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C. Curves and function fields

An elliptic curve is often regarded as a synonymous for a smooth Weierstraß
curve. But in fact an elliptic curve is a much broader concept the essence of which
can be expressed algebraically in the language of algebraic function fields.

This text does not aspire to provide a formal introduction into that theory.
Nevertheless this introductory section presents several of its concepts and notions.
The aim is to sketch what is the connection between the geometry of curves and
the algebra of function fields.

Let us start by making some notational conventions and introductory definitions.
Let K be a field, and let K̄ be an algebraic closure of K. Both K and K̄ are

regarded as fixed.
The n-dimensional affine space K̄n is denoted by An, and the set Kn by An(K).

The elements of An(K) are called K-rational points.
If f1, . . . , fk ∈ K[x1, . . . , xn] are polynomials, then Vf1,...,fk denotes the set of all

α = (α1, . . . , αn) ∈ An such that fi(α) = fi(α1, . . . , αn) = 0 for all i ∈ {1, . . . , k}.
A planar affine curve over K is any subset of A2 than can be expressed as Vf ,

where f ∈ K[x1, x2], deg(f) ≥ 0.
In other words, planar affine curves are the zero points of nonzero polynomials

in two variables. Since K[x1, x2] is a UFD (unique factorization domain) each
polynomial f ∈ K[x1, x2], deg(f) ≥ 1, may be expressed uniquely, up to scalar
multiples, as f1 · · · fk, where each fi is an irreducible polynomial.

If f = f1 · · · fk, k ≥ 1, then Vf = Vf1 ∪ · · · ∪ Vfk . For example, if f = x1x2, then
Vf is the union of the coordinate lines.

The case of k > 1 will be discussed only briefly. The main focus is upon the case
k = 1.

C.1. Coordinate rings and function fields. Suppose that C is an affine planar
curve. There are many g ∈ K[x1, x2] such that g(α) = 0 for every α ∈ C. The set of
all such g is closed under addition, and also under multiplication by another element
of K[x1, x2]. This set is thus an ideal of the ring K[x1, x2]. It may be proved that
this ideal is the principal ideal of a polynomial f = f1 · · · fk, where k ≥ 1, where
each fi is irreducible, 1 ≤ i ≤ k, and where (fi) 6= (fj) if 1 ≤ i < j ≤ k. The latter
condition says that the principal ideals of fi and fj are different. Since both fi
and fj are irreducible, this means, in fact, that fi is not a scalar multiple of fj . (A
scalar multiple always refers to a multiplication by a nonzero element of K. The
group of nonzero elements of K is denoted by K∗).

For polynomials g, h ∈ K[x1, x2] write g ∼ h if g(α) = h(α) for each α ∈ C.
This is clearly an equivalence upon K[x1, x2] such that g ∼ h if and only if g − h
vanishes on all points of C. In other words g ∼ h if and only if g−h ∈ (f). Classes
of ∼ thus coincide with cosets of the ideal (f).

Where there is an ideal, there is also a factor ring. The ring K[x1, x2]/(f) is
determined only by the curve C since f is determined by C uniquely, up to a scalar
multiple. Hence it is correct to put

K[C] = K[x1, x2]/(f).

The ring K[C] is called the coordinate ring of the curve C. Elements of K[C] are
cosets a+ (f), where a runs through K[x1, x2].

Such a description of K[C] is complete, correct and exhaustive. Nevertheless it
is somewhat formal. Such a description will be called algebraic. Another term for
it might be syntactic.

To move from syntax to semantics let us return to the above definition of ∼. By
this definition, g ∼ h if and only if polynomials g and h behave identically upon
C. The ring K[C] may be understood as a collection of all possible polynomial
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behaviours on C. Note that in this way K[C] could be defined without introducing
any ideal since polynomials upon C may be both added and multiplied in a natural
way. Such an approach to K[C] will be termed geometric or, perhaps more exactly,
functional.

Note that elements of K[C] are defined with respect to all points of C. This is
important to realize especially when working with finite fields. Points of C that are
not K-rational always have to be taken into account. At first glance this may be
regarded as superfluous since the group of an elliptic curve over K is defined only
upon the K-rational points. However, there exist important and efficient algorithms
that determine properties of such a group (like the order) that work with points
that are not K-rational.

Note also that if K is finite then two elements of K[C] may agree upon all
K-rational points and yet be different.

Let f ∈ K[x1, x2] be a polynomial of degree at least one and let K[C] =
K[x1, x2]/(f), C = Vf . The ring K[C] is a domain if and only if f is irreducible.
This is exactly when the curve C is called irreducible.

Recall that if R is a domain, then it is possible to construct the fraction field F ,
where a/b = c/d if and only if ad− bc = 0.

Suppose that C is an irreducible planar affine curve. The fraction field of K[C]
will be denoted by K(C) and called the function field of C.

The functions to which the name “function field” refers are the rational functions
a/b ∈ K(x1, x2). Note that K(x1, x2) may be defined as the fraction field of the
domain K[x1, x2].

The algebraic approach to K(C) stresses the formal description of its elements.
Each element of K(C) is equal to some (a + (f))/(b + (f)), where C = Vf , f ∈
K[x1, x2] irreducible. Elements a, b run through K[x1, x2], with b /∈ (f). The latter
condition is equivalent to b+ (f) 6= 0K(C). By the definition of fraction fields

a+ (f)

b+ (f)
=
c+ (f)

d+ (f)
⇔ ad− bc ∈ (f). (C.1)

The functional interpretation of K(C) is similar to that of K[C]. However, there
is a technical difficulty which has to be cosidered. For σ ∈ K(C) there are many
a/b ∈ K[x1, x2] such that σ = (a + (f))/(b + (f)). Each such a/b is said to be
a representative of σ. Since b /∈ (f) there are only finitely many α ∈ C such
that b(α) = 0 (this is not a completely obvious fact, but the proof is relatively
easy). Hence each representative of σ yields a mapping C → K̄ that is defined
nearly everywhere, that is up to finitely many points of C. The technical difficulty
mentioned above rests in the fact that if c/d is another representative of σ, then
the points α ∈ C where b(α) = 0 may be different from those where d(α) = 0.
However, (C.1) implies that if b(α) 6= 0 and d(α) 6= 0, then a(α)/b(α) = c(α)/d(α).

With each σ ∈ K(C) there thus may be associated a function C → K̄ that is
defined for every α ∈ C for which there exists a representative a/b of σ such that
b(α) 6= 0. If a/b is such a representative, then σ(α) = a(α)/b(α). This definition is
correct, as follows from (C.1).

The functional field K(C) may be regarded as a collection of all partial mappings
C → K̄ that may be obtained in such a way.

C.2. Discrete valuations. Let C be an irreducible planar affine curve. It turns
out that many important properties of C depend only upon the algebraic structure
of the function field K(C).

The key notion in the algebraic analysis of K(C) is the notion of discrete valua-
tion. This is something quite natural that arose from the most basic properties of
primes as they occur in every UFD.
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Let R be a UFD and let F be the fraction field of R. For each irreducible p ∈ R
define vp(r), r a nonzero element of R, as the largest k ≥ 0 such that pk | r. By
definition, vp(0) =∞.

Extend the definition of vp(r) from R to F by setting vp(r/s) = vp(r)− vp(s).
Put ν = vp. The following properties are true for all a, b ∈ F :

ν(ab) = ν(a) + ν(b); (DV1)

ν(a+ b) ≥ min{ν(a), ν(b)}, (DV2)

ν(a) =∞ ⇔ a = 0; and (DV3)

∃a ∈ F, ν(a) = 1. (DV4)

Let now F be a field (no assumption is now being made about F being a fraction
field of a domain R). A mapping ν : F → Z ∪ {∞} is called a discrete valuation
if it fulfils (DV1)–(DV3). Discrete valuations that also fulfil (DV4) are called nor-
malized.

Suppose that F = K(C). The discrete valuations of F that are considered when
investigating the curve C are those that fulfil this additional condition:

ν(a) = 0 for every a ∈ K∗.

They will be called valuations over K.
Let us pay attention to the way how the field K is embedded into K(C). Both

K[C] and K(C) are vector spaces over K. The unit in both of them is equal to
1 + (f), where C = Vf , f ∈ K[x1, x2] irreducible. Consider λ ∈ K. The element
λ is identified in both K[C] and K(C) with λ · 1K[C] = λ · 1K(C) = λ + (f). The
functional interpretation of λ+ (f) is clear: each α ∈ C is mapped upon λ.

For unique factorization domains (UFD) the notion of discrete valuation does
not seem to bring much new. That is not completely true as shown by the ensuing
analysis of K(x). Furthermore, the coordinate ring K[C] is rarely a UFD, and yet
K(C) contains many (in fact, infinitely many) normalized discrete valuations over
K.

If F = K(x) (the ring of rational functions in one variable), then each irreducible
polynomial p ∈ K[x] yields a normalized discrete valuation vp. Besides them there
exists exactly one normalized discrete valuation over K. This valuation is denoted
by v∞ and defined by v∞(a/b) = deg(b)− deg(a).

Suppose now, for a while, that K̄ = K. In such a case the monic irreducible
polynomials are the polynomials x− λ. With the exception of v∞ each normalized
discrete valuation overK thus may be identified with a unique point of the affine line
A1. To give a geometric meaning to v∞ extend the affine line A1 to the projective
line P1. This means to add just one point. This point is called the point at infinity.

The connection “one point—one discrete valuation” is not limited to the projec-
tive line. The connection is valid for all irreducible projective planar curves over K̄
that satisfy a certain additional condition. This will be precised later.

C.3. Planar projective curves. The formal definition of the n-dimensional pro-
jective space Pn states that Pn is equal to the set of all 1-dimensional subspaces
of An+1. However, a projective point (i.e., an element of Pn) is usually treated by
considering its homogeneous coordinates (α1 : α2 : · · · : αn+1). The connection to
the formal definition is made by considering these coordinates as representatives of
the space of all (λα1, λα2, . . . , λαn+1), where λ runs through K̄. This means that
homogeneous coordinates represent the same point if and only if in all positions
they differ by the same scalar multiple and that at least one position has to carry
a nonzero entry.
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A projective point is K-rational if it may be expressed as (α1 : · · · : αn+1), where
αi ∈ K for each i ∈ {1, . . . , n+ 1}.

It is usual to identify an affine point (α1, . . . , αn) ∈ An with the projective point
(α1 : · · · : αn : 1) ∈ Pn. The projective points that cannot be obtained in this way
are called points at infinity. In P1 there is only one point at infinity and this point
is equal to (1 : 0).

Let a =
∑
ai1,...,ikx

i1
1 . . . x

ik
k be a polynomial over K. This polynomial is called

homogeneous if its coefficients fulfil the implication

ai1,...,ik 6= 0 and aj1,...,jk 6= 0 ⇒ i1+ . . .+ik = j1+ . . .+jk.

If a 6= 0, then this means that the degree of a coincides with the degree of each
nonzero term. As a convention, the unknowns of a homogeneous polyomial are
written in capital letters.

If F ∈ K[X1, . . . , Xn+1] is a homogeneous polynomial and (α1 : · · · : αn+1) ∈ Pn,
then F (λα1, . . . , λαn+1) = λdF (α1, . . . , αn+1), where d = deg(F ). The equation
F (α1, . . . , αn+1) = 0 thus may be interpreted by saying that the projective point
(α1 : · · · : αn+1) is a zero of F . The set of all projectives zeros is denoted by VF ,
similarly to the affine case.

Say that C ⊆ P2 is a planar projective curve if there exists a (homogeneous)
F ∈ K[X1, X2, X3], deg(F ) ≥ 1, such that C = VF .

A projective curve may be connected to an affine curve by the process of ho-
mogenization. The homogenization of a polynomial f =

∑
aijx

i
1x
j
2 ∈ K[x1, x2],

d = deg(f) ≥ 0, is the polynomial F =
∑
aijX

i
1X

j
2X

d−i−j
3 . Now, (α1 : α2 : 1) ∈ P2

belongs to VF if and only if (α1, α2) ∈ Vf . Hence VF may differ from Vf only in

points at infinity. These are the points (α1 : α2 : 0) such that
∑
i+j=d aijα

i
1α

j
2 = 0.

If F is a homogenization of f , then f is irreducible if and only if F is irreducible
(this is not difficult to prove). A planar projective curve C is said to be irreducible if
it may be expressed as VF , where F ∈ K[X1, X2, X3] is an irreducible homogeneous
polynomial. There is only one irreducible planar projective curve that may not be
obtained by a homogenization of an affine (irreducible) curve, and that is the line
X3 = 0. This is because an irreducible homogeneous polynomial F that is divisible
by X3 has to be a scalar multiple of X3.

Let C be a planar projective curve. Then there is no reasonable way how to
define the coordinate ring of C. This is because we have to consider only those
mappings C → K that give the same value for each expression of a point α ∈
C by homogeneous coordinates. Such a behaviour cannot be achieved by using
polynomials only. However, if A,B ∈ K[X1, X2, X3] are homogeneous of the same
degree, then A(α)/B(α) is independent of the choice of homogeneous coordinates
of α = (α1 : α2 : α3) ∈ P3. This is utilized to define the function field K(C),
provided C = VF , F ∈ K[X1, X2, X3] irreducible. Nonzero elements of K(C) are
(A+ (F ))/(B + (F )), where A and B are as above.

If F is a homogenization of f ∈ K[x1, x2], then, as may be proved, K(VF ) ∼=
K(Vf ). This means that the algebraic structure of an irreducible planar affine curve
is not influenced by homogenization.

C.4. Smoothness. Consider a polynomial f ∈ K[x1, . . . , xn] and let α ∈ An be
such that f(α) = 0, i.e., α ∈ Vf . Say that f is smooth or (equivalently) nonsingular
at α if (∂f/∂xi)(α) 6= 0 for at least one i ∈ {1, . . . , n}.

Let C be a planar affine curve, K[C] = K[x1, x2]/(f). A point α ∈ C is said
to be smooth (or nonsingular) if f is smooth at α. The remaining points of C are
singular. If α ∈ C is a singular point, then it is also said that C has a singularity
at α. An affine curve with no singularity is called smooth (nonsingular).
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Similarly, if F ∈ K[X1, X2, X3] is homogeneous and α ∈ P2 is such that F (α) =
0, then F is said to be smooth (or nonsingular) at α if (∂F/∂Xi)(α) 6= 0 for at
least one i ∈ {1, 2, 3}. Notions of smoothness and singularity are being transferred
to planar curves like in the affine case.

Suppose that the homogeneous polynomial F is not equal to 0. Then

X1
∂F

∂X1
+X2

∂F

∂X2
+X3

∂F

∂X3
= dF, where d = deg(F ).

This can be used to prove that if F is a homogenization of f and f is smooth at
α = (α1, α2), then F is smooth at (α1 : α2 : 1). This means that the smoothness
of a point of an affine curve is not influenced by homogenization.

C.5. Places. Let F ∈ K[X1, X2, X3] be an irreducible homogeneous polynomial.
Suppose that the projective curve C = VF is smooth. If K = K̄, then each
point of C determines in K(C) exactly one normalized discrete valuation over K.
The exact nature of this correspondence and its proof is beyond the extent of
this overview. However, the structure of discrete valuations in K(x) suggets how
this correspondence may look like. Very briefly: in the affine case when C = Vf ,
f ∈ K[x1, x2] irreducible, the valuation ν associated with α ∈ C treats those
σ ∈ K(C) that may be represented by a polynomial g ∈ K[x1, x2] in such a way
that ν(σ) indicates the degree of smoothness coincidence between g and f . Thus
ν(σ) = 0 if g(α) 6= 0. If g(α) = 0 and g and f have different tangents, then
ν(σ) = 1. If g(α) = 0 and the tangents coincide, then ν(σ) ≥ 2.

The correspondence described above is partly valid also for curves over K̄ that
are not smooth everywhere. What remains true is that each smooth point uniquely
determines a normalized discrete valuation over K̄. However, a singularity may
determine more discrete valuations.

In context of function fields it is usual to speak about places rather than discrete
valuations. A place is every subset of K(C) that may be expressed as {a ∈ K(C);
ν(a) ≥ 1}, where ν is a normalized discrete valuation of K(C) over K. If C is
a projective curve that is smooth everywhere, then there is a natural bijection
between points of C and places of K̄(C).

The situation is more complicated if K 6= K̄. Consider again the case of K(x).
Valuations of K(x) over K are equal to vp or v∞, where p ∈ K[x] is irreducible.
With each valuation (and thus with each place) there may be associated a positive
integer that is called the degree of the valuation (and also of the place associated
with the valuation). It turns out that deg(vp) = deg(p) and deg(v∞) = 1. Note
that deg(vp) = 1 if and only if p = x − λ for some λ ∈ K. In K(x) the places of
degree one thus correspond to K-rational points of P1.

The degree may be defined for each place of a function field K(C). Each smooth
K-rational point of C determines a place of degree one. If C is an irreducible
projective planar curve that is smooth at every K-rational point, then there is a
natural bijection between K-rational points of C and places of degree one.

To get a feeling what are places of degree > 1 consider first K(x) again. If
deg(p) > 1 and p ∈ K[x] is irreducible, then the place of p is naturally associated
with all roots of the polynomial p. There are thus more points of P1 that correspond
to the place of p.

