Problem 1

a) The individual's problem is to choose labor supply, L_i , to maximize expected utility, conditional on the realization of P_i . That is, the problem is:

$$\max_{L_i} E[(C_i - (1/\gamma) \cdot L_i^{\gamma}) | P_i]$$

Substituting $C_i = P_i \cdot Q_i / P$ and $Q_j = L_i$ gives us:

$$\max_{L_i} E\left[\left(\frac{P_i L_i}{P} - \frac{1}{\gamma} \cdot L_i^{\gamma} \right) \middle| P_i \right]$$

Since only P is uncertain, this can be rewritten as:

$$\max_{\mathbf{L}_{i}} E[(\mathbf{P}_{i}/\mathbf{P})|\mathbf{P}_{i}] \cdot \mathbf{L}_{i} - (\mathbf{I}/\gamma)\mathbf{L}_{i}^{\gamma}$$

The first-order condition is given by:

(1) $E[(P_i/P)|P_i] - L_i^{\gamma-1} = 0$

or.

$$L_i^{\gamma-1} = E[(P_i/P)|P_i]$$

Thus optimal labor supply is given by:

(2)
$$L_i = \left\{ E[(P_i/P) | P_i] \right\}^{1/(\gamma-1)}$$

Taking the log of both sides of equation (2) and defining $l_i = \ln L_i$ yields:

(3)
$$\zeta = [1/(y-1)] \cdot \ln E[(P_i/P)|P_i]$$

b) The amount of labor the individual supplies if she follows the certainty-equivalence rule is given by (in logs):

(4)
$$\ell_i = [1/(\gamma - 1)] \cdot E[\ln(P_i/P)|P_i]$$

Since $\ln(P_i/P)$ is a concave function of (P_i/P) , then by Jensen's inequality $\ln E[(P_i/P)|P_i] > E[\ln(P_i/P)|P_i]$. Thus the amount of labor the individual supplies if she follows the certainty-equivalence rule is <u>less</u> than the optimal amount derived in part (a).

- c) We are given that:
- (5) $ln(P_i/P) = E[ln(P_i/P)|P_i] + u_i \qquad u_i \sim N(0,V_u)$

Taking the exponential function of both sides of equation (5) yields:

(6)
$$P_i/P = e^{E[\ln(P_i/P)P_i]} \cdot e^{u_i}$$

Now take the expected value, conditional on Pi, of both sides of equation (6):

(7)
$$E[(P_i/P)|P_i] = e^{E[\ln(P_i/P)|P_i]} \cdot E(e^{u_i}|P_i)$$

Taking the natural log of both sides of equation (7) yields:

(8)
$$\ln E[(P_i/P)|P_i] = E[\ln(P_i/P)|P_i] + \ln E(e^{u_i}|P_i)$$

Note that $\ln E\left(e^{u_i} \mid P_i\right)$ is just a constant whose value is independent of P_i . Substituting equation (8) into equation (3) — the optimal amount of (log) labor supply — gives us:

$$\ell_{i} = \left[1/(\gamma - 1)\right] \cdot \left\{ E\left[\ln(P_{i}/P)|P_{i}\right] + \ln E\left(e^{u_{i}} | P_{i}\right)\right\}$$

or simply:

(9)
$$\ell_i = \left[\frac{1}{(\gamma - 1)} \cdot E\left[\ln(P_i/P)|P_i\right] + \left[\frac{1}{(\gamma - 1)} \cdot \left[\ln E\left(e^{u_i}|P_i\right)\right] \right]$$

The first term $-[1/(\gamma - 1)] \cdot \mathbb{E}[\ln(P_i/P)|P_i]$ — is the certainty-equivalence choice of (log) labor supply, while the second term is a constant. Thus the ζ that maximizes expected utility differs from the certainty-equivalence rule only by a constant.