Incomplete nominal adjustment

Problem 1 (Romer 6.1.)

Consider the problem facing an individual in the Lucas model when $\frac{P_i}{P_i}$ $\frac{P_i}{P}$ is unknown. The individual chooses L_i to maximize the expectation of U_i ; U_i is given by the equation:

$$
U_i = \frac{P_i}{P} L_i - \frac{1}{\gamma} L_i^{\gamma}
$$

(a) Find the first-order condition for L_i , and rearrange it to obtain an expression for L_i in terms of $E\left\vert \frac{P_i}{P_i}\right\rvert$ *P* $\lceil P_i \rceil$ $\left\lfloor \frac{-i}{P} \right\rfloor$. Take logs of this expression to obtain an expression for $l_i^{}$.

(b) How does the amount of labor the individual supplies if he or she follows the certainty-equivalence rule compare with the optimal amount derived in part (a)? (Hint: how does $E\left\vert \ln\right\vert \frac{P_i}{R_i}$ $\left[\ln\!\left(\frac{P_{i}}{P}\right)\right]$ compare with

$$
\ln\left(E\left[\frac{P_i}{P}\right]\right)\right)
$$
?

(c) Suppose that (as in the Lucas model) $\ln\left|\frac{P_i}{P}\right| = E\left(\ln\left|\frac{P_i}{P}\right| \cdot \left|P_i\right|\right) + u_i$ *P P* $\begin{bmatrix} P_i \end{bmatrix}$ $\begin{bmatrix} P_i \end{bmatrix}$ $\begin{bmatrix} P_i \end{bmatrix}$ $\left(\frac{I_i}{P}\right)$ = $E\left(\ln\left(\frac{I_i}{P}\right) \mid P_i\right)$ + u_i , where u_i is normal with a mean of zero and a α ariance that is independent of P_i . Show that this implies that $\ln E\left\{ \left| \left(\frac{P_i}{P_i} \right) \right| P_i \right\} = E\left| \ln \left(\frac{P_i}{P_i} \right) \right| P_i \right| + C$ $\left\{\!\left[\!\left(\frac{P_{i}}{P}\right)\mid\!P_{i}\right]\!\right\}\!=E\!\left[\ln\!\left(\frac{P_{i}}{P}\right)\mid\!P_{i}\right]\!+\!$, where C is a constant whose value is independent of P_i . (Hint: note that $\frac{P_i}{P} = \exp\left\{E\left|\ln\left(\frac{P_i}{P_i}\right)\right|\left|P_i\right|\right\} \exp(u_i)$ *P P* $\left[\begin{matrix} 0 \\ 0 \end{matrix}\right]$ $= \exp\left\{E\left[\ln\left(\frac{I_i}{P}\right)|P_i|\right]\right\} \exp(u_i)$, and show that this implies that the l_i that

maximizes expected utility differs from the certainty-equivalence rule only by a constant.)

Problem 2 (Romer 6.13.)

Consider an economy consisting of some firms with flexible prices and some with rigid prices. Let p^f denote the price set by a representative flexible-price firm and p^r the price set by a representative rigid-price firm. Flexible-price firms set their price after *m*is known; rigid-price firms set their prices before *m*is known. Thus flexible-price firms set $p^f = \left(1-\Phi\right)p + \Phi m$, and rigid-price firms set $\ p^r = \left(1-\Phi\right)Ep + \Phi Em$, where E denotes the expectation of a variable as of when the rigid-price firms set their prices.

Assume that fraction $\ q$ of firms have rigid prices, so that $p = qp^r + \left(1\!-\!q\right)p^f$.

(a) Find p^f in terms of p^r , m and the parameters of the model (Φ and q).

(b) Find p^r in terms of Em and the parameters of the model.

(c) (i) Do anticipated changes in *m* (that is, changes that are expected as of when rigid-price firms set their prices) affect *y* ?

(ii) Do unanticipated changes in *m* affect *y* ? Why or why not?