Something similar is true for places of a smooth curve over K. For simplicity
let us formulate this just for affine points. Suppose that C = Vf is a smooth affine
curve, f ∈ K[x1, x2] irreducible. Then (α1, α2) ∈ C and (β1, β2) ∈ C correspond
to the same place if and only if there exists a field L, K ≤ L ≤ K̄, and a K-
automorphism ψ of L such that ψ(αi) = βi for both i ∈ {1, 2}. Recall that K-
automorphisms are those automorphisms which fix each element of K.
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With a little knowledge of field theory it is apparent that L = K̄ may be always
assumed. However, it is also clear that assuming [L : K] < ∞ is always possible
too.

When working with curves it is usual to assume that the field K is perfect (either
char(K) = 0, or char(K) = p > 0 and the mapping λ 7→ λp is an automorphism
of K). The connection between places and K-automorphisms, as described above,
assumes that K is perfect.

If K = R and K̄ = C, then each place is either of degree 1 or degree 2. In the
latter case (α1, α2) forms a pair with (ᾱ1, ᾱ2), where a+ bi = a− bi.
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W. What is an elliptic curve

W.1. The genus. By definition, an elliptic curve over K is a projective planar
irreducible curve C over K that contains at least one K-rational point and is of
genus 1. What is the genus? Unfortunately, that is not so easy to explain. A
complete formal definition goes beyond the scope of this text. Neverthelees, the
ensuing comments might give an idea what the genus means.

If C is an irreducible curve over K, then the genus of C may be derived from
the structure of K(C). It somehow reflects properties of principal divisors. (If
σ is a nonzero element of K(C), then there are only finitely many places P with
vP (σ) 6= 0. The formal sum

∑
vP (σ)P is called the principal divisor of σ.) Genus

is always a nonnegative number and is usually denoted by g.
Since complex numbers may be identified with the euclidean plane, a planar

curve over K = C may be regarded as a 2-dimensional object. Let us first ponder
what kind of a 2-dimensional object the projective line P1(C) should be associated
with. The affine line A1(C) coincides with the euclidean plane. The existence
of the point at infinity changes, however, the picture completely. The proper 2-
dimensional object to identify P1(C) with is the sphere. This may be envisioned by
considering a stereographic projection of a sphere to the euclidean plane, with the
point at infinity being represented by the north pole of the sphere.

The sphere is an example of a closed 2-dimensional surface in the 3-dimensional
real space. In this context the exact shape of the surface is not important. What
is important are topological properties of the surface. It turns out that two such
surfaces may be identified by continuous deformations if and only if they possess the
same number of holes. A sphere has no hole. A toroid has one hole. The surface
of a pretzel has two holes (going from doughnut to pretzel adds one hole). The
number of holes is thus a topological invariant and this invariant is called the genus
of the surface. This is how the notion of the genus of a curve arose. If C is a smooth
irreducible projective planar curve over C, then C forms a 2-dimensional structure
that may be embedded into the 3-dimensional real space as a closed surface. The
curve is of genus one if the surface to which it may be embedded has the shape of
torus.

The existence of such an embedding has to be proved. That is done in topology
and goes far beyond the scope of this text. Note however that such an embedding
cannot be “seen” since the graph of the curve is a subset of C × C, and thus it
lives in a 4-dimensional real space. However, the fact that the surface of a complex
elliptic curve forms a torus has certain consequences for elliptic curves over real
numbers. When cutting a torus there appears either one ellipse or two of them.
Because of that it may be expected that an elliptic curve over reals will have one
or two closed branches.

Many authors define an elliptic curve as a projective irreducible curve of genus 1
that is smooth everywhere. This is a traditional approach that may be justified by
the prominent role of smooth Weierstraß curves. These curves present a universal
model of elliptic curves in the sense that whenever C is a curve of genus one that
contains at least one K-rational point, then there exists a smooth Weierstraß curve
E such that the function fields K(C) and K(E) are K-isomorphic (that is there
exists an isomorphism that fixes each λ ∈ K.)

W.2. Weierstraß curves. An affine Weierstraß curve is the set C of all points
(α1, α2) ∈ A2 that fulfil a Weierstrass equation x22 + x2g(x1) = f(x1), that is an
equation in which f, g ∈ K[x1] are polynomials such that deg(g) ≤ 1, deg(f) = 3,
f is monic. It may be proved that the polynomial x22 + x2g(x1) − f(x1) is always
irreducible. Each Weierstraß curve is thus an irreducible planar curve.
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By convention, the coefficients of g are denoted by a1 and a3, and the coefficients
of f by a2, a4 and a6. The Weierstraß equation thus often appears in the standard
form

x22 + a1x1x2 + a3x2 = x31 + a2x
2
1 + a4x1 + a6.

Set b2 = 4a2 + a21, b4 = 2a4 + a1a3, b6 = 4a6 + a23 and

b8 = 4a2a6 + a2a
2
3 + a21a6 − a24 − a1a3a4.

It may be established that the curve C is smooth if and only if the discriminant

∆(C) = −8b34 + 9b2b4b6 − 27b26 − b22b8
is different from 0.

Applications of Weierstraß curves usually assume that char(K) /∈ {2, 3} and
a1 = a3 = 0. Often it is also assumed that a2 = 0. In those cases the smoothness
of C correlates with the nonexistence of a multiple root of f . This will be now
verified.

Suppose that char(K) 6= 2 and that C = Vw, where w(x1, x2) = x22 − f(x1).
Then

∂w

∂x1
= −f ′(x1) and

∂w

∂x2
= 2x2.

A point (α1, 0) ∈ A2 belongs to C if and only if f(α1) = 0. All of this means that
(α1, α2) presents a singularity of C if and only if α2 = 0 and α1 is a root of both f
and f ′. We have proved:

Theorem W.1. Let C be the Weierstraß curve over K, char(K) 6= 2, determined
by x22 = f(x1), f ∈ K[x1] cubic and monic. Then C is smooth if and only if f is
separable (i.e., possesses no multiple root).

If a1 = a2 = a3 = 0, then the Weierstraß equation will often be written as
x22 = x31 + ax1 + b or y2 = x3 + ax + b. The polynomial x3 + ax + b has multiple
roots if and only 4a3 + 27b2 = 0. The curve determined by x22 = x31 + ax1 + b,
char(K) 6= 2, is thus smooth if and only if 4a3 + 27b2 6= 0.

This is the same condition as 4a34 + 27a26 6= 0. A mnemotechnical remark: Both

terms of the sum may be expressed as (i/2)i/2a
j/2
i , where {i, j} = {4, 6}.

Projective Weierstraß curves are obtained by homogenization. They are thus
determined by equation

X2
2X3 +X2G(X1, X3) = F (X1, X3), where G(X1, X3) = a1X1X3 + a3X

2
3

and F (X1, X3) = X3
1 + a2X

2
1X3 + a4X1X

2
3 + a6X

3
3 .

A point at infinity (α1 : α2 : 0) belongs to the curve if and only if 0 = α3
1. There is

thus only one such point, and this point is equal to (0 : 1 : 0).
Put W (X1, X2, X3) = X2

2X3 +X2G(X1, X3)− F (X1, X3). Then

∂W

∂X1
= X2

∂G

∂X1
− ∂F

∂X1
,

∂W

∂X2
= 2X2X3 +G(X1, X3), and

∂W

∂X3
= X2

2 +X2(a1X1 + 2a3X3)− ∂F

∂X3
.

Hence (∂W/∂X1)(0, 1, 0) = 0 = (∂W/∂X2)(0, 1, 0) and (∂W/∂X3)(0, 1, 0) = 1.
Each projective Weierstraß curve is therefore smooth at the point at infinity. An
affine Weierstraß curve is thus smooth if and only if the corresponding projective
Weierstraß curve is smooth.

As examples of affine Weierstraß curves consider curves over real numbers given
by equations x22 = x31 − c3 and x22 = x31 − c2x1. The former curve has a single
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branch. In the central part it has a form of belly that is protruded to the point
(c, 0), with the body being to the right. If c = 0, then (0, 0) is a singularity that
is called cusp. Assume c 6= 0. Then in each case there are two inflexion points. If
c < 0, then the curve passes through stationary inflexion points (0,±c3/2). If c > 0,
then the inflexion points are at (22/3c,±31/2c3/2) ≈ (1.6c, 1.7c3/2) and the slope of
the inflexion line is equal to 21/3(3c)1/2 ≈ 2.2c3/2.

If x22 = x31 − c2x1, then it may be assumed that c > 0 since x3 − c2x = x(x −
c)(x + c). In this case the curve has two affine branches. One has a form of an
oval with the flat pole at (−c, 0), with the other pole at (0, 0) and with extreme
points at (−3−1/2c,±21/2 · 3−3/4c3/2) ≈ (−0.58c, 0.62c3/2). The central part has
again a belly-like form with the body right of (c, 0). The inflexion points are at
≈ (1.5c, 1.3c3/2) and the slope of inflexion line is ≈ 2.1c1/2.

The shape of the unbounded branch in the above two examples does not seem
to resemble a cut of a torus. However, the resemblence is topological, up to defor-
mation. From the projective point of view the branch passes through the point at
infinity, and that makes it closed.

To finish the classification of shapes of real Weierstrass curves consider the curve
given by x22 = x1(x1− 1)2 = x31− 2x21 + x1. The curve passes through points (4, 6),

(1, 0), (1/3,−4/
√

27) ≈ (0.33,−0.77), (0, 0), (1/3, 4/
√

27), (1, 0), (4,−6), forming
thus a crossing point at (1, 0). This type of singularity is called a node.

W.3. The group of an elliptic curve. The K-rational points of a projective
smooth Weierstraß curve may be equipped with a group structure. This is well
known and will be considered in detail later. The aim here is to give a certain idea
what is the abstract background of such groups. It turns out that they may be
defined only in terms of the function field K(C), where C is an elliptic curve (thus
each elliptic curve induces a group structure, not only smooth Weierstraß curves).

In this context the following metaphor may be of help. The genus of a surface
measures, in some sense, what is missing. If A ≤ B are abelian groups, then what
is missing to A may be expressed by factorization B/A.

Situations when B and A are infinite, but the factor may be finite and nontrivial,
tend to be mathematically interesting. In our case B is a subgroup of free abelian
group with the basis being equal to the set of all places of K(C). Elements of
that group are formal sums

∑
aPP , where P runs through all places and aP ∈ Z

is nonzero for only finitely many P . Elements with
∑
aP deg(P ) = 0 form the

subgroup B, while the group A coincides with the set of all principal divisors. If
Q is a fixed place of degree one, then it may be proved that each element of B/A
(i.e., each coset modulo A) contains a unique element of B that is equal to P −Q,
where P is a place of degree one.

If the curve C is smooth at each K-rational point, then each such P may be
associated with a single K-rational point. Denote P by Pα if P is associated with
a K-rational point α. Thus Q = Pω for a K-rational point ω.

Facts above imply that adding the coset of Pα − Pω with the coset of Pβ − Pω
yields a coset with some Pγ − Pω. Setting γ = α⊕ β equips the K-rational points
of C with the structure of an abelian group, and ω is the neutral element of this
group.

Formulae for computing ⊕ depend upon the definition of C. It occurs quite often
that a choice has to be made between several formulae. The choice depends upon
values of α and β, and upon their relationshiop. A situations when there exists a
universal formula (called also a closed formula) which works for all α and β is of
certain computational advantage.
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W.4. Applications of elliptic curves. Some applications are standard and some
are emerging. The Elliptic curve cryptography (ECC) usually refers to the bunch of
applications that replace counting modulo a prime by computations in a subgroup
of the group of an elliptic curve. If C is an elliptic curve over K, then C(K) refers to
the group operation ⊕ that is defined upon the K-rational points of C. The neutral
element ω of the group is usually understood from the context. In applications K is
a finite field. Thus K = Fq, where q is a power of a prime. In present applications
q is nearly always a large prime. Structure of Fq implies that for large q the group
C(Fq) always contains a large cyclic subgroup. The order of this subgroup appears
to be a random feature (while it has to occur in a certain interval). There are
thus many situations when C(Fq) contains a large cyclic subgroup G that is of
prime order. A generator of this subgroup, often denoted by P , usually constitutes,
together with parameters of the curve C, the public key (or a part of it).

Note that making public the pair (P,C) does not imply knowledge of |G| or
|C(K)|. Classical protocols (Diffie-Hellman, Elgamal etc.) derive their security
from the difficulty of the Discrete Logarithm Problem (DLP). Some of the attacks
on the DLP require knowledge of the order of the group. The order of C(K)
is given by the number of K-rational points. There does not seem to exist any
straightforward way how to determine this number from the parameters of the
curve. In the context of ECC the point counting algorithms are thus of paramount
importance.

The advantage of ECC over modular arithmetic rests in the fact that the DLP is
more difficult, which allows for shorter keys. However, quantum computing makes
all protocols based upon the DLP vulnerable. One of the promising alternatives
for elliptic postquantum cryptography is based on isogenies of supersingular elliptic
curves. That is presently beyond the scope of this text.

Classical applications of ECC need keys of considerable size (while much shorter
than those needed for RSA). The speed of computation is hence a factor to be
considered. The question is not only how to compute α ⊕ β, but also how to
organize a computation of [n]α = α ⊕ · · · ⊕ α. In general, techniques used do not
differ from those for other cyclic groups. In some cases (like Elliptic Curves Digital
Signature Algorithm, the ECDSA) only the x-coordinate α of the point (α, β) is
used. There are some speed-ups that take advantage of this fact.

Elliptic curves are also used for pseudorandom generators and in factorizing
integers. Integers that are accessible by Lenstra elliptic-curve factorization are
smaller than those accessible by the Number Field Sieve (NFS). However, the NFS
uses many auxiliary factorizations of small integers, and for that the elliptic-curve
factorization appears to be the most efficient.
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B. Basic arithmetic

Multiplication of integers by computers used to be slower than addition by factor
of 10 and more for many decades after the first computers have been constructed.
Nowadays the speed of addition and multiplication does not much differ when
performed in the length of computer word. This is not because the complexity of
multiplication has diminished, but because this complexity has been transformed to
hardware. In terms of tacts of the processor the multiplication needs two or three
tacts while the addition only one tact. However, due to pipelining the actually
observed behaviour may give an impression that the speed of multiplication is nearly
the same as the speed of addition. The speed-up of division does not seem to have
kept pace with the speed-up of multiplication. In microprocessors the divison takes
10 times more time than the multiplication, while the ratio in historical mainframes
used to be around 3.

Computations with very long integers rely upon software packages of multiple-
precision arithmetic. Since this arithmetic is realized by software and not by hard-
ware, there is no decline in importance of replacing multiplication by addition
whenever possible, and replacing division by multiplication whenever possible.

The division occurs naturally when working modulo p, p a large prime. The
naive algorithm of computing x times y modulo p goes by performing first the
multiplication of integers, and then taking the remainder of division by p.

The Montgomery arithmetic described below replaces the division by p by mul-
tiplications. The key concept is to replace each x mod p by xR mod p, where R
is an integer of special properties. Leaving implementation details aside, consider
the situation when each x ∈ Zp is represented in the memory of the computer by
X ≡ xR mod p. To represent z ≡ x+ y mod p an algorithm is needed that derives
Z ≡ zR mod p from X ≡ xR mod p and Y ≡ yR mod p. That is trivial since
Z ≡ X + Y mod p as xR+ yR = (x+ y)R.

What about xy mod p? Multiplying xR and yR modulo p yields ZR, where
Z ≡ (xy)R mod p. Finding an efficient method that derives Z from ZR hence
results into finding a way how to multiply efficiently modulo p, circumventing thus
the division by p.

The goal hence is to devise an algorithm that transforms an integer, say x, that
corresponds to ZR to an integer, say y, that corresponds to Z. The input restriction
is 0 ≤ x < pR. The output requires 0 ≤ y < p and x ≡ yR mod p, i.e. y = xR−1

(mod p). Such a transformation is known as Montgomery reduction.
Of course, an efficient Montgomery reduction is conceivable only under some

external assumption. The assumption here comes from the reality of computers.
The division by R requires much less resources if R is a power of two or, even better,
if R = bt, where b is the extent of the computer word (b = 232 or 264 etc.).

It will be thus assumed that R = bt > p and that the division by b (and thus
also by R) is ‘cheap’. No other external assumption is being made. The integer
b is considered as a basis and integers < p are represented as (at−1, . . . , a1, a0)b =∑
aib

i. Examples that rely on the pen and mental arithmetic may have b = 10 or
b = 100 etc.

The idea of Montgomery reduction is as follows: The residue class modulo p does
not change if x is replaced by x + xpq. Choose q so that pq ≡ −1 mod R. That
makes x+xpq divisible by R. Change now x+xpq in such a way that xq is replaced
by u = xq (mod R). This affects neither the residue class nor the divisibility by R.
Hence y = (x+up)/R is an integer, and yR ≡ x mod p. While there does not have
to be y < p, there has to be y < 2p if x < pR is assumed. This is because u < R
and because y < 2p may be expressed as 2pR > yR = x+ up.

The preceding observation will be recorded as a statement:
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Lemma B.1. Let R > 1 be an integer, and let p, q ∈ ZR be such that pq ≡
−1 mod R, i.e. q = −p−1 (mod R). Let x be an integer such that 0 ≤ x < pR.
Put u = xq (mod R). Then R | up+x, and y = (up+x)/R fulfils both y < 2p and
yR ≡ x mod p.

