the variance of the prior is 1/precision, and so here the variance is 10.
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Fig. 1 Country-level (above) and state-level (below) fitted trends in 8th grade boys mathematics 
achievement
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the rate of mathematics achievement growth for boys is 0.931 (sd = 0.108). The HPD 
indicates that there is a 95% probability that the true mathematics achievement growth 
for boys is between 0.726 and 1.149. In addition, we find that the probability that the 
effect is greater than zero is approximately 1.0. The country-level and state-level fitted 
and actual trends are displayed in Fig. 1.

The results for 8th grade girls’ mathematics achievement are displayed in the lower 
panel of Table 1. Here too, we note that on the basis of the PSRF all parameters have 
converged to their posterior distributions. We find that the posterior estimate of the rate 
of mathematics achievement growth for girls is 0.902 (sd = 0.122). The HPD indicates 
that there is a 95% probability that the true mathematics achievement growth for girls is 
between 0.669 and 1.142 and the probability that the growth rate is greater than zero is 
approximately 1.0. The country-level and state-level fitted and actual trends for girls are 
displayed in Fig. 2.

Three important points regarding the growth curve modeling results should be high-
lighted. First, note that for both boys and girls we used latent basis modeling, and thus 
the fit of the model to the empirical trajectories is expected to be quite good. Second, 
although the model estimated rate of growth across the 50 states is almost certainly not 
zero, an inspection of the individual state trajectories in Fig. 1 show that they are quite 
small and the trends appear flat for most states. Finally, note that the description of the 
findings are stated in probabilistic terms. This includes statements about  the highest 
probability density as well as statements about the probability that the estimates are 
greater than zero. Indeed, any probability statement of relevance to a research question 
is possible insofar as the posterior probability distribution of the parameter is available 
and can be summarized via simple statistical calculations. Such probability statements 
are not possible in the context of frequentist growth curve modeling, which would sim-
ply render a dichotomous decision about whether the average growth rate is significantly 
different from zero.

Bayesian model averaging results
In this section, we provide the results of using Bayesian model averaging over a set of 
selected predictors of growth in 8th mathematics achievement for boys and girls sepa-
rately. The variables used in this model are 

1. BoysEnrollDiff: The difference between the 2017 8th grade enrollment of boys and 
2003 8th grade enrollment of boys expressed as a percentage ( ×100 ) of the popula-
tion of 8th grade enrollment. The variable is used for the analysis of the boys’ data.

2. GirlsEnrollDiff: The difference between the 2017 8th grade enrollment of girls and 
2003 8th grade enrollment of girls expressed as a percentage 8th grade enrollment of 
boys and 2003 8th grade enrollment of boys expressed as a percentage ( ×100 ) of the 
population of 8th grade enrollment. This variable is used in the analysis of the girls’ 
data.

3. PTRatioDiff: The difference between 2017 pupil/teacher ratio and the 2003 pupil/
teacher ratio

4. FTEdiff2: The difference in the 2015 and 2003 state level full time equivalent teachers 
(divided by 10,000). Data were unavailable for 2017.
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Fig. 2 Country-level (above) and state-level (below) fitted trends in 8th grade girls mathematics 
achievement



Page 20 of 31Kaplan and Huang  Large-scale Assess Educ            (2021) 9:15 

5. TOTREVdiff: The difference between the 2015 and 2003 total revenue (divided by 
10,000)

6. NSLPLunchDiff: The difference in the 2017 and 2003 percentage of NSLP-eligible 
students

7. ReadDiff: The difference in 2017 and 2003 NAEP reading scores.

The outcome variable is the growth rate in 8th mathematics (for boys and girls sepa-
rately) obtained from the Bayesian growth curve model. With six predictors for each 
model, there are 26 = 64 possible models to be explored.6 We use the R program BMS 
(Zeugner and Feldkircher, 2015) to explore the space of possible models, yielding 
weighted averaged regression coefficients, with weights corresponding to the posterior 
model probabilities (PMPs) of the models retained by the algorithm as described in Eq. 
(8).

