11 Inflation and Monetary Policy

11.1 Inflation and Money Growth

What is the most important determinant? - Look at the money market:

$$\frac{M}{P} = L(i,Y) \quad \Rightarrow \quad P = \frac{M}{L(i,Y)}$$

Most important factor with greatest variation = growth in money supply M:

- unlikely long-term decline in output Y
- observed variation in real interest component $r = i \pi^e$ is limited
- no reason for repeated falls in money demand L

Inflation = increase in the average price of goods and services

Effect of money growth:

- long term => prices are flexible => no effect on real output \bar{Y} or real interest rate \bar{r} , where $\bar{r} = i - \pi^e$ (Fisher identity)

$$P = \frac{M}{L(\bar{r} + \pi^e, \bar{Y})}$$

- * assume permanent increase in money growth => P will have to grow at the same rate as M, π^e adjusts immediately to account for the new rate of money growth
- * at the moment of change: π^e jumps up => one-to-one increase in i => discontinuously lower demand for $\frac{M}{P} => P$ has to jump up discontinuously
- short term => incomplete price flexibility
 - * in reality: higher M => lower *i* liquidity effect
 - * explanation: higher M => higher Y & lower r (new investment) which offsets increase in π^e and, thus, lower i

11.2 Dynamic Inconsistency of Low-Inflation Monetary Policy

What can cause a high money growth?

- seignorage (revenue from money creation) not important in developed countries
- short term output inflation trade-off

Kydland and Prescott (1977)

- if π^e is low, then policymaker have incentive to pursue expansionary policy to push output above the natural level
- however, as policymaker cannot reliably commit to low inflation, people will expect deviation and there expectations will push inflation up without positive effect on output

11.2.1 Model:

- Output-inflation trade-off: $y = \bar{y} + b(\pi \pi^e), \quad b > 0$
 - $-\hat{y}$ log of flexible-price level of output, by assumption lower than socially optimal level of output y^* (due to positive externalities from higher output coming from taxation or market imperfections)
- Social loss function $L = \frac{1}{2}(y y^*)^2 + \frac{1}{2}a(\pi \pi^*)^2, \quad a > 0$
 - inflation above some level (π^*) is costly, with increasing marg. costs

11.2.2 Analysis:

- Setting π with binding commitment before π^e is realized
 - he would choose π that maximizes $L => \pi = \pi^*$
- Setting π with discretion simultaneous determination of π and π^e

FIGURE 10.3 The determination of inflation in the absence of commitment

If the expectations of people would be at optimal level, i.e. $\pi^e = \pi^*$, then the optimal policy would be to exploit the output-inflation tradeoff, namely set inflation as

$$\pi = \pi^* + \underbrace{\frac{b}{a+b^2}}_{>0} \underbrace{(y^* - \bar{y})}_{>0}$$

In equilibrium, however, there is no uncertainty and expectations and realized level of inflation has to be equal $\pi = \pi^e$.

$$\pi^{e} = \pi^{*} + \frac{b}{a+b^{2}}(y^{*} - \bar{y}) + \frac{b^{2}}{a+b^{2}}(\pi^{e})$$

$$\pi^{e} = \pi = \pi^{*} + \frac{b}{a}(y^{*} - \bar{y})$$

$$y = \bar{y} + b((\pi - \pi^{e}) = \bar{y} < y^{*}(\text{optimal})$$

Policymaker achieves inflation higher than optimal, with output lower than optimal.

11.2.3 Summary:

The policy of keeping low inflation ($\pi = \pi^*$) is dynamically inconsistent

- as soon as people would build their expectation based on announcing $\pi^e = \pi^*$, policymaker would have an incentive to deviate
- people can anticipate this, so they adapt their expectations

11.3 Addressing the Dynamic Inconsistency Problem

One option = monetary policy determined by binding rules

- rules cannot account for unexpected circumstances, e.g. credit crunch
- even economies without fixed rules (e.g. Germany) were able to keep a low levels of inflation

11.3.1 Model of Reputation:

policymakers are in the office for 2 periods, public builds expectations based on their past behavior

- output-inflation relationship: $y_t = \bar{y} + (\pi_t \pi_t^e)$
- social welfare (positive): $w_t = (y_t \bar{y}) 1/2a\pi_t^2 = \underbrace{b(\pi_t \pi_t^e)}_{\text{addit. output}} \underbrace{1/2a\pi_t^2}_{\text{cost of inflation}}$
- 2 types of policymakers:
 - type 1 (prob p): maximizes $W = w_1 + \beta w_2$, is aware of output-inflation tradeoff
 - type 2 (prob 1 p): fights inflation sets $\pi_1 = \pi_2 = 0$