Proof. Indeed, up+x ≡ xpq + x ≡ 0 mod R, and yR = up+x ≡ x mod p. Further-
more, yR = pu+ x < pR+ pR = 2pR. �

B.1. Montgomery arithmetic. Consider an algorithm that performs some task
in the arithmetic modulo p, with inputs a1, . . . , am and b1, . . . , bn. To implement
the algorithm by means of Montgomery arithmetic requires to determine R = bt > p
and q = −p−1 (mod R) in advance, and then, whenever the procedure is invoked,
to convert the inputs ai to Ai ≡ aiR mod p, to perform all arithmetical operations
of the procedure in this representation, and finally to convert each Bj ≡ bjR mod p
to bj at the time of output.

The Montgomery reduction x → y, where 0 ≤ x < pR, 0 ≤ y < p and x ≡
yR mod p, may be executed as suggested by Lemma B.1. That means to multiply
x and q, and reduce it modulo R. The computations are exercised in the basis
b. The reduction modulo R thus means to take the last t positions (i.e., the last
t computer words) of the product. This is denoted by u. The output is equal to
x = (x+ up)/R if x < p. If x ≥ p, then the output is equal to x− p.

The disadvantage of this approach is that it requires two long multiplications (of
x with q, and of u with p). A more efficient solution reduces this to a linear number
of multiplications of a long integer with an integer in the size of the computer word
(i.e., < b). It turns out that knowledge of q is not necessary. It suffices to know
q′ = −p−1 (mod b).

Suppose that x =
∑
xib

i, 0 ≤ xi < b. Let x be divisible by br, r ≥ 0. Thus
b0 = · · · = br−1 = 0. Set u = xrq

′ (mod b) and x′ = x + upbr. Counting modulo
br+1 shows that x′ ≡ xrbr + xrpq

′br ≡ xrbr + xr(−1)br ≡ 0. Hence br+1 divides x′,
and x′−x < pbr+1 is a multiple of pbr. Proceeding inductively from r = 0 increases
x in k steps by an integer vp, where 0 ≤ v < bk. The Montgomery reduction can
be thus performed as follows:

INPUT: x =
∑
i xib

i ≤ pR, 0 ≤ i ≤ 2t− 1, 0 ≤ xi < b.
OUTPUT: An integer y with 0 ≤ y < p and yR ≡ x mod R.
PARAMETERS: p, b, t, R, where R = bt > p,

q′, where q′p ≡ −1 mod b and 0 < q′ < p.
VARIABLES: i, u, 0 < u < p.

i=0;

while (i < t) do:

u = xiq
′ (mod b);

x = x+ pubi;
i = i+ 1;

y = x/R;
if (y > p) then y = y − p;
return y.

Each multiplication in Montgomery arithmetics ends by the reduction. The
efficiency may be raised by integrating both of these steps in an ensuing algorithm.
The justification follows the description. Parameters and variable are the same as
in the preceding algorithm.

INPUT: x =
∑
i xib

i < p, y =
∑
i yib

i < p.
OUTPUT: An integer z =

∑
i zib

i < p such that zR ≡ xy mod R.
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i=0;

z=0;

while (i < t) do:

u = (z0 + xiy0)q′ (mod b);
z = (z + xiy + pu)/b;
i = i+ 1;

if (z > p) then z = z − p;
return z.

To justify the division by b note that while counting modulo b

z + xiy + pu ≡ z0 + xiy0 + pu ≡ z0 + xiy0 + pq′(z0 + xiy0) ≡ 0

since pq′ ≡ −1 mod b. To see that the procedure does what declared denote by z̄i
the value of z after the ith round. Thus z̄t is equal to the output from the cycle.
Put x̄i =

∑
j<i xjb

j and note that x̄t = x. The claim to verify is that there exists
integer vi such that

0 ≤ z̄ibi − x̄iy = pvi and vi < bi.

In the first step u = x̄1y0q
′ (mod b) since x̄1 = x0 and z̄1b − x̄1y = pu. The

condition thus holds for i = 1. For the induction step first observe that z̄i+1b
i+1 =

z̄ib
i + xiyb

i + pubi and x̄i+1y = xiyb
i + x̄+ iy. By the induction assumption

z̄i+1b
i+1 − x̄i+1y = z̄ib

i − x̄iy + pubi = p(vi + ubi).

Therefore vi+1 = vi +ubi < bi+1. By the final step, 0 ≤ zR−xy = pvt < pR. Thus
zR ≡ xy mod p and zR < pR+ p2 < 2pR.

Recall that in Montgomery arithmetic the procedure above is invoked with inputs
X ≡ xR mod p and Y ≡ yR mod p, and the output is equal to Z ≡ xyR mod p.
In each step there are two multiplications of the form (long integer) × (computer
word), and there is no multiplication of two long integers.

Note that whenever Montgomery arithmetic is applied, there is an initial cost of
multiplying the inputs by R modulo p.

The final remark concerning the Montgomery arithmetic is about the computa-
tion of q′. The question thus is how to compute p−1 (mod b) efficiently. In general
the inverses may be computed by means of extended Euclidean algorithm. However,
if b = 2w, then there exists a more efficient procedure:

INPUT: An odd integer x, 0 < x < 2w.
OUTPUT: Integer y such that yx ≡ 1 mod 2w, 0 < y < 2w.
PARAMETER: Integer w ≥ 1.
VARIABLES: Integers i, j, u.

y = 1;
i = 1;
while (i < w) do:

j = i+ 1;
u = xy (mod 2j);
if (2i < u) then y = y + 2i;
i = j;

return y.
To prove the correctness denote by yi the value of y at the end of the ith round

and set y0 = 1. Thus y = yw−1. The algorithm clearly implies that yi < 2i+1. It
thus suffices to verify that xyi ≡ 1 mod 2i+1. For i = 0 this is true because x is
odd.



14

Suppose that i ≥ 1. By the induction assumption xyi−1 ≡ 1 mod 2i. Hence
xyi−1 (mod 2i+1) is equal to 1 or to 1 + 2i. In the former case yi = yi−1. In the
latter case yi = yi−1 + 2i and xyi ≡ xyi−1 + 2i ≡ 1 mod 2i+1.
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A. Speeding up addition and doubling

Let K be a field and let C be a smooth Weierstraß curve over K given by

x22 + a1x1x2 + a3x2 = x31 + a2x
2
1 + a4x1 + a6. (A.1)

Then all K-rational points of C together with ∞, the point at infinity, can be
interpreted as an abelian group. This group will be denoted by C(K), the addition
in this group by ⊕, the opposite elements by 	, and [m] will be used when the
addition is repeated m-times. The neutral element of C(K) is the point at infinity
∞. Thus α⊕∞ =∞⊕ α for all α ∈ C(K).

The group C(K) may be also interpreted as a group on all projective K-rational
points of C. Under this approach every affine K-rational point (α1, α2) is identified
with (α1 : α2 : 1), and ∞ with (0 : 1 : 0).

Suppose that α = (α1, α2) and β = (β1, β2) are K-rational affine points of C.
Then:

	α = (α1,−α2 − α1a1 − a3). (A.2)

If β = 	α, then β ⊕ α = ∞. Suppose that β 6= 	α. To define γ = α ⊕ β,
γ = (γ1, γ2), first set

λ =
3α2

1 + 2a2α1 − a1α2 + a4
2α2 + a1α1 + a3

if α = β, and λ =
β2 − α2

β1 − α1
if α 6= β. (A.3)

The value of γ1 depends upon λ, α1, β1, a1 and a2, and γ2 depends upon λ, γ1, a1
and a3:

(γ1, γ2) = (−α1 − β1 + λ2 + a1λ− a2, λ(α1 − γ1)− α2 − a1γ1 − a3). (A.4)

The formulas above describe what is known as the chord and tangent process.
Let us recall its properties:

(CT1) For each α = (α1, α2) ∈ C(K) there is at most one β = (β1, β2) ∈ C(K)
such that α1 = β1 and β 6= α. If such a β exists, then β = 	α. If no such
β exists, then [2]α = α⊕α =∞ and, thus, 	α = α. The latter happens if
and only if x1 = α yields the tangent line of C at α.

(CT2) Suppose that β 6= 	α. The choice of λ in (A.3) is such that there exists
a (unique) µ ∈ K for which x2 = λx1 + µ describes a line that is (1) the
tangent of C at α, provided α = β, and (2) connects α and β, provided
α 6= β.

(CT3) Assume β 6= 	α and γ = α ⊕ β = (γ1, γ2). We have α2 = λα1 + µ, µ =
α2−λα1 and γ = (γ1,−(λγ1+µ)−a1γ1−a3). Therefore 	 γ = (γ1, λγ1+µ),
by (A.2). All of the points α, β and 	 γ are incident to the line given by
x2 = λx1 + µ. Denote this line by L. It is a fact that L ∩ C = {α, β,	 γ}.

(CT4) These possibilities can occur:
• The points α, β and 	 γ are pairwise distinct.
• α 6= β and β = 	 γ. Then α⊕ [2]β =∞ and γ = 	β.
• α 6= β and α = 	 γ. Then [2]α⊕ β =∞ and γ = 	α.
• α = β and α 6= 	 γ. Then γ = [2]α.
• α = β = 	 γ. Then [3]α =∞ and γ = 	α = [2]α.

The natural question is how to perform efficiently both the addition α⊕β, and the
doubling [2]α. Note that the elliptic curve cryptography requires a computation of
[n]α for very large n. The point α is usually denoted by P . It remains stable, while
n varies. Standard algorithms, e.g. the sliding window, require many applications
of doubling. The doubling hence deserves the same attention as the addition of
distinct arguments.

For the rest of this section we shall assume that char(K) 6= 2 and that C is given
by x22 = x31 + ax1 + b. Thus a = a4, b = a6, a1 = a2 = a3 = 0 and 4a3 + 27b2 6= 0.
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Then

	 (α1, α2) = (α1,−α2). (A.5)

This means that opposite elements are symmetric along the axis x1 (the line with
x2 = 0), and that (α1, α2) is of order two if and only if α2 = 0. An element of order
two is sometimes called an involution.

If α⊕ β 6=∞, then there exists γ = (γ1, γ2) such that γ = α⊕ β and

γ1 = λ2 − α1 − β1, γ2 = λ(α1 − γ1)− α2, where (A.6)

λ =
α2 − β2
α1 − β1

if α1 6= β1, and λ =
3α2

1 + a

2α2
if α1 = β1. (A.7)

Note that the parameter b = a6 has no bearing upon any of the formulas above.
Let us now consider the time needed to perform α ⊕ β, α 6= β, and to perform

[2]α. The time will be quantified in the number of needed arithmetical operations
over the field K. Typically, K is equal to Fp for p a large prime. This implies
that these operations are not built-in, but have to be algorithmically computed. If
ξ, η ∈ K, then there exist algorithms which compute ξ2 somewhat more quickly
then ξη. We shall use S for squaring ξ2, M for multiplying ξη, and I for inversion
ξ−1. An addition ξ+η and/or a subtraction ξ−η will be neglected since it is much
more quicker than multiplication.

The cost of α ⊕ β is I + 2M + S. Indeed, an inversion is needed to compute
(α1 − β1)−1. If this is done, then a multiplication is needed to get λ. A squaring
appears when computing γ1, and one more multiplication appears in the formula
that expresses γ2. Small multiples can be replaced by additions. That makes the
cost of doubling I + 2M + 2S.

To find an inversion modulo a prime means to employ the extended Euclidean
algorithm. This includes many multiplications. Hence replacing I by kM, where k
is fixed (and not too big) causes a significant speed-up. Such a speed-up is possible,
but at a price. The price is that a point α = (α1, α2) may be addressed in several
ways (using a triple or a quadruple instead of the pair (α1, α2)). That may pay
off only if there are many intermediary stages at which the lack of uniqueness of
point identification does not cause a difficulty. At the end an inversion usually
cannot be avoided if the goal is to get a uniquely determined result. However,
when computing [n]P , say in a cryptographic application, then the computation
uses many additions and doublings that are of intermediary character. For such
situations projective or Jacob or Chudonovski coordinates may be used.

A.1. Projective coordinates. The projective description of C is by the equation

X2
2X3 = X3

1 + aX1X
2
3 + bX3

3 . (A.8)

Let α = (α1 : α2 : α3) = (α1/α3 : α2/α3 : 1) and β = (β1 : β2 : β3) =
(β1/β3, β2/β3 : 1) be two distinct points on C. Assume that α ⊕ β 6= (0 : 1 : 0).
Then α⊕ β = γ = (γ1 : γ2 : γ3) = (γ1/γ3 : γ2/γ3 : 1). By (A.6)

γ1
γ3

= λ2 − α1

α3
− β1
β3

and
γ2
γ3

= λ

(
α1

α3
− γ1
γ3

)
− α2

α3
, (A.9)

where, by (A.7),

λ =
α2/α3 − β2/β3
α1/α3 − β1/β3

=
α2β3 − β2α3

α1β3 − β1α3
.

Put U = α2β3 − β2α3 and V = α1β3 − β1α3. The cost of computing U and V is
4M. The cost of computing

W = U2α3β3 − V 2(α1β3 + β1α3)
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is 2S + 7M since α1β3 and β1α3 may be regarded as precomputed. Since α1β3 +
β1α3 = (β1α3 − α1β3) + 2α1β3 = −V + 2α1β3 we also have

W = U2α3β3 + V 3 − 2α1β3V
2. (A.10)

If this formula is followed, the cost of W is 2S + 8M.
Put γ3 = V 3α3β3. Note that λ = U/V . Then

γ1 = V (U2α3β3)− V 3(α1β3 + β1α3) = VW, and

γ2 = (U/V )(V 3α1β3 − VW )− V 3α2β3 = U(α1β3V
2 −W )− α2β3V

3.

Compute W by means of (A.10) and use precomputed values to get γ3, γ1 and γ2.
The cost is 1M, 1M and 2M, respectively. The overall cost of computing γ = (γ1, γ2)
thus amounts to 2S + 12M.

Formula (A.9) can be used for the doubling as well, with α = β. However, in
this case

λ =
3(α1/α3)2 + a

2α2/α3
=

3α2
1 + aα2

3

2α2α3
.

The form of γ2/γ3 suggests to choose γ3 as 8α3
2α

3
3. Then

γ1 = 2α2α3((3α2
1 + aα2

3)2 − 8α1α
2
2α3), and

γ2 = (3α2
1 + aα2

3)(4α1α
2
2α3 − γ1/2α2α3)− 8α4

2α
2
3

= (3α2
1 + aα2

3)(4α1α
2
2α3 − ((3α2

1 + aα2
3)2 − 8α1α

2
2α3))− 8α4

2α
2
3.

To compute γi, 1 ≤ i ≤ 3, it may be proceeded by computing (1) α2
1, (2) α2

3, (3)
U = 3α2

1 + aα2
3, (4) U2, (5) V = 2α2α3, (6) α2V , (7) V 2, (8) γ3 = V 3, (9) W =

U2−4α1α2V , (10) γ1 = VW , (11) (α2V )2 and (12) γ2 = U(2α1α2V −W )−2(α2V )2.
The cost of doubling hence is 5S + 7M. If a is small, then the cost of multiplying
by a may be regarded as negligible. In such a case the cost of doubling is equal to
5S + 6M.

When computing [n]P it often happens that the point P is being added to an
intermediary result. If the intermediary result is denoted by α, and the point P
as β, then β3 = 1 since P is given as an affine point. By inspecting the above
procedure for computing α ⊕ β it may be observed that it includes exactly three
instances of multiplying by β3. The cost of computing α ⊕ β is thus reduced to
2S + 9M if β3 = 1.
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M. Montgomery curves

Consider the Weierstraß equation in its general form (A.1). For simplicity let
us write y in place of x2 and x in place of x1. Suppose that char(K) 6= 2. Then
y2+a1xy+a3y = (y+(a1x+a3)/2)2−(a1x+a3)2/4. Two Weierstraß equations are
called K-equivalent if one can be obtained from the other by a linear substitution
over K. The equation y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 is thus K-equivalent
to the equation y2 = x3 + (a2 + a21/4)x2 + (a4 + a1a3/2)x+ (a6 + a23/4), provided
char(K) 6= 2. Indeed, the latter equation can be turned into the equation (A.1) by
y 7→ y + (a1x+ a3)/2 and x 7→ x. (By a linear substitution over K we understand
here any reversible substitution xi 7→ λ1ix1 + λ2ix2 +µi, i ∈ {1, 2}, where λij , µi ∈
K. Such a substitution is reversible if and only if det(λij) 6= 0.)

If char(K) > 3, then x3 + a2x
2 + a4x + a6 = (x + a2/3)3 + (a4 − a22/3)(x +

a2/3) + (a6 − a4a2/3 + 2a32/27). Hence each Weierstraß equation is K-equivalent
to a Weierstraß equation of the form y2 = x3 + ax+ b, provided char(K) > 3.

A linear substitution may turn an equation u(x, y) = v(x, y) into an equation
λũ(x, y) = λṽ(x, y), where λ ∈ K∗. The curve determined by the latter equation
is the same as the curve determined by ũ(x, y) = ṽ(x, y). Hence we say that
ũ(x, y) = ṽ(x, y) is K-equivalent to u(x, y) = v(x, y) also in this case.

If λ ∈ K∗, then the curve defined by the equation y2 = x3+ax+b coincides with
the curve given by (λ3y)2 = (λ2x)3+aλ4(λ2x)+bλ6. The equation y2 = x3+ax+b
is hence K-equivalent to the equation y2 = x3 + λ4ax+ λ6b. This is the only way
how Weierstraß equations y2 = x3+ax+b and y2 = x3+ãx+b̃ may be K-equivalent.
They are K-equivalent if and only if

there exists λ ∈ K∗ such that ã = λ4a and b̃ = λ6b. (M.1)

Curves given by equations By2 = x3+Ax2+x, char(K) 6= 2, are also important.
A curve of this form is called a Montgomery curve. We will also speak about a
Montgomery equation. Elements A and B belong to K, and B 6= 0. Capital letters
are used to avoid a confusion with a and b in the normal form of a Weierstraß
equation.