The Bayesian model averaging results are shown in Table 2. The column labeled “PIP” 
shows the posterior inclusion probabilities for each variable, referring to the proportion 
of times the variable appeared in the models searched by the algorithm. For example, 
the PIP for ReadBoyDiff is 1.00, meaning that across all the models selected by the algo-
rithm, the 2017–2003 difference in 8th grade reading for boys appears in 100% of the 
models. The PIP thus provides a different perspective on variable importance. The col-
umns labeled “Post Mean” and “Post SD” are the posterior estimates of the regression 
coefficients and their posterior standard deviations, respectively. The column labeled 
“Cond. Pos. Sign” refers to the conditional probability that the sign of the respective 
regression coefficient is positive conditional on its inclusion in the model. For example, 
with ReadBoyDiff, the probability is 1.0 that the sign is positive - that is, the coefficient’s 

Table 2 Bayesian model averaging results for boys and girls

PIP: Posterior inclusion probability; Post Mean: expected a posteriori estimate; Cond.Pos.Sign: Probability that the sign of the 
estimate is positive conditional on inclusion in the model

PIP Post Mean Post SD Cond. Pos. Sign

Boys

 ReadBoyDiff 1.00 0.05 0.01 1.00

 TOTREVdiff 0.21 0.05 0.13 1.00

 PTRatioDiff 0.19 − 0.01 0.03 0.00

 BoysEnrollDiff 0.16 0.01 0.02 1.00

 NSLPLunchDiff 0.12 0.00 0.00 0.87

 FTEdiff2 0.12 − 0.00 0.00 0.37

Girls

 ReadGirlDiff 0.98 0.06 0.02 1.00

 GirlsEnrollDiff 0.72 − 0.09 0.07 0.00

 PTRatioDiff 0.46 − 0.04 0.05 0.00

 TOTREVdiff 0.41 0.16 0.24 1.00

 NSLPLunchDiff 0.13 − 0.00 0.00 0.28

 FTEdiff2 0.13 0.00 0.00 0.95

6 We note that in typical applications of BMA, many more predictors are used and thus a much larger model space is 
explored. We discuss this issue in the “Summary and conclusions” section.
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sign is positive for all models explored by the algorithm. In contrast, for girls, the prob-
ability that the sign for NSLPLunchDiff is only 0.28, indicating a low probability that 
NSLPLunchDiff is positive.

For both boys and girls, we find that the 2017–2003 reading difference score is the 
strongest (model averaged) predictor of growth in mathematics. The sign of the poste-
rior means for boys and girls are positive indicating that the positive change in reading 
over the years is associated with a positive change in the growth in mathematics achieve-
ment. In each case, the PIPs are very close to one and the effects are almost certainly 
positive. Remaining effects have appreciably smaller posterior inclusion probabilities, 
particularly for boys. For girls, however, we find that positive change 8th enrollment 
from 2003 to 2017 appears in 72% of the models explored by the algorithm and is associ-
ated with a positive rate of growth in mathematics achievement.

Figure 3 displays the posterior coefficient density plots for boys (upper panel) and girls 
(lower panel). These figures provide a visual display of the information in Table 2. We 
find, as expected under the model, that the posterior densities are normal and that the 
medians and mean values of the coefficients (COND EV) align very well. The dashed 
lines are the 95% posterior probability intervals.7

Bayesian model averaging also provides information on the posterior model probabili-
ties (PMPs) of each model searched by the algorithm. Table 3 provides the PMPs for the 
top five models for boys and girls. Three important results should be noted. First, for 
boys and girls, the PMP for the top model (Model 1) is quite small (0.40 for boys and 
0.17 for girls). In a typical model selection framework, this top model would be chosen, 
and consistent with the quote from Draper et al. (1987) referenced earlier, the inferences 
from this top model would be over-confident because of the considerable uncertainty 
in this model, and decisions based on predictions from this model would be very risky.8 
Second, and in a similar vein, the total posterior probability of the top 5 models is con-
siderably less than 1.0, again suggesting extensive uncertainty across the space of mod-
els. As this is a case study with relatively few predictors, these results are not surprising, 
but do serve as a caution. Third, if we were to simply use all of the variables in a single 
model, we would still be assuming that the posterior model probability of that full model 
is 1.0, which it might not be, and thus again we would be in danger of drawing over-
confident inferences.