Decision-making of type 1 policymaker:

 2^{nd} period:

$$\max_{\pi_2} \qquad b(\pi_2 - \pi_2^e) - 1/2a\pi_2^2 \\ b - a\pi_2 = 0 \implies \pi_2 = b/a$$

 1^{st} period: his decision affects π_2^e

- if he chooses $\pi_1 \neq 0 \Rightarrow$ public knows he is type one $\Rightarrow \pi_2^e = b/a \Rightarrow$ he will choose (again) $\pi_1 = b/a$, Total welfare would thus be:

$$W_{INFL} = b\left(\frac{b}{a} - \pi_t^e\right) - \frac{1}{2}a\left(\frac{b}{a}\right)^2 + \beta\left[b*0 - \frac{1}{2}a\frac{b^2}{a^2}\right] = \frac{1}{2}(1-\beta)\frac{b^2}{a} - b\pi_t^e$$

- if he chooses $\pi_1 = 0$ with prob q => public expectations given that it observes $\pi_1 = 0$ are: with prob 1 - p he is type 2 and he will set $\pi_2 = 0$ as well, and with prob qp he is type 1 and he will set $\pi_2 = b/a$. Thus

$$\begin{aligned} \pi_2^e &= \frac{1-p}{(1-p)+pq} * 0 + \frac{qp}{(1-p)+pq} \frac{b}{a} < \frac{b}{a} \\ W(q) &= b(0-\pi_e^e) - \frac{1}{2}a * 0 + \beta \Big[b\Big(\frac{b}{a} = \frac{qp}{(1-p)+pq} \frac{b}{a}\Big) - \frac{1}{2}a\frac{b^2}{a^2} \Big] \\ &= \frac{b^2}{a}\beta \Big[\frac{1}{2} - \frac{qp}{(1-p)+pq} \Big] - b\pi_2^e \end{aligned}$$

Obviously, with higher q the probability of being a "cheater" is higher, which drives up π_2^e and consequently lowers the social benefit W(q).

$$W(0) = \frac{b^2}{a}\beta \frac{1}{2} - b\pi_2^e$$

There exist 3 possible equilibria:

- $W(0) < W_{INF} \Leftrightarrow \beta < \frac{1}{2} : q = 0$ and policy maker chooses $\pi_1 = b/a$
- $-W(1) > W_{INF} \Leftrightarrow \beta > \frac{1}{2} \frac{1}{1-p}$: q = 1 and policymaker chooses $\pi_1 = 0$
- $-W(0) > W_{INF} > W(1) \Leftrightarrow \frac{1}{2} < \beta < \frac{1}{2} \frac{1}{1-p}$ and policymaker chooses $\pi_1 = 0$ with probability $q = \frac{1-p}{p}(2\beta - 1)$ that would lead to $W_{INF} = W(q)$

Summary:

- uncertainty about policymaker's characteristics reduces inflation
- abidingness of reputation is greater when policymaker places greater weight on future period (see case 3, where q is positively related to β

11.3.2 Model of Delegation:

Monetary policy should be delegated to an institution that is specially averse to inflation

- output-inflation trade-off: $y = \bar{y} + b(\pi \pi_e)$
- social loss function: $L = \frac{1}{2}(y y^*)^2 + \frac{1}{2}a(\pi \pi^*)^2$
- policymaker's loss function: $L' = \frac{1}{2}(y-y^*)^2 + \frac{1}{2}a'(\pi-\pi^*)^2$, where a' > a

Intuitivelly, policymaker will set lower π than is he would take into consideration social loss function (baseline Kydland and Prescott (1977) model).

In the equilibrium $\pi = \pi^e$ which implies $y = \bar{y}$. The difference $\pi - \pi^e$ will become smaller => social welfare will increase.

Empirical justification:

Alesina (1993) - central bank independence as a measure of delegation - negative relationship with average inflation Critique:

- independence of CB does not have to imply aversion to inflation
- if the relationship exists, the causality can be reverse (e.g. Germany)

References:

Tables are reproduced from Romer (2006) - see reference in the syllabus.

Alesina, A., and Summers, L.H. (1993). Central Bank Independence and Macroeconomic Performance. *Journal of Money, Credit and Banking* 25 (May): 151-162

Kydland, F.E., and Prescott, E.C. (1977). Rules Rather than Discretion: The Inconsistency of Optimal Plans. *Journal of Political Economy* 85 (June): 473-492