When both sides of By2 = x3 +Ax2 + x are multiplied by B3 we get

(B2y)2 = (Bx)3 +AB(Bx)2 +B2(Bx).

A Montgomery equation is thus K-equivalent to a Weierstraß equation y2 = x3 +
ABx2 + B2x. Weierstraß equations of the form y2 = f(x), f ∈ K[x] cubic monic,
char(K) 6= 2, are smooth if and only if f is separable, i.e. it contains no multiple
root. The polynomial x(x2 +ABx+B2) has a multiple root if and only if (AB)2−
4B2 = B2(A−2)(A+ 2) is equal to zero. Hence if A 6= ±2, then the curve given by
y2 = x3 +ABx2 +B2x is smooth—and this is also, not surprisingly, the condition
for the Montgomery curve to be smooth.

Assume A 6= ±2. Denote the Montgomery curve by M and the Weierstraß
curve of y2 = x3 + ABx2 + B2x by C. Note that σ : (α1, α2) 7→ (Bα1, B

2α2) is
a bijection M → C. Extend this bijection by ∞ 7→ ∞. The group structure of
C(K) may be transferred upon M in such a way that σ(α) ⊕ σ(β) = σ(α⊕̃β) for
all α, β ∈ M ∪ {∞}. This may be also written as α⊕̃β = σ−1(σ(α)⊕ σ(β)) for all
α, β ∈M ∪ {∞}.

Suppose that α = (α1, α2). Then

	̃α = σ−1(	(Bα1, B
2α2)) = σ−1(Bα1,−B2α2) = (α1,−α2).

The formula for opposite elements thus does not change, and so we can write 	 in
place of 	̃ when the unary minus is being used.
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The value of λ for (Bα1, B
2α2)⊕ (Bβ1, B

2β2) comes from (A.3) as

3B2α2
1 + 2AB2α1 +B2

2B2α2
=

3α2
1 + 2Aα1 + 1

2α2
if α = β, and B

β2 − α2

β1 − α1
if α 6= β.

Assume that α 6= 	β, and set γ = α⊕̃β, γ = (γ1, γ2). By (A.4),

(γ1, γ2) = (−α1 − β1 +B−1λ2 −A,B−1λ(α1 − γ1)− α2).

Let us express the latter formula using λ̃ = B−1λ. Note that λ̃ expresses the slope
of the line connecting α and β, if α 6= β. Indeed,

λ̃ =
3α2

1 + 2Aα1 + 1

2Bα2
if α = β, λ̃ =

β2 − α2

β1 − α1
if α 6= β, and (M.2)

(γ1, γ2) = (−α1 − β1 +Bλ̃2 −A, λ̃(α1 − γ1)− α2). (M.3)

Assume α1 6= β1 and use the fact that α	̃β = α⊕̃(β1,−β2). Let α	̃β = δ = (δ1, δ2).
By (M.3),

(δ1, δ2) = (−α1 − β1 +B
˜̃
λ2 −A, ˜̃λ(α1 − δ1)− α2), where

˜̃
λ =

α2 + β2
α1 − β1

. (M.4)

Proposition M.1. Let ⊕̃ be the group operation upon a Montgomery curve M
given over K by By2 = x3 + Ax2 + x. Let α = (α1, α2) and β = (β1, β2) be K-
rational points of M , α1 6= β1. Put γ = α⊕̃β = (γ1, γ2) and δ = α	̃β = (δ1, δ2).
Then

γ1δ1(α1 − β1)2 = (α1β1 − 1)2. (M.5)

Proof. Start with (M.3) and express Bα2
2 and Bβ2

2 by means of the Montgomery
equation to get

γ1(α1 − β1)2 = B(α2 − β2)2 − (A+ α1 + β1)(α1 − β1)2

= −2Bα2β2 + (α3
1 +Aα2

1 + α1) + (β3
1 +Aβ2

1 + β1)

− α3
1 − β3

1 + α2
1β1 + α1β

2
1 −Aα2

1 −Aβ2
1 + 2Aα1β1

= −2Bα2β2 + α1β1(α1 + β1 + 2A) + α1 + β1.

Therefore

γ1(α1 − β1)2α1β1 = −2Bα2β2α1β1 + β2
1(α3

1 +Aα2
1 + α1) + α2

1(β3
1 +Aβ2

1 + β1)

= −2Bα1β1α2β2 +Bβ2
1α

2
2 +Bα2

1β
2
2 = B(β1α2 − β2α1)2.

The right hand side of (M.4) is obtained from the right hand side of (M.3) by
replacing β2 with −β2. Hence we have

γ1(α1 − β1)2α1β1 = B(β1α2 − β2α1)2 and

δ1(α1 − β1)2α1β1 = B(β1α2 + β2α1)2.
(M.6)

By multiplying, γ1δ1(α1 − β1)4α2
1β

2
1 = B2(β2

1α
2
2‘− β2

2α
2
1)2. Now,

B(β2
1α

2
2 − β2

2α
2
1) = β2

1(α3
1 +Aα2

1 + α1)− α2
1(β2

1 +Aβ2
1 + β1)

= (α1β1)2(α1 − β1) + α1β1(β1 − α1) = (α1 − β1)α1β1(α1β1 − 1).

Hence γ1δ1(α− β1)4(α1β1)2 = (α1β1)2(α− β1)2(α1β1 − 1)2, and so

γ1δ1(α1 − β1)2 = (α1β1 − 1)2.

This yields (M.5) if α1β1 6= 0. If β1 = 0, then β2 = 0, γ1 = δ1 = −α1 +Bα2
2α
−2
1 −A

and α2
1γ1 = −α3

1 + Bα2
2 − Aα2

1 = α1. Thus α1γ1 = α1δ1 = 1, and both sides of
(M.5) are equal to 1.

If α1 = 0, then α2 = 0, γ1 = −β1 + Bβ2
2β
−2
1 − A = δ1 and γ1β

2
1 = −β3

1 +
Bβ2

2 − Aβ2
1 = β1. Hence γ1β1 = δ1β1 = 1, and both sides of (M.5) are equal to 1

again. �
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There exists a natural technique how to compute [n]P by means of a sequence
1 = n1, . . . , nk of integers such that in the ith round both [ni]P and [ni+1]P
are known. This is known as Montgomery’s ladder and is discussed below. If
β = [ni]P and α = [ni + 1]P , then α	̃β = P . Hence (M.5) may be used to obtain
γ = α⊕̃β = [2ni + 1]P . The practicality of such a procedure follows from the fact
that we may work only in the first coordinate. For all [ni]P and [ni + 1]P only the
first coordinate is being computed, and the second coordinate of [n]P is retrieved
from the last two elements of the sequence, cf. Lemma M.2.

Since Montgomery’s ladder needs also doubling, we have to verify that doubling
can be performed in the first coordinate only too:

Let (γ1, γ2) = [2]α, where α = (α1, α2) and α2 6= 0. By (M.2) and (M.3), γ1 is
equal to −2α1 −A+B(3α2

1 + 2Aα1 + 1)2(2Bα2)−2. Thus

4Bγ1α
2
2 = −8α1(Bα2

2) + (3α2
1 + 2Aα1 + 1)2 − 4A(Bα2

2)

= −(8α1 + 4A)(α3
1 +Aα2

1 + α1) + 9α4
1 + 12Aα3

1 + (6 + 4A2)α2
1 + 4Aα1 + 1

= α4
1 − 2α2

1 + 1.

Hence

γ1 =
(α2

1 − 1)2

4Bα2
2

=
(α2

1 − 1)2

4(α3
1 +Aα2

1 + α1)
. (M.7)

In the context of Montgomery’s ladder the points occurring in the following
statement have this meaning: γ = [n + 1]P , α = [n]P and β = P 6= (0, 0). The
goal is to determine α2 from knowledge of α1, γ1, β1 and β2.

Lemma M.2. Let α = (α1, α2), β = (β1, β2) and γ = (γ1, γ2) be points of a
Montgomery curve over K given by By2 = x3 + Ax2 + x. Suppose that α1 6= β1,
β 6= (0, 0) and that γ = α⊕̃β, where ⊕̃ is the group operation upon M ∪{∞}. Then

α2 =
α1β1(α1 + β1 + 2A) + α1 + β1 − γ1(α1 − β1)2

2Bβ2

Proof. The first equation in the proof of Proposition M.1 is

γ1(α1 − β1)2 = −2Bα2β2 + α1β1(α1 + β1 + 2A) + α1 + β1.

It remains to express α2 using this equation. �

M.1. Montgomery’s ladder. Let us start by an example. The binary expansion
of, say, n = 49 is 110001 since 49 = 32 + 16 + 1. The decimal expression of binary
integers 1, 11, 110, 1100, 11000 and 110001 is 1, 3, 6, 12, 24 and 49. Put n1 = 1,
n2 = 3, n3 = 6, n4 = 12, n5 = 24 and n6 = 49, and set n′i = ni + 1, 1 ≤ i ≤ 6.
Note that (3, 4) = (1 + 2, 2 + 2), (6, 7) = (3 + 3, 3 + 4), (12, 13) = (6 + 6, 6 + 7),
(24, 25) = (12 + 12, 12 + 13) and (49, 50) = (24 + 25, 25 + 25). Obviously there are
two patterns. Either (ni+1, n

′
i+1) = (2ni, ni + n′i), or (ni+1, n

′
i+1) = (ni + n′i, 2n

′
i).

The former equality holds if the rightmost bit of ni+1 is equal to 0, while the latter
equality holds if the rightmost bit of ni+1 is equal to 1. This will be proved below.

Now suppose that our goal is to compute [n]P , P 6= (0, 0) a point of a Mont-
gomery curve M . Let xi, yi, x

′
i, y
′
i ∈ K be such that [ni]P = (xi, yi) and [n′i]P =

(x′i, y
′
i). The sequence n1, n2, . . . , nk is defined so that nk = n. Thus [n]P =

(xk, yk).
The recommended procedure is to compute xi and x′i by means of (M.5) and

(M.7), and then use Lemma M.2 to retrieve yk from knowledge of xk, x′k, and
P = (x1, y1).

Let us be more concrete. Suppose first that (ni+1, n
′
i+1) = (2ni, ni + n′i). Then

xi+1 =
(x2i − 1)2

4(x3i +Ax2i + xi)
, and x′i+1 =

(xix
′
i − 1)2

x1(x′i − xi)2
. (M.8)
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If (ni+1, n
′
i+1) = (ni + n′i, 2n

′
i), then

xi+1 =
(xix

′
i − 1)2

x1(x′i − xi)2
, and x′i+1 =

(x′
2
i − 1)2

4(x′3i +Ax′2i + x′i)
. (M.9)

Finally, by Lemma M.2,

yk =
x1xk(x1 + xk + 2A) + x1 + xk − x′k(xk − x1)2

2By1
.

Of course, the scheme assumes that the order of P is greater than n + 1. Thus
[m]P 6=∞ for any m, 1 ≤ m ≤ n+ 1.

When implementing the arithmetic of Montgomery curves the effeciency may be
enhanced by using projective coordinates.

Let us formalize observations deduced from the initial example. Note that if
n =

∑
0≤i<k ai2

i is a binary expansion of n (thus ai ∈ {0, 1} and ak−1 = 1),
then the sequence n1, n2, . . . , nk constructed above can be expressed as n1 = 1,
n2 = 2 + ak−2 = 2ak−1 + ak−2, n3 = 4ak−1 + 2ak−2 + ak−3, etc. Thus nj =∑

1≤i≤j ak−i2
j−i.

Lemma M.3. Let n ≥ 1 be an integer, and let
∑

0≤i<k ai2
i be its binary expansion,

ak−1 = 1. For j ∈ {1, . . . , k} define nj as
∑

1≤i≤j ak−i2
j−i, and put n′j = nj + 1.

Then n1 = 1, nk = n, and for every j, 1 ≤ j < k the following holds:

• If ak−j−1 = 0, then nj+1 = 2nj and n′j+1 = nj + n′j.
• If ak−j−1 = 1, then nj+1 = nj + n′j and n′j+1 = 2n′j.

Proof. Put ε = ak−j−1. By the definition, nj+1 = 2nj + ε. If ε = 0, then nj+1 =
2nj . If ε = 1, then nj+1 + 1 = 2(nj + 1). �

M.2. Turning Weierstraß into Montgomery. Recall that by multiplying the
equation By2 = x3 +Ax2 +x by B3 we obtain a K-equivalent Weierstraß equation
y2 = x3 +ABx2 +B2x. Hence we may immediately claim the following fact:

Lemma M.4. A Weierstraß equation y2 = f(x), where f(x) = x3+a2x
2+a4x+a6,

is K-equivalent to a Montgomery equation if and only if it is K-equivalent to a
Weierstraß equation y2 = x3 + ã2x

2 + ã4x in which ã4 is in K a nonzero square.

Assume char(K) > 3. Expressing x3 +ABx2 +B2x as a polynomial in x+AB/3
shows that By2 = x3 +Ax2 + x is K-equivalent to

y2 = x3 +B2

(
1− A2

3

)
x− AB3

3
+

2(AB)3

27
. (M.10)

If y2 = x3 + ax + b, then it may not be easy to decide whether there exist A and
B such that a = B2(1 − A2/3) and b = −(AB3)/3 + 2(AB)3/27. The following
structural description may be then useful.

Proposition M.5. A Weierstraß equation y2 = f(x) is K-equivalent to a Mont-
gomery equation if and only if there exists ζ ∈ K such that f(ζ) = 0 and f ′(ζ) is
in K a nonzero square.

Proof. If f(x) = x3 + ABx2 +B2x, then f ′(x) = 3x2 + 2ABx+B2, f(0) = 0 and
f ′(0) = B2. For the converse direction suppose that y2 = f(x), f ′(ζ) = B2 and

f(ζ) = 0. Put f̃(x) = f(x+ζ). Then f̃(x) = x3 + ã2x
2 + ã4x+ ã6, and ã6 = f̃(0) =

f(ζ) = 0. Furthermore, ã4 = f̃ ′(0) = f ′(ζ) is assumed to be square. The equation

y2 = f̃(x) is thus equivalent to a Montgomery equation, by Lemma M.4.

To finish the proof we have to show that if y2 = f(x) and y2 = f̃(x) are K-
equivalent Weierstraß equations, then from the existence of ζ with f(ζ) = 0 and

f ′(ζ) ∈ (K∗)2 there follows the existence of ζ̃ with the same properties. (This part
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of the proof is necessary since without it there would remain open a possibility that
a Montgomery equation is K-equivalent to a Weierstraß equation that does not
have the required property.) If f̃(x) = f(x+ µ), set ζ̃ = ζ − µ. If f̃(x) is obtained
from f(λ1x), λ1 ∈ K∗, then λ1 must be a square (cf. the discussion before (M.1)).
Suppose that f(x) = x3 + a2x

2 + a4x + a6. Then λ6y2 = (λ2x)3 + a2λ
2(λ2x)2 +

a4λ
4(λ2x) + a6λ

6. Thus f̃(x) = x3 + a2λ
2x2a+ a4λ

4x+ a6λ
6. Put ζ̃ = λ2ζ. Then

f̃(ζ̃) = λ6f(ζ) = 0, and f̃ ′(ζ̃) = 3ζ̃2 + 2a2λ
2ζ̃ + a4λ

4 = λ4(3ζ2 + 2a2ζ + a4) =
λ4(f ′(ζ)) is a square. �

Corollary M.6. Let p ≡ 1 mod 4 be a prime, and let f ∈ Zp[x] be a cubic monic
separable polynomial that splits over Zp (i.e. all roots of f are in Zp). If f(0) 6= 0,
then the Weierstraß equation y2 = f(x) is K-equivalent to a Montgomery equation.

Proof. By the assumptions, f(x) = (x − ζ1)(x − ζ2)(x − ζ3), where ζi ∈ Zp. We
have

−
∏

f ′(ζi) =
∏
i<j

(ζi − ζj)2.

This is because both sides of the equality express the discriminant of f . (This
equality can be also verified directly, which is an option for those who are not
familiar with discriminants.) Because −1 is modulo p a square,

∏
f ′(ζi) is also a

square. Therefore at least one of f ′(ζi) has to be a square too. �

It is not difficult to solve completely the question when two Montgomery equa-
tions are K-equivalent. Here we shall restrict our attention only to the fact that
By2 = x3 +Ax2 +x holds if and only if −By2 = (−x)3−A(−x)2 + (−x). A Mont-
gomery equation with parameters (A,B) is hence K-equivalent to a Montgomery
equation with parameters (−A,−B).
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E. Edwards curves

An elliptic curve over a field K is a projective curve E such that the function
field K(E) is of genus 1, and E contains at least one K-rational point. The curve
E is often considered in its affine version. This is particularly true if the curve is
smooth and there is only one point at infinity.

For each elliptic curve there exists a smooth Weierstraß curve C such that
K(E) ∼= K(C). For each elliptic curve it is possible to define a group operation
⊕. The group is then denoted by E(K). If K(E) ∼= K(C), then E(K) ∼= C(K).
Are there any reasons why there should be considered other elliptic curves but the
smooth Weierstraß curves? One reason may be computational, and this is why
Montgomery curves have been considered. Another reason may be structural. In
cryptographic applications the fact that doubling and adding proceeds differently
makes an implementation vulnerable to side channel attacks. We would like to have
an elliptic curve with only one formula for both doubling of a point, and addition
of two distinct points. Such a formula is sometimes known as a closed formula or
a uniform formula.