Predictive densities

For the next step in our analysis, we provide Bayesian predictive densities of growth in 
8th grade mathematics. As an example, we focus on predictive densities for boys and 
girls in Colorado and DC. These plots are shown in Fig. 4. Results for all remaining states 
are available as Additional file 1. The dashed vertical line is the actual growth rate and 
the solid line is the model-predicted growth rate based on Bayesian model averaging. 
The 95% quantiles for the predictive densities are also displayed. These figures provide 
a means of judging the adequacy of the model in terms of how predictions of growth 

7 We note that the PIP values displayed in Fig. 3 are not rounded as compared to Table 2.
8 Note that the top model would also be associated with the lowest Bayesian information criterion, and would be 
selected on that basis as well.
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Fig. 3 Marginal posterior density plots and posterior inclusion probabilities for boys (top) and girls (bottom)
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align with the actual growth rate. Large differences between the observed and predicted 
growth rates are indicative of the prediction model being incorrect for that state, that the 
state may be an outlier, or both. An example of the prediction model being a good fit to 
the actual growth rate can be seen in Fig. 4 for boys’ mathematics achievement, with the 
prediction of 8th grade growth in mathematics for Colorado. An instance in which the 
model is not predicting growth accurately is DC. In the situation of DC, it may be neces-
sary to examine the data closely for possible problems, or examine different settings for 

Table 3 Posterior model probabilities for top five models

Model 1 Model 2 Model 3 Model 4 Model 5

PMP (Boys) 0.40 0.12 0.10 0.08 0.06

PMP (Girls) 0.17 0.16 0.14 0.09 0.06

Fig. 4 Boys (top row) and girls (bottom row) posterior forecast density plots: Colorado and DC
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the prediction model, such as alternative priors placed on the model parameters. We 
examine overall predictive accuracy next. We observe that the results are virtually iden-
tical for girls.9

Sensitivity test results

The results of our sensitivity tests for boys and girls under the fixed priors setting are 
displayed in Table 4. We find that the LPS and KLD values within model prior settings 
are virtually identical across all parameter priors. However, across model prior settings, 
the binomial model prior with m = 4 yields a lower LPS compared to other the other 
model priors regardless of the choice of parameter priors. The KLD values for the analy-
sis of the boys are slightly lower under the binomial prior with m = 4 setting while the 
KLD results for the girls is less clear.

The results for boys and girls under the flexible priors setting are found in Table 5. As 
with the fixed prior setting, the LPS and KLD values are also quite similar across differ-
ent parameter priors setting. However, the LPS values in the flexible prior setting are 
slightly larger overall compared to the values in the fixed priors setting while KLD values 
are almost the same. In the uniform model prior condition, using the local empirical 
Bayes prior obtains the smallest LPS while using the hyper-g-prior with the α = 4 yields 
the highest LPS values.10 The KLD values remain mostly consistent over all flexible pri-
ors setting. Because Q2 = 36 and N = 50 in this study, the hyper-g-BRIC prior translates 
the shrinkage factor to be arg max (Q2,N ) to be N, which is identical to the hyper-g-
UIP prior. In general, the models in the fixed priors setting yield smaller LPS values than 
the ones in the flexible priors setting while the KLD values are almost identical in both 
setting.

Table 4 Summary of log-predictive scores and Kullback–Leibler divergences for boys and girls in 
the fixed priors setting

UIP: Unit information prior; RIC: Risk inflation criterion; BRIC: Benchmark risk inflation criterion; HQ: Hannan–Quinn criterion; 
Uniform: uniform model prior; Binomial (m = 2): Binomial model prior with model size = 2; Binomial (m = 4): Binomial 
model prior with model size = 4; Beta‑binomial: Beta‑binomial model prior

LPS KLD

UIP RIC BRIC HQ UIP RIC BRIC HQ

Boys

 Uniform 0.391 0.391 0.391 0.392 0.098 0.097 0.098 0.098

 Binomial (m = 2) 0.391 0.396 0.391 0.397 0.098 0.098 0.098 0.098

 Binomial (m = 4) 0.387 0.391 0.387 0.387 0.097 0.097 0.097 0.097

 Beta-binomial 0.397 0.395 0.397 0.397 0.098 0.098 0.098 0.098

Girls

 Uniform 0.391 0.390 0.391 0.392 0.096 0.096 0.096 0.096

 Binomial (m = 2) 0.401 0.402 0.401 0.405 0.097 0.096 0.097 0.097

 Binomial (m = 4) 0.383 0.390 0.383 0.383 0.096 0.096 0.096 0.096

 Beta-binomial 0.393 0.390 0.393 0.395 0.096 0.096 0.096 0.096

9 There are other states where the model is not predicting the actual growth rate very well. Results for DC, however, 
were the most extreme.
10 See however, the footnote in Table 5 for a caveat.
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Our overall conclusion on the basis of these analyses is that our forecasting model of 
state NAEP mathematics achievement would achieve optimal long-run predictive per-
formance for both boys and girls under the fixed-prior setting using a binomial model 
prior with a model size of four regardless of the choice of the g-prior. Clearly, these con-
clusions rest on our choice of functional form for growth and our choice of predictors 
used in this analysis.

Summary and conclusions
In this paper, we provided a workflow that permits Bayesian probabilistic forecasting to 
be applied to large-scale assessments, with NAEP being used as an example. In particu-
lar, we borrowed from techniques derived from economic forecasting to specify a fore-
cast model of mathematics achievement across the states and the District of Columbia. 
Our results demonstrated that a great deal can be learned from applying Bayesian meth-
ods to large-scale assessment trend data and that, in particular, the Bayesian perspec-
tive provides a rich description of growth while at the same time addressing subjective 
uncertainty in growth parameters as well as predictive models of growth.

A critical assumption

Throughout this paper, a subtle assumption was invoked but not discussed; namely that 
the true model for growth, say, MT was one of the models in the set of models {Mk}

K
k=1 

that were averaged. This assumption is referred to as the M-closed framework, dis-
cussed in Bernardo and Smith (2000) and Clyde and Iversen (2013) (see also Kaplan, 
2021). Under the M-closed framework it makes sense to assign prior probabilities to the 
space of models reflecting ones belief that the true model MT is in the space of models 
under consideration. In fact, this is the framework that underlies the standard approach 
to BMA discussed in this paper; prior probabilities are assigned to the set of models 
(typical the indifference prior 1/M, but others could be chosen, e.g. Fernández et  al. 
(2001a) encoding ones belief that each model is equally likely to be the true model. The 
application of the indifference prior is the conventional default in Bayesian model aver-
aging software.

In principle, the M-closed framework is difficult to warrant and may only really be 
sensible in the case of simulation studies. Nevertheless, as pointed out by Bernardo and 
Smith (2000), it may be reasonable to act as though there is a true model. A situation in 
which one might feel comfortable acting as if a true model exists is when a model has 
demonstrated good predictive capabilities under a wide variety of situations, but that 
under a new situation, new uncertainties arise. As this paper is a demonstration of prob-
abilistic forecasting with an application to NAEP, prior experience with this model is not 
available, and so operating as if M-closed holds is not reasonable.

In contrast to the M-closed framework, two other frameworks can be adopted that 
have important consequences for the predictive modeling described in this paper and 
represent directions for future research. Both alternatives require the analyst to decide 
whether to formulate an actual belief model or not. In the first instance the analyst does 
have an actual belief model but that the models under consideration are proxies for the 
actual belief model. This is referred to as M-completed (Bernardo and Smith, 2000). 
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Under M-completed , the models in {Mk}
K
k=1 are listed out for comparison purposes in 

light of an actual belief model.
In the second instance, the analyst does not even entertain the existence of a belief 

model; the models in {Mk}
K
k=1 are enumerated for comparison purposes only. This is 

referred to as M-open framework. The M-open framework is, arguably, the most real-
istic situation for the social and behavioral sciences. An example of a situation in which 
M-open represents a realistic modeling framework is in specifying a regression model 
with different choices of predictors. When utilizing BMA to search through the space of 
possible models (different choices of predictors), it does not make sense to assign priors 
to the space of models, when there is no actual belief model (or for that matter, a true 
model) being contemplated.