Edwards curves fulfil such a requirement. Some of the Edwards curves have no
K-rational point at infinity, and these are those for which a closed formula can be
used indiscriminately. This is also true for the so called twisted Edwards curves,
which is a somewhat more general notion. Twisted Edwards curves correspond to
Montgomery curves. Assume char(K) 6= 2. Then for each twisted Edwards curve
E there exists a smooth Montgomery curve M such that M(K) ∼= E(K), and vice
versa.

To define the group E(K), E an elliptic curve, in full generality, the notion of a
place is needed. Elements of E(K) are places of degree one. If α ∈ E is a smooth
point, then there is only one place at α. However, if α is a singular point, then
there are either more places at α, or there is a place of degree > 1. That makes
the connection between K-rational projective points of E and elements of E(K) a
bit more complicated. If E is a twisted Edwards curve, then all affine points are
smooth and all points at infinity are singular. If all places induced by K-rational
points at infinity are of degree > 1, then each element of E(K) can be represented
by exactly one affine point. Thus in this case E(K) may be constructed directly
upon the set of all affine K-rational points. In the general case the affine points
may be also used, but their set has to be extended by two or four extra elements
that correspond to “places at infinity”. There are several ways how to do that
formally, and some of them have computational consequences. These are discussed
below.

E.1. Branches and the definition. Consider a curve described by equation

y2 + x2 = 1 + dx2y2 (E.1)

that is defined over real numbers. There are good reasons to expect that the corre-
sponding projective curve will have one or two components of connectivity, each of
them closed, similarly as in the case of Weierstraß curves. However, the number of
connectivity components of an affine curve may be bigger than the number of com-
ponents of its projective completion. (Think about a hyperbole which has only one
component in projective coordinates, but two in affine coordinates.) For a while,
for the sake of simplicity of expression, call an affine component of connectivity a
branch. Denote the curve by E.

Suppose first that d = s2 and s > 1. When (E.1) is written in the form y2 =
(1− x2)/(1− s2x2), then it is easy to deduce that in this case there exists exactly
one branch which satisfies y > 0 and x ∈ (−s−1, s−1). This branch has a shape
of the letter ∪, with x = −s−1 and x = s−1 being tangents at infinity, and (0, 1)
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being the bottom point. By turning the branch bottom up, i.e. by reflecting it
along the axis x (the line y = 0), we obtain another branch. This branch satisfies
y < 0 and x ∈ (−s−1, s−1). Since the definition of the curve is x ↔ y symmetric,
the other two branches are obtained by right angle rotation of the branches that
have been already described. So there are four branches, none of which is closed.
Extreme points of these branches are (0, 1), (0,−1), (1, 0) and (−1, 0). Note that
these points belong to E for any field K and any element d ∈ K.

At this point the reader might wish to guess the number of points at infinity
without actually computing them.

If 0 < s < 1 and d = s2, then there are five branches, and the central branch is
closed.

If d < 0, then any point (α, β) ∈ E fulfils |α| ≤ 1 since β2 = (1− α2)/(1− dα2)
and 1 − dα2 ≥ 1 for every α. Similarly, |β| ≤ 1. In this case there is only one
branch. The branch is closed and resembles a somewhat smoothed star from the
logo of an Orion chocolate bar. Note that if d = 0, then the curve coincides with a
circle. With decreasing d, the circle gets more and more pressed crosswise towards
the centre (the pressure comes along the quadrangle axes).

Consider now the projective curve induced by (E.1), for any fieldK, char(K) 6= 2.
The equation is Y 2Z2 + X2Z2 = Z4 + dX2Y 2. Assume d 6= 0. If Z = 0, then
dX2Y 2 = 0. There are thus two points at infinity, (0 : 1 : 0) and (1 : 0 : 0). Both
of them are singular. If K = R and d = s2 > 1, then the two affine branches with
x ∈ (−s−1, s) make one projective branch in the shape of the digit 8. The point of
crossing is equal to the projective point (0 : 1 : 0). There are two distinct places
of degree 1 at this point. Think about the point as if consisting of two “ideal”
points. Separating them “resolves the singularity” and changes the shape of 8 into
a (topological) circle. If 1 > d = s2 > 0, then the situation is similar but somewhat
different since there is a central closed affine branch. The other four affine branches
form a single projective branch the shape of which can be represented by two circles
that intersect in two points. The points of crossing are (1 : 0 : 0) and (0 : 1 : 0).
Singularities can be resolved in a similar manner, and that makes this projective
branch a topological circle too.

If d < 0, then each place of degree one of K(E) corresponds to a (unique) affine
point. In fact, this is true for any field K, char(K) 6= 2, when d is not a square.
How does this relate to the fact that the projective curve contains K-rational points
(1 : 0 : 0) and (0 : 1 : 0) in this case too? The answer is that at each of these points
there sits a single place, and this place is not of degree one, but of degree two.
These points thus do not influence the structure of the group E(K). Of course, the

situation changes if the same curve is considered over the field K[
√
d].

An Edwards curve over K, char(K) 6= 2, is any curve given by (E.1), with
d /∈ {0, 1}. A twisted Edwards curve over K, char(K) 6= 2 is a curve given by

ax2 + y2 = 1 + dx2y2, where a, d ∈ K∗ and a 6= d. (E.2)

Usage of the adjective “twisted” indicates that the class of twisted Edwards curves
extends the class of Edwards curves only modestly. To see this note that if a = b2,
then (bx)2 + y2 = 1 + db−2(bx)2y2. A twisted Edwards curve with parameters
(b2, d) is K-equivalent to the Edwards curve given by x2 + y2 = 1 + db−2x2y2.
More generally, there is a K-equivalence between parameters (b2c, d) and (c, b−2d).
To cover the class of twisted Edwards curves over a finite field Fq, q odd, it is
thus enough to consider the Edwards curves, and the curves given by ϑx2 + y2 =
1 + dx2y2, where ϑ is a preselected nonsquare.

Let us now verify that the polynomial ax21 + x22 − 1 − dx21x
2
2 ∈ K[x1, x2] is

absolutely irreducible if a, d ∈ K∗ and a 6= d. Up to now we have tacitly assumed
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that this is true. If it have not been true, we could not have had considered the
function field K(E) since this assumes that the polynomial defining E is irreducible.

Proposition E.1. Let K be a field, char(K) 6= 2. Assume that a1, a2, d ∈ K∗.
The polynomial f(x1, x2) = a1x

2
1 + a2x

2
2− 1− dx21x22 is absolutely irreducible if and

only if d 6= a1a2.

Proof. If d = a1a2, then f = (a1x
2
1 − 1)(1 − a2x22). Let f = g1g2, where g1, g2 ∈

K̄[x1, x2]. If degx1
(g1) = degx2

(g1) = 2, then g2 ∈ K̄∗. Assume that g1, g2 /∈ K̄∗.
Suppose first that gi = αix

2
i + βixi + γi ∈ K̄[xi], i ∈ {1, 2}. In the polynomial

f(x1, x2) the coefficients at both x21x2 and x1x
2
2 vanish. We have α1α2 = −d 6= 0.

Hence both β1 and β2 must vanish too. Now, f = g1g2 = α1α2x
2
1x

2
2 + α1γ2x

2
1 +

α2γ1x
2
2+γ1γ2. Therefore γ1γ2 = −1, α1γ2 = a1, α2γ1 = a2 and −d = −α1γ1γ2α2 =

−a1a2.
Assume d 6= a1a2. We have shown that there cannot be degxi

(gj) ∈ {0, 2} for
all i, j ∈ {1, 2}. Hence there exists i ∈ {1, 2} such that degxi

(g1) = degxi
(g2) = 1.

Because of the x1 ↔ x2 symmetry it may be assumed that i = 1. This means that
the polynomial f splits over the field of rational functions K̄(x2) when regarded
as a quadratic polynomial in one variable x1. This can happen if and only if the
discriminant −4a1(a2x

2
2 − 1)(1 − da−11 x22) is a square in K̄[x2]. If it is a square,

then all of the roots have to have an even multiplicity. This is not possible since
the polynomials a2x

2
2 − 1 and 1− da−11 x22 have no common root because d 6= a1a2

is assumed, and none of them has a double root because char(K) 6= 2. �

Lemma E.2. Let K be a field, char(K) 6= 2. Assume that a1, a2, d ∈ K∗, d 6= a1a2
and f(x1, x2) = a1x

2
1+a2x

2
2−1−dx21x22. Let α1, α2 ∈ K̄ be such that f(α1, α2) = 0.

Then (∂f/∂xi)(α1, α2) 6= 0 for at least one i ∈ {1, 2}.

Proof. First note that ∂f/∂xi = 2xi(ai − dx2j ), where i, j ∈ {1, 2} and j 6= i.

If α1 = 0, then α2
2 = a−12 6= 0 and (∂f/∂x2)(0, α2) = 2α2a1 6= 0. Suppose

that αi 6= 0 and (∂f/∂xi)(α1, α2) = 0 for both i ∈ {1, 2}. Then α2
1 = a2d

−1,
α2
2 = a1d

−1 and f(α1, α2) = a1a2d
−1 +a1a2d

−1−1−a1a2d−1 = d−1(a1a2−d) 6= 0,
a contradiction. �

Corollary E.3. Let K be a field with char(K) 6= 2. Any twisted Edwards curve
over K is smooth at every of its affine points.

If E is an elliptic curve over K, then any of its K-rational points may be chosen
as the neutral element of E(K). The choice is a matter of convention and is made
so that the addition formula is as simple as possible. For twisted Edwards curves
the neutral element has been chosen to be equal to (0, 1). The closed formula for
addition is

(α1, α2)⊕ (β1, β2) =

(
α1β2 + α2β1

1 + dα1α2β1β2
,
α2β2 − aα1β1
1− dα1α2β1β2

)
. (E.3)

This formula works for any two affine points provided dα1α2β1β2 6= ±1. If the
latter condition is not satisfied, then the result is one of the places of infinity.
Their number can be expressed as 2(ε1 + ε2), where ε1, ε2 ∈ {0, 1} is defined so
that ε1 = 1 if d is a square, and ε2 = 1 if ad−1 is square. Each of the places at
infinity is an element of E(K) that is either of order 2, or of order 4. Applications
in cryptography are mainly concerned with points P ∈ E(K) that are of large
prime order. For these applications computation rules involving places at infinity
are thus not needed. However, for other applications, like factorization algorithms,
these formulas have to be established. This will be discussed later.
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E.2. Birational equivalence. Let C = Vf , f ∈ K[x1, x2] irreducible. Recall
that K(C) can be interpreted as a set of partial mappings ρ : C → K that can be
represented by rational mappings a(x1, x2)/b(x1, x2), b /∈ (f). If α ∈ C and b(α) 6=
0, then ρ(α) = a(α)/b(α). Recall also that a1/b1, a2/b2 ∈ K(x1, x2), b1, b2 /∈ (f),
represent the same ρ ∈ K(C) if and only if a1b2−a2b1 ∈ (f), i.e., if (a1 +(f))/(b1 +
(f)) and (a2 + (f))/(b2 + (f)) denote the same element of K(C). The partial
mapping ρ is defined at α ∈ C whenever there exists a representative a/b such that
b(α) 6= 0. There are only finitely many α ∈ C at which ρ(α) is not defined. This
is because if a/b represents ρ, b /∈ (f), then there are only finitely many α ∈ C
such that b(α) = 0. We say that ρ is defined nearly everywhere. This is meant as
a synonym to up to finitely many elements (or points). Use Dom(ρ) to denote the
domain of ρ, i.e. the set of elements where ρ is defined.

Let C1 = Vf1 and C2 = Vf2 , where f1, f2 ∈ K[x1, x2] are irreducible. A pair
ρ = (ρ1, ρ2) ∈ K(C)2 is said to be a rational map C1 → C2 if (ρ1(α), ρ2(α)) ∈ C2

whenever α ∈ Dom(ρ) = Dom(ρ1)∩Dom(ρ2). The curves C1 and C2 are birationally
equivalent (over K) if there exist rational maps ρ : C1 → C2 and σ : C2 → C1 such
that σρ(α) = α for nearly all α ∈ C1 and ρσ(β) = β for nearly all β ∈ C2 (an
equivalent condition: σρ(α) = α whenever α ∈ Dom(ρ) ∩ ρ−1(Dom(σ)), similarly
for β).

If ρ : C1 → C2 and σ : C2 → C1 yield a birational equivalence, then there exist
mutually inverse K-isomorphisms σ∗ : K(C1) ∼= K(C2) and ρ∗ : K(C2) ∼= K(C1)
such that xi + (f1) 7→ σi and xi + (f2) 7→ ρi. In fact, K(C1) and K(C2) are
K-isomorphic if and only if C1 and C2 are birationally equivalent over K.

To see that a birational equivalence induces mutually inverse isomorphisms of
function fields is not too difficult. Nevertheless it is technically somewhat demand-
ing. For a reader who would like to verify the statement the following comments
may be useful. If τ ∈ K(C1), then σ∗(τ) = σ∗(τ(x1 + (f1), x2 + (f1))) = τ(σ∗(x1 +
(f1)), σ∗(x2 + (f1))) = τ(σ1, σ2). Hence σ∗(τ)(β) = τ(σ1(β), σ2(β)) = τσ(β)
for every β ∈ C2. Since σ∗ρ∗(xi + (f2)) = σ∗(ρi) we get σ∗ρ∗(x1 + (f2))(β) =
σ∗(ρ1)(β) = ρ1σ(β). Now ρσ(β) = (ρ1σ(β), ρ2σ(β)) is assumed to be equal to
β = (β1, β2) nearly everywhere. Hence ρ1σ(β) = β1 nearly everywhere, and there-
fore σ∗ρ∗(x1 + (f2)) = σ∗(ρ1) = x1 + (f2). Similarly, σ∗ρ∗(x2 + (f2)) = x2 + (f2),
and hence σ∗ρ∗ = idK(C2). The equality ρ∗σ∗ = idK(C1) follows in the same way.

If C1 and C2 are birationally equivalent elliptic curves, then C1(K) ∼= C2(K).
This is because the structure of the abelian group Ci(K) fully depends upon the
structure of the function field K(Ci). If the fields are isomorphic, then the groups
are isomorphic too.

Recall that equations f1(x1, x2) = 0 and f2(x1, x2) = 0 are said to be K-
equivalent if the polynomials can be obtained one from another by a linear substi-
tution. Such substitutions induce a birational equivalence between C1 and C2 that
is realized by affine mappings, i.e. by a linear change of coordinates, like in the case
of Weierstraß and Montgomery curves. However, not every birational equivalence is
affine. Below we shall observe that twisted Edwards curves are birationally equiva-
lent to Montgomery curves. The advantage of invertible affine (or linear) mappings
is that they are defined globally for all α ∈ A2 = K̄ × K̄, and their inversions are
affine (linear) too. The birational equivalence may be thus obtained by restricting
a global mapping to curves.

A linear fractional mapping x 7→ (ax+ c)/(bx+ d), ad− bc 6= 0, nearly permutes
an affine line (it may be extended to a permutation of the projective line by ∞ 7→
a/b and −d/b 7→ ∞). Linear fractional mappings thus may serve as a tool to
define transformations of A2 that are very close to permutations. One of such
transformations is used to associate Montgomery and Edwards curves:
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Lemma E.4. Assume char(K) 6= 2. Then ϑ : β 7→ (β + 1)/(β − 1) permutes the
set K ′ = K \ {0, 1,−1} and Ψ: (α, β) 7→ (ϑ(β), ϑ(β)/α) is a bijection K∗ ×K ′ →
K ′ ×K∗.

Proof. If β 6= 1, then ϑ2(β) = β, ϑ(0) = −1 and ϑ(−1) = 0. Hence ϑ permutes K ′.
The mapping Ψ clearly sends K∗ ×K ′ to K ′ ×K∗ injectively. If (γ, δ) ∈ K ′ ×K∗,
then (γ, δ) = Ψ(γ/δ, ϑ−1(γ)). �

Lemma E.5. Assume char(K) 6= 2. The mappings

(a, d) 7→
(

2
a+ d

a− d
, 4

1

a− d

)
(A,B) 7→

(
A+ 2

B
,
A− 2

B

)
(E.4)

are mutually inverse if (a, d) ∈ K∗ ×K∗, a 6= d, and (A,B) ∈ K ×K∗, A 6= ±2.

Proof. Let A = 2(a+d)/(a−d) and B = 4/(a−d), where a, d ∈ K and a 6= d. Then
B 6= 0, Aa−Ad = 2a+2d, (A−2)a = (A+2)d, a = (4+Bd)/B, (A−2)(4+Bd) =
ABd+2Bd, −4−Bd+2A = Bd, d = (A−2)/B, 4+Bd = A+2 and a = (A+2)/B.
This establishes a bijection between the set of all (a, d) ∈ K ×K, a 6= d, and the
set K ×K∗. The rest is clear. �

Lemma E.6. Let char(K) 6= 2 and suppose that a, d ∈ K∗ are such that a 6= d.
Set A = 2(a + d)/(a − d) and B = 4/(a − d), and assume that α, β ∈ K are such
that α 6= 0 and β /∈ {0, 1,−1}. Put u = (1 + β)/(1− β) and v = u/α. Then

aα2 + β2 = 1 + dα2β2 ⇐⇒ Bv2 = u3 +Au2 + u.

Proof. Multiplying the equality Bv2 = u3 + Au2 + u by (1 − β)3, dividing it by
1 + β, and using (1 + β)(1− β) = 1− β2 yields an equivalent equation

B(1− β2)α−2 = (1 + β)2 +A(1− β2) + (1− β)2 = A(1− β2) + 2(1 + β2).

Hence (1− β2)(Bα−2 −A) = 2(1 + β2). Therefore

2(1− β2)(2α−2 − (a+ d)) = 2(a− d)(1 + β2),

which is the same as 2α−2 − (a+ d)− 2α−2β2 + β2d = a− d− dβ2 and as α−2 −
α−2β2 +β2d = a. The latter can be written as 1 +dα2β2 = aα2 +β2. Nothing else
is needed since none of the transformations changes the set of solutions because
a 6= 0 and β /∈ {−1, 0, 1} has been assumed. �

Theorem E.7. Let K be a field of characteristic 6= 2, and let a, d ∈ K∗ be such
that a 6= d. Set A = 2(a + d)/(a − d) and B = 4/(a − d). The twisted Edwards
curve E given by 1 + dx21x

2
2 = ax21 + x22 is birationally equivalent over K to the

Montgomery curve M given by Bx22 = x31 + Ax21 + x1. The rational map E → M
may be represented by ((1 + x2)/(1 − x2), (1 + x2)/x1(1 − x2)), and the inverse
rational map M → E by (x1/x2, (x1 − 1)/(x1 + 1)).

Proof. The described rational map E →M sends nearly all elements of E upon M
by Lemma E.6. The mapping is injective and its image covers nearly all elements
of M , by Lemma E.4. It is immediately clear that the described rational map
M → E behaves as an inverse mapping at each point where it is possible to define
composition of the both mappings. �

Corollary E.8. Let K be a field of characteristic 6= 2. For each twisted Edwards
curve E over K there exists a smooth Montgomery curve M that is birationally
equivalent over K to E, and for each smooth Montgomery curve M over K there
exists a twisted Edwards curve E that is birationally equivalent over K to M .

Proof. This immediately follows from Theorem E.7 and Lemma E.5. �
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E.3. Completed curves and various formulas. Formula (E.3) is not the only
way how the addition upon a twisted Edwards curve may be expressed. The so
called dual addition law

(α1, α2)⊕ (β1, β2) =

(
α1α2 + β1β2
α2β2 + aα1β1

,
α1α2 − β1β2
α1β2 − α2β1

)
(E.5)

is an alternative. It gives the same result as (E.3) whenever the denominators in
both (E.3) and (E.5) are nonzero. Obviously, (E.5) may never be used for doublings.
However, it is important both theoretically and practically, since it is a source of
various speed-ups. The speed-ups usually work differently for the doubling and for
the addition of distinct points (which is often called a generic addition). They are
used if the context does not require a closed formula that makes the computation
resistant to side channel attacks.

Let us observe that the dual addition law really works. If the denominators are
nonzero, then the equality

α1α2 + β1β2
α2β2 + aα1β1

=
α1β2 + α2β1

1 + dα1α2β1β2

holds if and only if

α1α2 + dα2
1α

2
2β1β2 + β1β2 + dα1α2β

2
1β

2
2

= α1α2(1 + dβ2
1β

2
2) + β1β2(1 + dα2

1α
2
2)

= α1α2(aβ2
1 + β2

2) + β1β2(aα2
1 + α2

2)

is equal to (α2β2 + aα1β1)(α1β2 + α2β1). That is clearly true.
The proof for the second coordinate may be done similarly.

When the addition is computed upon projective coordinates, i.e. upon the
zeros of aX2

1X
2
3 +X2

2X
2
3 = X4

3 +dX2
1X

2
2 , then it is possible to order the operations

in such a way that the addition of distinct point (the generic addition) costs 10M+
1S + 1a + 1d, where 1a + 1d refer to multiplications by a and d (which may be
chosen small), while the cost of doubling is 3M + 4S + 1a.

There have been also used inverted coordinates which correspond to the equa-
tion aX−21 X−23 +X−22 X−23 = X−43 +dX−21 X−22 , and thus also to aX2

2X
2
3 +X2

1X
2
3 =

X2
1X

2
2 +dX4

3 . In these coordinates the cost of generic addition is 9M+1S+1a+1d,
and the doubling costs 3M + 4S + 1a+ 1d.

We shall skip extended coordinates and turn directly to completed coor-
dinates. They use projective coordinates, but not in P2 or P3, but in P1 × P1.
The curve, say U , is formed by all ((α1 : α2), (β1 : β2)) for which the substitutions
(X1, X2) 7→ (α1, α2) and (Y1, Y2) 7→ (β1, β2) fulfil

aX2
1Y

2
2 + Y 2

1 X
2
2 = X2

2Y
2
2 + dX2

1Y
2
1 . (E.6)

Note that ((α1 : α2), (β1 : β2)) = ((µα1 : µα2), (νβ1 : νβ2)) for any µ, ν ∈ K̄∗. The
advantage of completed coordinates is that in this setting each K-rational point of
U corresponds to exactly one place of degree one in the function field K(E), where
E is the curve given by ax21 + x22 = 1 + dx21x

2
2. The points of E(K) may hence

be identified bijectively with the K-rational points of U . The affine points of E
obviously embed into U by (α, β) 7→ ((α : 1), (β : 1)). If d is a square in K, d = s2,
then ((1 : s), (1 : 0)) ∈ U and ((1 : −s), (1 : 0)) ∈ U express the two places at
infinity that sit in the singular projective point (0 : 1 : 0). If a/d is a square in K,
a/d = t2, then ((1 : 0), (t : 1)) and ((1 : 0), (−t : 1)) correspond to the places at
infinity at (1 : 0 : 0).
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The computation of

((α1 : α2), (β1 : β2))⊕ ((γ1 : γ2), (δ1 : δ2))

requires two formulas. One yields ((µ1 : µ2), (ν1 : ν2)), and the other ((µ′1 : µ′2), (ν′1 :
ν′2)). Since µ1µ

′
2 = µ′1µ2 and ν1ν

′
2 = ν′1ν2, both formulas yield the same result if

both of them belong to P1 × P1. However, it may happen that µ1 = µ2 = 0 or
ν1 = ν2 = 0. In such a case both (µ′1, µ

′
2) and (ν′1, ν

′
2) are distinct from (0, 0), and

((µ′1 : µ′2), (ν′1 : ν′2)) is the result of the addition. Similarly, if µ′1 = µ′2 = 0 or
ν′1 = ν′2 = 0, then the result is ((µ1 : µ2), (ν1 : ν2)). The formulas are as follows:

µ1 = α1β2γ2δ1 + α2β1γ1δ2, µ′1 = α1β1γ2δ2 + α2β2γ1δ1,

µ2 = α2β2γ2δ2 + dα1β1γ1δ1, µ′2 = aα1β2γ1δ2 + α2β1γ2δ1,

ν1 = α2β1γ2δ1 − aα1β2γ1δ2, ν′1 = α1β1γ2δ2 − α2β2γ1δ1,

ν2 = α2β2γ2δ2 − dα1β1γ1δ1, ν′2 = α1β2γ2δ1 − α2β1γ1δ2.

(E.7)

Let us now observe how these formulas correspond to formulas (E.3) and (E.5). Let
σ = (σ1, σ2) and τ = (τ1, τ2). By (E.3) and (E.5) σ ⊕ τ is equal to(

σ1τ2 + σ2τ1
1 + dσ1σ2τ1τ2

,
σ2τ2 − aσ1τ1
1− dσ1σ2τ1τ2

)
and

(
σ1σ2 + τ1τ2
σ2τ2 + aσ1τ1

,
σ1σ2 − τ1τ2
σ1τ2 − σ2τ1

)
,

respectively.
Insert σ, τ ∈ A2 into P1 × P1 by

(σ1, σ2) 7→ ((σ1 : 1), (σ2 : 1)) and (τ1, τ2) 7→ ((τ1 : 1), (τ2 : 1)).

Apply now (E.7) with α1 = σ1, β1 = σ2, γ1 = τ1, δ1 = τ2, and the other values
being equal to 1. We obtain

µ1 = σ1τ2 + σ2τ1, µ′1 = σ1σ2 + τ1τ2,

µ2 = 1 + dσ1σ2τ1τ2, µ′2 = aσ1τ1 + σ2τ2,

ν1 = σ2τ2 − aσ1τ1, ν′1 = σ1σ2 − τ1τ2,
ν2 = 1− dσ1σ2τ1τ2, ν′2 = σ1τ2 − σ2τ1.

We see that rules (E.7) can be interpreted as a transformation of the main addition
law (E.3) and the dual addition law (E.5) to projective points. However, in addition
to that, rules (E.7) may be applied to points and places at infinity. For example
consider ((1 : s), (1 : 0)) ⊕ ((1 : −s), (1 : 0)), where s2 = d. Then (µ1, µ2, ν1, ν2) =
(0, d,−d,−d) and (µ′1, µ

′
2, ν
′
1, ν
′
2) = (0,−d, 0, 0). Hence only the former quadruple

may be used to compute the result of the addition. The result is

((0 : d), (−d : −d)) = ((0 : 1), (1 : 1)), i.e., the affine point (0, 1).

Recall that (0, 1) is the neutral element of the group. Points ((1 : s), (1 : 0)) and
((1 : −s), (1 : 0)) are thus opposite each to other.
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G. Group structure and order, and examples over five elements

Let q > 1 be a prime power and E a (projective) elliptic curve over the finite
field Fq. Then

|q + 1− |E(Fq)|| ≤ 2
√
q. (G.1)

This is known as Hasse’s Theorem. As a convention, the integer q + 1− |E(Fq)| is
often denoted by t. Now, |E(Fq)| is the order of the group E(Fq) that is constructed
upon the set of K-rational points of E. When the number of points is the main
focus, then the notation #E(Fq) is often used. Hence

|E(Fq)| = #E(Fq) = q + 1− t and |t| ≤ 2
√
q. (G.2)

Note that if E is an affine Weierstraß curve, then t = q − r, where r is the number
of affine Fq-rational points.

Let now K be any field, and E an elliptic curve over K. Let L be a subfield of
K̄ such that L ⊇ K. Each K-rational point of E is also L-rational. It follows that
E(K) is a subgroup of E(L). In particular, E(K) ≤ E(K̄).

For each integer m ≥ 1 put

E[m] = {α ∈ E; [m]α = O}.

The symbol O is used to denote the neutral element of E(K) and E(K̄). That is
a generic notation that makes especially sense when the form of E is not specified.
(In Weierstraß curves the neutral element is denoted by∞, while in Edwards curves
(0, 1) has been chosen. Some authors use O also in these situations, while some use
0—which may be confusing.)

Note that E[m] is a subgroup of E(K̄). This follows from [m](α⊕ β) = [m]α⊕
[m]β and [m](	α) = 	([m]α).

Theorem G.1. Let K be a field of characteristic p.

• If p does not divide m ≥ 2, then E[m] ∼= Zm × Zm.
• If m ≥ 2 is a power of p > 0, then either E[m] ∼= Zm, or E[m] = O.

By basic properties of abelian groups,

E[m1m2] ∼= E[m1]× E[m2] whenever gcd(m1,m2) = 1.

Hence E[m] is known for any m ≥ 1. Indeed, if m = npr, p - n, then E[m] =
E[n]× E[pr], and Theorem G.1 can be used.

If H is a finite subgroup of E(K̄), then there exists m ≥ 1 such that H ≤ E[m].
(The choice of m = |H| is always possible.) Hence each finite subgroup of E(K̄)
embeds into Zm × Zm for some m ≥ 1.

Every subgroup of Zm × Zm is isomorphic to some Zm1 × Zm2 , where m1 | m2

and m2 | m. We have:

Corollary G.2. Let E be an elliptic curve over a field K, and let H be a finite
subgroup of E(K). Then there exist integers m2 ≥ m1 ≥ 1 such that m1 | m2 and
H ∼= Zm1 × Zm2 .

If E is an elliptic curve over Fq, then E(Fq) is finite. Hence Corollary G.2 applies
to E(Fq). However, a somewhat stronger result is true:

Theorem G.3. Let E be an elliptic curve over Fq. Then there exist integers
m2 ≥ m1 ≥ 1 such that m1 | m2, m1 | q − 1, and E(Fq) ∼= Zm1

× Zm2
.

There is a relationship between Theorem G.1 and the fact that complex elliptic
curves take the shape of a torus. A rigorous description is not easy. Intuitively,
think of the torus as being obtained from a rectangle by identifying the opposite
sides. Suppose that the rectangle is a square of size m, and equip it with equidistant
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lines parallel to the axes so that a lattice of m2 squares is formed. Think of the
lattice points as of elements of Zm × Zm.

Let us now turn to Hasse’s theorem and its consequences. Suppose that N =
|E(Fq)| is divisible by a prime ` > 4

√
q. Then there exists a unique c ≥ 1 such

that N = c` and this c can be easily established. This is because Hasse’s Theorem
stipulates that

q + 1− 2
√
q ≤ c` ≤ q + 1 + 2

√
q,

and there can be at most one multiple of ` in an interval of length ≤ 4
√
q.

The existence of a big prime ` that divides N = |E(Fq)| is essential for elliptic
curve cryptography. It is called a factor and c = N/` is known as cofactor. There
exist methods how to find E with a large factor and a small cofactor. They are
based on what is known as complex multiplication. The first step is to choose (d,D),
where d is square free, D = d if d ≡ 3 mod 4 and D = 4d otherwise, and to look for
x and y such that x2+dy2 = `. This method has much to do with algebraic number
theory, and uses the fact that −D is a discriminant of a primitive positive definite
quadratic form. A recommendation is to choose d such that the class number of
Q(
√
−D) is small, but not too small.

Cryptosystems in public use are constructed in such a way that E is a fixed
ingredient of the system (or possibly, there may be several options for the choice of
E). The choice of E is a substantial part of devising the cryptosystem, and takes
into account both the speed of computation and the resilience to possible attacks.

Another application of elliptic curves are factorization algorithms. An important
fact that works in their favour is a uniform distribution of #E(Fq) in the Hasse
interval

[q + 1− 2
√
q, q + 1 + 2

√
q].

If q is a prime, then not only for each N from the Hasse interval there exists a
Weierstraß curve with N projective points, but the number of such curves seems
to be, by experience, relatively independent of the choice of N .

In the remaining part of this section examples over Z5 are considered. We shall
make an explicit list of all Weierstraß curves, up to Z5-equivalence, and associate
them with Montgomery and twisted Edwards curves. We shall also list points
incident to these curves, and describe their group structure.

G.1. Weierstraß curves over Z5 and quadratic twists. For the sake of brevity
denote by Wa,b a smooth Weierstraß curve over Z5 given by y2 = x3 +ax+ b. Then
condition for smoothness is 4a3+27b2 6= 0, i.e. either a = b = 0, or 2b2a 6≡ 1 mod 5.
The latter is the same as b2a 6≡ 3 mod 5. If b2 = 1, then a 6= 3. If b2 = 4, then
a 6= 2. Hence we are considering (a, b) that do not belong to

{(0, 0), (2, 2), (2, 3), (3, 1), (3, 4)}.

Further on it is always assumed that (a, b) are not from such a set.

Let us now address the question when (a, b) and (ã, b̃) yield K-equivalent curves.

By (M.1) this happens if and only if ã = a and b̃b is a nonzero square. Hence we
may restrict our attention only to the case of b ∈ {0, 1, 2}.

Suppose for example that (a, b) = (1, 1). By direct computation, the set of affine
points is equal to

{(0, 1), (0, 4), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2), (4, 3)}.

This will be recorded as {(0,±1), (2,±1), (3,±1), (4,±2)}. Note that if β2 = α3 +
aα+ b, then (−β)2 = α3 + aα+ b as well.



32

The following table enumerates the affine points of all smooth curves Wa,b, b ∈
{0, 1, 2}. It also gives the order N = Na,b of the group Wa,b(Z5) and the parameter

t = 6−N . By Hasse’s Theorem, |t| ≤ [2
√

5] = 4.

a b Affine points of Wa,b N t
0 1 (0,±1), (2,±2), (4, 0) 6 0
0 2 (2, 0), (3,±2), (4,±1) 6 0
1 0 (0, 0), (2, 0), (3, 0) 4 +2
1 1 (0,±1), (2,±1), (3,±1), (4,±2) 9 −3
1 2 (1,±2), (4, 0) 4 +2
2 0 (0, 0) 2 +4
2 1 (0,±1), (1,±2), (3,±2) 7 −1
3 0 (0, 0), (1,±2), (2,±2), (3,±1), (4,±1) 10 −4
3 2 (1,±1), (2,±1) 5 +1
4 0 (0, 0), (1, 0), (2,±1), (3,±2), (4, 0) 8 −2
4 1 (0,±1), (1,±1), (3, 0), (4,±1) 8 −2
4 2 (3,±1) 3 +3

Observations:

(1) The Hasse interval is equal to [2, 10]. For each integer in the interval there
exists at least one (a, b) with N = Na,b.

(2) If Na,b ∈ {2, 3, 5, 6, 7, 10}, then Wa,b(Z5) is cyclic since every abelian group
of such an order is cyclic.

(3) Since 3 - 4, the group W1,1(Z5) is cyclic as well, by Theorem G.3.
(4) As will be explained, groups W4,0(Z5) and W4,1(Z5) are not isomorphic.