The distinction among these modeling frameworks is quite important, and indeed, 
work by Clyde and Iversen (2013) have used a decision-theoretic framework that allows 
for multi-model inference within the M-open framework. This is the so-called method 
of stacking which can be considered either from the frequentist or Bayesian perspec-
tive (see e.g. Breiman, 1996; Le and Clarke, 2017; Wolpert, 1992; Yao et al., 2018). We 
have proceeded under the M-closed framework recognizing that this may be unrealistic. 
The hope is that as predictive modeling of growth using NAEP or other LSA data pro-
ceeds, that the performance of these models will lead to a better assessment of whether a 
true model is at least worth entertaining or whether better forecast performance can be 
obtained using methods developed for the M-open framework.

Frequentist approaches

It should be pointed out that issues of model uncertainty and model averaging have 
been addressed within the frequentist domain. The topic of frequentist model averaging 
(FMA) has been covered extensively in Hjort and Claeskens (2003), Claeskens and Hjort 
(2008) and Fletcher (2018). Our focus on Bayesian model averaging is based on some 
important advantages over FMA. As noted by Steel (2020), (a) BMA is optimal (under 
M-closed) in terms of prediction as measured by the log predictive density score; (b) 
BMA is easier to implement in situations where the model space is large due to very fast 
algorithms such as MC3 ; (c) BMA naturally leads to substantively valuable interpreta-
tions of posterior model probabilities and posterior inclusion probabilities; and (d) in 
the majority of content domains wherein model averaging is required, BMA is more fre-
quently used than FMA.

Policy implications and research directions

It is important to emphasize that the results of this particular study must be treated with 
great caution because the variables assembled to provide predictors of growth in 8th 
grade mathematics achievement were few in number and not conceived or designed to 
provide policy-relevant predictors of growth over time. Going forward, if there is pol-
icy interest in using state NAEP data or other large-scale assessments such as PISA or 
TIMSS for developing predictive models of growth in academic outcomes, then it will 
become necessary to consider the development of policy-relevant indicators specifically 
of growth. Nevertheless, the policy implications of the present work lie in the potential 
for constructing forecast models to guide education policy. For example, for this case 
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study we find that the changes in reading achievement (as measure here by the differ-
ence between 2017 and 2003 reading scores) is the strongest predictor of the growth in 
math achievement for boys and girls, accounting for parameter and model uncertainty 
and the specific setting of priors for the forecast models. Such a finding could allow pol-
icymakers to forecast changes in math outcomes under different scenarios represent-
ing anticipated changes in reading performance over time. Such forecast models can be 
developed in an ex-post fashion, as shown in this paper, where models are specified and 
evaluated on the extant data, but eventually utilized in an ex-ante fashion in which a true 
forecast is generated. Comparison of the forecast to the actual outcome would aid in the 
iterative calibration of the model (see Dawid, 1982; Little, 2011, for a discussion on cali-
brated Bayes). It may also be necessary to track the long-run predictive performance of a 
number of forecasting models under different initial conditions. In any event, a well-cal-
ibrated forecasting model could help provide policymakers with additional information 
needed to make decisions regarding the allocation of funds for interventions or remedial 
educational programs.

We can also envision future research examining how the predictions arising from dif-
ferent forecasting models can be ensembled to provide even better forecasting perfor-
mance. Ensemble forecasting methods have been developed in contexts such as weather 
forecasting (e.g. Gneiting and Raftery, 2005), and our current research is being directed 
to examining the ensemble method of stacking (see e.g. Yao et al., 2018) as a means of 
combining Bayesian predictive distributions in the M-open framework with applica-
tions to forecasting models using NAEP and other large-scale assessments. An exam-
ple of stacking applied to PISA 2018 can be found in Kaplan (2021). The end result of 
research and development into forecasting models for LSAs would be to build one or 
more usable models that education policy-makers and other stakeholders can use to not 
just track changes in educational outcomes over time, but to predict the direction and 
rate of those changes.

To conclude, we argue that large-scale assessments in general, and NAEP in particu-
lar are not being sufficiently leveraged for the purposes for which they were created—
namely, monitoring population-level trends in achievement. The richness of the trend 
data that NAEP and other LSAs provide can be utilized for much more than simple, 
albeit informative, descriptive plots (Kaplan and Jude, in press). The methodological 
advancements presented in this paper were designed to demonstrate the richness of pol-
icy information that can be obtained when using Bayesian predictive models to study 
educational trends.
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