The former group is isomorphic to Z2 × Z4, while the latter group to Z8.
Similarly, W1,0(Z5) ∼= Z2 × Z2 and W1,2(Z5) ∼= Z4.

(5) Pairs (a, b) for which a 6= 0 and b 6= 0 may be grouped by two into
{(1, 1), (4, 2)}, {(2, 1), (3, 2)}, {(1, 2), (4, 1)}. The two pairs in each of these
sets share the value of ab2, and that is equal to 1, 2 and 4, respectively. If
{(a, b), (ã, b̃)} is one of these sets, then Na,b+Nã,b̃ = 12 = 2(q+1). In other
words, ta,b = −tã,b̃.

The explanation of the last phenomenon needs the notion of j-invariant. If C is a
smooth Weierstraß curve given by y2 = x3 + ax + b and char(K) 6= 2, 3, then the
j-invariant j(C) is defined as 1728̃(C), where ̃(C) = 4a3/(4a3 + 27b2).

Note that ̃(C) = 0 ⇔ a = 0, and ̃(C) = 1 ⇔ b = 0. Thus ̃(C) ∈ {0, 1} if and
only if ab = 0.

If ̃(C) /∈ {0, 1} and C̃ is given by y2 = x3 + ãx+ b̃, then ̃(C) = ̃(C̃) if and only

if b2/a3 = b̃2/ã3.

If this is true, and the equations y2 = x3 + ax+ b and y2 = x3 + ãx+ b̃ are not
K-equivalent, then C̃ is said to be a (quadratic) twist of C.

Let K be equal to R or to Fq, where q is not divisible by 2 or 3. If ̃(C) 6= 0, 1,

then there exists C̃ that is a quadratic twist of C. If ˜̃C is another quadratic twist

of C, then C̃ and ˜̃C are defined by K-equivalent Weierstraß equations.
If K = Fq, 2 - q and 3 - q, ̃(C) 6= 0, 1 and C̃ is a quadratic twist of C, then

|C(Fq)|+ |C̃(Fq)| = 2(q + 1). (G.3)

This confirms the observations above since if K = Z5 and ab 6= 0, then b2/a3 = b2a.

Suppose that ̃(C) = ̃(C̃) /∈ {0, 1}. To decide whether C̃ is a quadratic twist of

C is easy. If b̃b is a nonsquare, then C̃ is a quadratic twist. If b̃b is a square, then
C̃ and C are defined by K-equivalent Weierstraß equations.
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To prove the latter from (M.1) is not difficult. Since b2/a3 = b̃2/ã3 is assumed,

we have α3 = β2, where α = ã/a and β = b̃/b. Put γ = β/α. Then γ3 =

(a3b̃3)/(ã3b3) = b̃/b and γ2 = (a2b̃2)/(ã2b2) = ã/a. If b̃/b = γ3 is a square, then γ

is also a square. If γ = λ2, then b̃ = λ6b and ã = λ4a, as required by (M.1).

The relationship between quadratic twists C and C̃ turns into a birational equiv-
alence when the curves are considered over Fq2 . Indeed, b̃/b is always a square in

Fq2 . Therefore Fq2(C) ∼= Fq2(C̃) and C(Fq2) ∼= C̃(Fq2).
If ̃(C) ∈ {0, 1}, then extensions of Fq offer even more symmetries. This is one

of reasons why such curves are usually not considered to be safe for cryptographic
purposes.

Let us give a proof of (G.3):

Proof. As explained above, it may be assumed that C is given by y2 = x3 + ax+ b
and C̃ is given by y2 = x3 + γ2ax+ γ3b, where γ ∈ Fq is a nonsquare.

For each α ∈ Fq denote by s(α) the number of β ∈ Fq such that (α, β) ∈ C, and

by s̃(α) the number of β ∈ Fq such that (γα, β) ∈ C̃. Note that

|C(Fq)| = 1 +
∑

s(α) and |C̃(Fq)| = 1 +
∑

s̃(α).

To finish it thus suffices to verify that s(α)+ s̃(α) = 2 for each α ∈ Fq. Substituting
x = γα into x3 + γ2ax + γ3b yields γ3(α3 + bα + c). This means that α is a root
of x3 + ax + b if and only if γα is a root of x3 + γ2ax + γ3b. In such a case
(α, 0) ∈ C, (γα, 0) ∈ C̃ and s(α) = s̃(α) = 1. If α is not a root, then exactly one
of α3 + bα + c and γ3(α3 + bα + c) is a (nonzero) square in Fq. This results into
s(α) + s̃(α) = 2 + 0 = 0 + 2 = 2. �

G.2. Tangents and cyclic subgroups. Let C be a Weierstraß curve over K, and
let P be an affine point of C(K). Denote by tP the (affine) tangent of C at P . To
compute [2]P is practically equivalent to finding an intersection of tP with C. If
tP is parallel to the axis y, then [2]P =∞. If this is not the case and tP intersects
C at no affine point, then [3]P = ∞ and [2]P = 	P . The other only remaining
possibility is that tP intersects C in Q 6= P . In such a case t intersects C in no
other point, [2]P = 	Q, and Q = [−2]P .

Suppose we compute intersections of tangents with the curve for all K-rational
points. Since the opposite element is easy to find, this gives us the value of [2]P for
every P ∈ C(K). Hence we know [2k]P for each k ≥ 0. If the set {[2k]P ; k ≥ 1}
contains P , then P is of odd order, otherwise it is of even order. If P is of odd
order, and |C(K)| = 2r`, where ` is a prime ≡ 3, 5 mod 8, then the cyclic group
generated by P coincides with the set {[2k]P ; k ≥ 0} since 2 is a primitive element
of Z∗` .

Let us illustrate this by computing [2]P for elements of of the curve C given by
y2 = x3+3x. The tangent at P = (α, β) is given by the equation βy+(α2+1)x+µ =
0, where µ = −β2 − (α2 + 1)α. This is because ∂(y2 − x3 + 2x)/∂y = 2y and
∂(y2 − x3 + 2x)/∂x = 2(x2 + 1).

If λy+νx+µ gives tP , then−λy+νx+µ gives t	P . This is because	P = (α,−β).
It is thus needed to compute tP only in four cases, as shown in the ensuing table.
Recall that P = (α, β) is an involution if and only if β = 0. Thus [2](0, 0) = ∞,
and I = (0, 0) is the only involution of C(K).

P 	P tP and t	P [−2]P [2]P
(1, 2) (1, 3) ±y + x+ 2 (4, 4) (4, 1)
(2, 2) (2, 3) ±y − 2 (1, 2) (1, 3)
(3, 1) (3, 4) ±y − 1 (4, 1) (4, 4)
(4, 1) (4, 4) ±y + 2x+ 1 (1, 2) (1, 3)
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Elements [2]P form a subgroup of W3,0(Z5). The subgroup consists of ∞, (1, 2),
(1, 3), (4, 1) and (4, 4). Set Q = (1, 2). Then [2]Q = (4, 1), [4]Q = (1, 3) and
[3]Q = (4, 4).

Set now P = (2, 3). Then Q = [2]P , and we thus know each value of [2m]P ,
m ∈ Z. To get [2m + 1]P let us consider an argument of general nature that
can be used whenever I is the only involution of C(K) and multiples of Q form a
subgroup of C(K) that is of index two and of odd order. If an affine point X is not
a multiple of Q = [2]P , and [2]X = [2m]Q, then [2](X 	 [m]Q) =∞. This implies
X 	 [m]Q = I, and so X = [m]Q ⊕ I = [2m]P ⊕ I. Since multiples of Q form a
subgroup of odd order, 2[X] can always be expressed as an even multiple of Q.

In our case I = [5]P . If, say, X = (3, 1), then [2]X = (4, 4) = [3]Q = [8]Q, and
so (3, 1) = [5 + 8]P = [3]P . We have

P = (2, 3), [2]P = (1, 2), [3]P = (3, 1), [4]P = (4, 1), [5]P = (0, 0),

[6]P = (4, 4), [7]P = (3, 4), [8]P = (1, 3) and [9]P = (2, 2).

This describes the addition on W3,0 completely, as [n]P ⊕ [m]P = [n+m]P for all
n,m ∈ Z.

Let us now turn to W1,1.

P 	P tP and t	P [−2]P [2]P
(0, 1) (0, 4) ±y + 2x− 1 (4, 3) (4, 2)
(2, 1) (2, 4) ±y + x+ 2 (2, 1) (2, 4)
(3, 1) (3, 4) ±y + x+ 1 (0, 4) (0, 1)
(4, 2) (4, 3) ±y − x+ 2 (3, 1) (3, 4)

Put P = (0, 1). Then [2]P = (4, 2), [4]P = (3, 4), [8]P = (0, 4), [7]P = (4, 3) and
[5]P = (3, 1). The value of [3]P = (0, 1) ⊕ (4, 2) has to be computed by means of
(A.6) and (A.7).

We have λ = 4/1 = −1, 1 − 4 = 2 and [3]P = (2, 1). Therefore [6]P = (2, 4).
This completes the description of W1,1(Z5).

If C is a smooth Weierstraß curve given by y2 = f(x), then the involutions are
all elements (α, 0) ∈ C, and (α, 0) ∈ C if and only if f(α) = 0. Both W1,0(Z5)
and W1,4(Z5) contain three involutions. Hence they are isomorphic to Z2×Z2 and
Z4 × Z2, respectively. Groups W1,2(Z5) and W4,1(Z5) contain one involution each.
They are cyclic.

When the order of a group is small enough to represent each of its element in
computer memory, then computing with the group is easy since it suffices to choose
one or two generators, and to express each of the group elements by means of these
generators. For large orders this is not a viable way.

G.3. Montgomery curves over Z5 and the parameter B. By Proposition M.5,
a Weierstraß equation C given by y2 = x3+ax+b is K-equivalent to a Montgomery
curve if and only if there exists ζ ∈ K such that (1) ζ3+aζ+b = 0, i.e. (ζ, 0) ∈ C(K),
and (2) f ′(ζ) is a nonzero square in K.

Suppose that K = Fq, char(K) 6= 2, 3. If (1) holds, then |C(K)| cannot be a
prime > 2 since |C(K)| is even. If both (1) and (2) hold, then |C(K)| is divisible
by four—a fact that is not completely obvious, but may be proved with a bit of
effort. The ideal situation when the cofactor c is equal to 1 hence cannot occur.
This is not the only situation when there is a tradeoff between the efficiency of
computation and structural parameters.

Before turning to Z5 let us make a general observation. If 3 is a nonsquare in
K, then (2) cannot hold if a = 0. Indeed, in that case f ′(ζ) = 3ζ2 is a nonsquare
or a zero.
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As explained above, up to Z5-equivalence there are 12 smooth Weierstraß curves
over Z5. Eight of them are of even order. These are those for which condition (1)
may be fulfilled. To fulfill (2) the curves Wa,b with a = 0 may be put aside. This
leaves us with (A) (a, b) ∈ {(1, 0), (2, 0), (3, 0), (4, 0)} and (B) (a, b) ∈ {(1, 2), (4, 1)}.
If b = 0, then ζ = 0 is always a possibility. In that case f ′(ζ) = a should be a
square, and that restricts (A) to (1, 0) and (4, 0). In the former case ζ = ±2 needs
also be tested. However, 3 ·4+1 is not a square. In the latter case ζ = ±1 does not
supply a square as well. This means that (A) supplies two possibilities. Another
two possibilities come from (B).

Now, (x + ζ)3 + a(x + ζ) + b = x3 + 3ζx2 + f ′(ζ)x holds over any field K,
char(K) 6= 2, 3, cf. the proof of Proposition M.5. That makes y2 = x3 + ax+ b an
equation that is K-equivalent to y2 = x3 + 3ζx2 +B2x, where B2 = f ′(ζ). Setting
A = 3ζ/B gives the other parameter of the Montgomery curve.

The four cases over Z5 that were identified above yield the following parameters:

a b ζ 3ζ f ′(ζ) B A
1 0 0 0 1 1 0
4 0 0 0 4 2 0
1 2 4 2 4 2 1
4 1 3 4 1 1 4

Up to Z5-equivalence there are thus four smooth Montgomery curves over Z5:

M1,0 : y2 = x3 + x, M4,0 : 2y2 = x3 + x,

M1,2 : 2y2 = x3 + x2 + x, M4,1 : y2 = x3 + 4x2 + x.

Curves M1,0 and W1,0 are the same. For the other three curves the affine points are
listed below, using the rational mapping C →M , (α1, α2) 7→ ((α1 − ζ)/B, α2/B

2).

M4,0 : (0, 0), (1,±1), (2, 0), (3, 0), (4,±2);

M1,2 : (0, 0), (1,±2);

M4,1 : (0, 0), (1,±1), (2,±1), (3,±1).

The change (A,B) 7→ (−A,−B) gives Z5-equivalent equations 4y2 = x3 + x, 3y2 =
x3 + x, 3y2 = x3 + 4x2 + x and 4y2 = x3 + x2 + x. This still does not cover all
possible parameters for Montgomery curves that may occur over Z5. We shall now
explain how the remaining cases are Z5-equivalent to the already described cases.

Let us take a more general perspective. Let M be a Montgomery curve given by
(A,B) over K. If M̃ is given by (−A,−B), then (α, β) 7→ (−α, β) is a K-rational

mapping M ↔ M̃ .
If λ ∈ K∗ and M̃ is given by (A, λ2B), then (α, β) 7→ (α, λβ) is a K-rational

mapping M̃ →M .
The latter means that if ϑ ∈ K is a nonsquare such that each element of K

is equal to λ2 or ϑλ2 for some λ ∈ K, then each Montgomery curve over K is
K-equivalent to a Montgomery curve with parameters (A, 1) or (A, ϑ). This means
that if K = Fq, then the following is true:

Proposition G.4. Let q > 1 be a prime power not divisible by 2 and 3.

• If q ≡ 3 mod 4, then each Montgomery curve is Fq-equivalent to a curve
given by y2 = x3 +Ax2 + x, A ∈ Fq.
• If q ≡ 1 mod 4 and ϑ ∈ Fq is a nonsquare, then each Montgomery curve is
Fq-equivalent to a curve given by y2 = x3+Ax2+x, or by ϑy2 = x3+Ax2+x,
A ∈ Fq.

Proof. As explained above, each Montgomery curve is Fq-equivalent to y2 = x3 +
Ax2 + x or ϑy2 = x3 + Ax2 + x. If q ≡ 3 mod 4, then ϑ may be chosen as
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−1. If this is true, then the latter curve is Fq-equivalent to the curve given by
y2 = x3 −Ax2 + x. �

G.4. Edwards curves over Z5. Consider an Edwards curve y2 +x2 = 1 + dx2y2.
If d is a nonsquare, then the addition upon the curve may be described by a uniform
(i.e. closed) formula.

There exists a simple criterion that decides whether a smooth Weierstraß curve
C over K, char(K) 6= 2, 3 is K-equivalent to an Edwards curve with d a nonsquare.
This happens if and only if C(K) ∼= Z4 ×H, where |H| is odd.

This criterion is satisfied over Z5 if and only if C = W1,2 or C = W4,1. This
matches the fact that 2 and 3 are the only nonsquares modulo 5.

By Theorem E.7, an Edwards curve E with parameter d is birationally equivalent
to a Montgomery curve M with parameters A = 2(1+d)/(1−d) and B = 4/(1−d),
and the birational mapping M → E sends (α, β) to (α/β, (α−1)/(α+1)), assuming
β 6= 0 and α 6= −1.

Let E be defined over Z5, and let d = 2. Then A = 4 and B = 1. Thus
M = M4,1. This is the reason why E will be denoted by E4,1. Similarly, if d = 3,
then E is denoted by E1,2 since it is birationally equivalent to M1,2. Both E1,2 and
E4,1 contain points (0,±1) and (±1, 0). Using this fact and the birational mapping
described above we get:

d = 3 E1,2 : (0,±1), (±1, 0);

d = 2 E4,1 : (0,±1), (±1, 0), (±2, 2), (±2, 3);

Suppose now that d = 4. Then A = 0, B = 2. The Edwards curve is hence denoted
by E4,0. For this curve the completed coordinates have to be used if all Z5-rational
points are to be described by coordinates. Since ((2 : 1), (1 : 0)) fulfils (E.6), the
X ↔ Y symmetry yields the following list of points:

d = 4 E4,0 : ((±1 : 1), (0 : 1)), ((0 : 1), (±1, 1)), ((±2 : 1), (1 : 0)), ((1 : 0), (±2 : 1)).

There remains to consider only one class of Montgomery curves over Z5, and that is
the class represented my M1,0 = W1,0. By Theorem E.7 and Lemma E.6 this curve
is birationally equivalent to the twisted Edwards curve with (a, d) = (2, 3). The
curve is denoted by E1,0. Since we know that |E1,0(Z5)| = 4, it is easy to verify
that it consists of the following points:

(a, d) = (2, 3) E1,0 : ((0 : 1), (±1, 1)), ((1 : 0), (±2 : 1)).

Up to now four different twisted Edwards curves have been explicitly described.
Of course, that does not exhaust all possible parameters (a, d). However, results of
this section allow to find a birational equivalence over Z5 for each other possible
choice. As an example consider the case (a, d) = (2, 1). This is birationally equiv-
alent, by Theorem E.7, to a Montgomery curve with parameters (A,B) = (1, 4),
and thus to a Montgomery curve with parameters (A,B) = (1, 1). The equation
for this curve is y2 = x3 + x2 + x, which is Z5-equivalent to y2 = x3 − x − 1, and
thus also to y2 = x3 − x+ 1. That is W4,1.

While E4,1 consists of 8 affine points, the curve given by 2x2 + y2 = 1 + x2y2

contains exactly 6 affine points. These are (±2,±2) and (0,±1). The other two
points need the completed coordinates. The two points at infinity are ((±1 : 1), (1 :
0)).
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D. Division polynomials

Let us fix a field K of characteristic p 6= 2, 3, and let a, b ∈ K be such that
4a2 + 27b2 6= 0. Use E to denote the smooth Weierstraß curve given by y2 =
x3 + ax+ b. Recall that E[m] denotes the group of all P ∈ E such that [m]P =∞.
This group is a subgroup of E(K̄).

If p - m, then |E[m]| = m2, by Theorem G.1. There are thus m2−1 affine points
P = (α, β) for which [m]P =∞.

Note that (α, β) ∈ E[m] ⇔ (α,−β) ∈ E[m]. This is because (α,−β) = 	P .
Hence, if m is odd and p - m, then there are exactly (m2 − 1)/2 different values of
α that occur within the affine points (α, β) ∈ E that are of order that divides m.

If m is even, then we have to be a bit more cautious since in this case E[m]
contains involutions. There are three of them, and they are equal to (ζi, 0), where
x3 + ax+ b =

∏
(x− ζi), 1 ≤ i ≤ 3. Hence in this case, provided p - m, the number

of α is exactly ((m2 − 1)− 3)/2 + 3 = (m2 + 2)/2.

It is thus not surprising that there exist polynomials ψ̃m ∈ K[x] of respective

orders (m2 − 1)/2 and (m2 + 2)/2 such that (α, β) ∈ E[m]⇔ ψ̃m(α) = 0.

Of course, if m1 | m2, then E[m1] ≤ E[m2] and ψ̃m1
divides ψ̃m2

.

Therefore ψ̃2 divides ψ̃m if m is even. A point (α, β) ∈ E is an involution if and

only if α3 + aα+ b = 0. Hence ψ̃2 = x3 + ax+ b.
Another criterion for (α, β) being an involution is that β = 0. This criterion is

more easy to check. Because of that (and because of compatibility with the theory
of Weierstraß equations in characteristics 2 and 3) it is usual to use polynomials

ψm that are in defined in variables x and y, and not polynomials ψ̃m ∈ K[x] that
are defined only in x. The difference is small. In our case of y2 = x3 + ax + b,
char(K) 6= 2, 3, the polynomial ψ2 is defined as 2y. Furthermore, ψm = ψ̃m if m is

odd and ψm = 2yψ̃m/(x
3 + ax+ b) if m is even.

What is extremely important is the fact that the division polynomials ψm may
be defined recursively, e.g. in the following way:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6ax2 + 12bx− a2,
ψ4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1, where m ≥ 2, and

ψ2m = (ψm+2ψ
2
m−1 − ψm−2ψ2

m+1)ψm/2y, where m ≥ 3.

(D.1)

However, the definition of ψ2m+1 and ψ2m as given above is not correct without a
further adjustment. The formula upon the right always yields a polynomial in x
and y. In this polynomial there may be occurences of yi with i ≥ 2. If this happens
then yi is replaced by yi−2(x3 + ax + b) until the polynomial contains y in power
at most 1. The final polynomial is equal to some a(x) in the case of 2m + 1, and
to ya(x) in the case of 2m.

Every P = (α, β) ∈ E satisfies

[m]P =∞ ⇐⇒ ψm(α, β) = 0. (D.2)

This is true for all m ≥ 1, even for those with p | m. In addition to that the
division polynomials can be used to express [m]P for those P = (α, β) ∈ E that do
not belong to E[m]. If P /∈ E[m], m ≥ 2 and P /∈ E[2], then

[m]P =

(
α− ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ2

m+1

4βψ3
m

)
. (D.3)
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The above formula is written compactly, for the sake of clarity. For example the
numerator in the former fraction should be read as ψm−1(α, β)ψm+1(α, β).

None of (D.1) and (D.3) is easy to prove. Below we shall verify (D.1) for m ∈
{3, 4, 5}, and (D.3) for m = 2.

Instead of polynomials ψ̃m it is usual to work with polynomials f̄m ∈ K[x].
The meaning is nearly the same. The difference is that polynomials f̄m ignore the
involutions. They are defined so that if P = (α, β) ∈ E, then

P ∈ E[m] \ E[2] ⇐⇒ f̄m(α) = 0. (D.4)

The connection between f̄m and ψm is such that

f̄m =

{
ψm if m is odd, and

ψm/2y if m is even.
(D.5)

Thus f̄0 = 0, f̄1 = 1, f̄2 = 1, f̄3 = 3x4 + 6ax2 + 12bx− a2
and f̄4 = 2(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3).

For m ≥ 5 the polynomials f̄m may be defined recursively. While the formula
is straightforwardly derived from (D.1), it looks slightly more complicated. This is
because only the variable x is involved.

f̄2m+1 =

{
f̄m+2f̄

3
m − 16(x3 + ax+ b)2f̄m−1f̄

3
m+1 if m ≥ 3 is odd,

16(x3 + ax+ b)2f̄m+2f̄
3
m − f̄m−1f̄3m+1 if m ≥ 2 is even, and

f̄2m = f̄m(f̄m+2f̄
2
m−1 − f̄m−2f̄2m+1) for any m ≥ 3.

(D.6)

As may be guessed from the formulas above, division polynomials contain many
nonzero coefficients of large values. Hence for large q it is not possible to represent
them in computer memory if m is very big. Because of that the division polynomials
cannot be used, say, to directly verify the order of E(Fq). Nevertheless this order
can be determined by considering the behaviour of polynomials f̄m where m runs
through a set of not too large primes. This is how Schoof’s algorithm works.

Note that polynomials f̄m are not monic. In fact the leading coefficient of f̄m is
equal to m when m is odd, and to m/2 when m is even. This is important since
when m = p is the characteristic of the field, then deg(f̄m) < (m2 − 1)/2.

D.1. The division polynomial for order 3. Let P = (α, β) be a point upon
E, β 6= 0. The tangent of E at P can be expressed by the equation y = λx + µ
in which λ = (3α2 + a)/2β and µ = β − λα. The chord and tangent process, as
described in Section A, considers the intersections of the tangent and the curve E.

The first coordinate of such an intersection is a solution to the equation

(λx+ µ)2 = x3 + ax+ b. (D.7)

From the logic of the chord and tangent process it follows that α is always a double
root of the polynomial

x3 + ax+ b− (λx+ µ)2 = x3 − λ2x2 + (a− 2λµ)x+ b− µ2. (D.8)

This may also be seen immediately if we write (D.7) in the form

(λx+ µ− β)2 = x3 + ax+ b− 2β(λx+ µ) + β2

and observe that α is a root not only of the polynomials on both sides of this
equation, but also of their derivatives.

The point P is of order 3 if and only if the tangent intersects E in no other
point of E. This happens if and only if α is the triple root of the polynomial in
(D.8). We already know that the multiplicity of α is at least two. The multiplicity
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is hence equal to three if and only if λ2 = 3α. Substituting α3 + aα + b for β2 in
the denominator of λ2 turns the equation λ2 = 3α into

(3α2 + a)2 = 12α(α3 + aα+ b),

9α4 + 6aα2 + a2 = 12α4 + 12aα2 + 12bα and

3α4 + 6aα2 + 12bα− a2 = 0.

(D.9)

We have verified the formula for ψ3 = f̄3. A point (α, β) ∈ E is of order 3 if and
only if α is a root of 3x4 + 6ax2 + 12bx− a2.

Note that in this way we obtain all elements of E[3]. Only some of them are
K-rational. To get a K-rational point of E[3] the root α has to be from K and
α3 + aα+ b has to be a square in K.

D.2. The division polynomial for order 4. Suppose that P = (α, β) ∈ E is
not an involution. This means that β 6= 0. In such a case [4]P = ∞ if and only if
[2]P = (α′, β′) is an involution. This takes place if and only if β′ = 0.

By (A.6) and (A.7), β′ = λ(α − α′) − β, α′ = λ2 − 2α and λ = (3α2 + a)/2β.
This gives the following expression of β′ = λ(α− α′)− β:

λ(3α− λ2)− β = (2β)−3
(
(3α2 + a)(12αβ2 − (3α2 + a)2)− 8β4

)
. (D.10)

If β 6= 0, then β′ = 0 if and only if (2β)3β′ = 0. In order to express (2β)3β′ in
terms of α, observe that

12x(x3 + ax+ b)− (3x2 + a)2 = 3x4 + 6ax2 + 12bx− a2,
(3x2 + a)(3x4 + 6ax2 + 12bx− a2) = 9x6 + 21ax4 + 36bx3 + 3a2x2 + 12abx− a3,

and − 8(x3 + ax+ b)2 = −8x6 − 16ax4 − 16bx3 − 8a2x2 − 16abx− 8b2.

By summing up the latter two rows we obtain that

(3x2 + a)(12x(x3 + ax+ b)− (3x2 + a)2)− 8(x3 + ax+ b)2

= x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2 = f̄4(x)/2.

This verifies that

(3α2 + a)(12αβ2 − (3α2 + a)2)− 8β4 = f̄4(α)/2 for all (α, β) ∈ E. (D.11)

Hence if (α, β) ∈ E and β 6= 0, then (2β)3β′ = 0 if and only if f̄4(α) = 0.

D.3. Doubling. Assume m = 2 and suppose that P = (α, β) ∈ E is not an
involution. By (D.1), ψm−1(α, β) = 1, ψ2

m(α, β) = 4β2 and ψm+1(α, β) = 3α4 +
6α2 + 12bα− a2.

By (D.9) the latter is equal to 12αβ2 − (3α2 + a)2. Set λ = (3α2 + a)/2β. We
have

α−
(
ψ1ψ3

ψ2
2

)
(α, β) = α− 12α/4 + λ2 = λ2 − 2α.

This verifies that if m = 2, then the first coordinate of (D.3) corresponds to the
doubling formula (A.6) and (A.7).

By these formulas the second coordinate of [2]P is equal to λ(3α− λ2)− β, and
that can be expressed, by (D.10) and (D.11), as (2β)−3f̄4(α)/2. This agrees with
formula (D.3) since for m = 2 the second coordinate at the right hand side of (D.3)
is equal to

ψ4(α, β)/4βψ3
2(α, β) = 2βf̄4(α)/4β(2β)3 = f̄4(α)/16β3.
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D.4. Order and characteristic 5. As already mentioned, verifying formulas
(D.1) and (D.3) in their generality is technically demanding. Here it will not be
performed. However, we shall illustrate upon the case of m = 5 why ψm has much
smaller number of roots when char(K) divides m.

What we shall do first is to use (D.6) to get the general formula for f̄5, and then
we shall observe how dramatically f̄5 changes when it is considered in characteristic
5. By (D.6),

f̄5 = 16(x3 + ax+ b)2f̄4f̄
3
2 − f̄1f̄33 = 16(x3 + ax+ b)2f̄4 − f̄33 .

Since (x3 + ax+ b)2 = x6 + 2ax4 + 2bx3 + a2x2 + 2abx+ b2

and f̄4/2 = x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3

we may express (x3 + ax+ b)2f̄4/2 as

x12 +7ax10 +22bx9 +6a2x8 +48abx7 +(33b2−6a3)x6 +12a2bx5 +(21ab2−7a4)x4

+ (4b3 − 16a3b)x3 − (21b2a2 + a5)x2 − (20ab3 + 2a4b)x− 8b4 − a3b2,

while f̄33 = (3x4 + 6ax2 + 12bx− a2)3 is equal to

27x12 +162ax10 +324bx9 +297a2x8 +1296abx7 +(108a3 +1296b2)x6 +1080a2bx5

+ (2592ab2− 99a4)x4 + (1728b3− 432a3b)x3− (432a2b2− 18a5)x2 + 36a4bx− a6.

Therefore f̄5 = 16(x3 + ax+ b)2f̄4 − f̄33 is equal to

5x12 + 62ax10 + 380bx9 − 105a2x8 + 240abx7 − (240b2 + 300a3)x6

− 696a2bx5 − (1920ab2 + 125a4)x4 − (1600b3 + 80a3b)x3 − (240b2a2 + 50a5)x2

− (640ab3 + 100a4b)x− (256b4 + 32a3b2 − a6).

Modulo 5 this yields 2ax10 − a2bx5 − b4 − 2a3b2 + a6. Let r, s, t ∈ K̄ be such that
r5 = 2a, s5 = −a2b and t5 = −b4 − 2a3b2 + a6. If K is assumed, as usual, to be a
perfect field, then r, s, t ∈ K.

We see now that if char(K) = 5, then f̄5(x) = (rx2 + sx + t)5. This implies
|E[5]| = 5, provided a 6= 0. If a = 0, then E[5] is a trivial group.
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I. Ingredients of Schoof’s algorithm and its main idea

Let E be a projective elliptic curve over Fq. By Hasse’s theorem, |E(Fq)| =
q − t+ 1, where |t| ≤ 2

√
q. A related fact states that

ϕ2 	 [t]ϕ⊕ [q] = O, (I.1)

where ϕ stands for the Frobenius endomorphism of E.
To explain the meaning of (I.1) let us start with the meaning of ϕ. If P =

(α1 : α2 : α3) ∈ E, then ϕ(P ) = (αq1 : αq2 : αq3) ∈ E too. To see this consider
the equation, say w(X1, X2, X3) = 0, that determines E. If w(α1, α2, α3) = 0,
then 0 =

(
w(α1, α2, α3))q = w(αq1, α

q
2, α

q
3). For example if E is given by a smooth

Weierstraß curve y2 = x3 + ax + b and P = (α, β) ∈ E, then ϕ(P ) = (αq, βq).
Indeed β2q = (β2)q is equal to α3q +aαq + b = (α3 +aα+ b)q, as aq = a and bq = b.

The Frobenius endomorphism ϕ sends points of E upon the points of E. Equa-
tion (I.1) implicitly uses the fact that ϕ is also an endomorphism of the group
E(F̄q), i.e. that ϕ(P ⊕ Q) = ϕ(P ) ⊕ ϕ(Q) for all P,Q ∈ E. This can be proved
from the addition formulas. However, this is also a consequence of a more general
fact that is explained below when introducing the notion of isogeny.

Equation (I.1) thus means that if three endomorphisms of E(F̄q), i.e., P 7→
ϕ2(P ), P 7→ [−t](ϕ(P )) and P 7→ [q]P , are summed up, then the result is the
trivial endomorphism P 7→ O. This can also be expressed as

ϕ2(P )	 [t]ϕ(P )⊕ [q]P = O for every P ∈ E. (I.2)

In fact, the latter form occurs in literature more often than (I.1). However, it may
be argued that the expression via (I.1) is more instructive since it conveys better
the fact that we are dealing with a property of the group E(F̄q). This is important
since the structure of the group does not change under birational equivalence.

It is usual to call T 2 − tT + q the characteristic polynomial of the Frobenius
endomorphism and t the trace of the Frobenius endomorphism. Here T stands for
a variable and carries no specific meaning. Reasons for calling t a ‘trace’ will be
explained at the end of this section.

If P is a Fq-rational point of E, then ϕ(P ) = P . In such a case (I.2) states that
[P ]	[t]P⊕[q]P = [q−t+1]P is equal to O. This is true because P ∈ E(Fq) ≤ E(F̄q)
and |E(Fq)| = q − t+ 1.

I.1. Isogenies. To understand Schoof’s algorithm it is not completely necessary
to absorb the content of this subsection. Its purpose is to set the endomorphisms
occurring in (I.1) into a broader context. It explains the notion of morphism and
the notion of isogeny, and states some of the basic properties that morphisms and
isogenies fulfil. Morphisms and isogenies belong to central notions of elliptic curves
theory, and are used in quite a few algorithms.

How to transfer the notion of a rational map to projective curves, say C and D?
This question can be answered in several ways. Here we shall discuss, for the sake
of simplicity, only the situation when both C and D are smooth. In that case every
rational map from an affine part of C to an affine part of D may be extended to a
morphism C → D.

Suppose that C = VF and D = VG. A morphism ψ : C → D is represented by
A = (A1 : A2 : A3) if the polynomials A1, A2, A3 ∈ K[X1, X2, X3] are homogeneous
and of the same degree and, with only finitely many exceptions, for each α = (α1 :
α2 : α3) ∈ C at least one of A1(α), A2(α) and A3(α) is nonzero, and (A1(α) :
A2(α) : A3(α)) = ψ(α) ∈ D.

Triples (A1 : A2 : A3) and (B1 : B2 : B3) represent the same morphism if
AiBj − AjBi ∈ (F ) whenever 1 ≤ i < j ≤ 3. It can be proved that if α ∈ C, and
if ψ : C → D is a morphism, then there exists (A1 : A2 : A3) representing ψ such
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that at least one of Ai(α) is not zero. This means that a morphism ψ : C → D is
defined everywhere. This is the main theoretical advantage of morphisms when
compared to rational maps.

Any constant mapping C → D is a morphism. Because of that (and for other
reasons too) it is useful, while not necessary, to allow in the definition of morphism
that one or two of Ais are zero polynomials.

If C is an elliptic curve over K, then any K-rational point of C may be chosen
as the zero element O of the group C(K). In fact, C(K) is completely determined
by C and the choice of O. This is why some authors define an elliptic curve as a
pair (C,O). Here it is assumed that O is known from the context. By context we
understand, e.g., the convention that O =∞ for a Weierstraß curve, and O = (0, 1)
for a (twisted) Edwards curve. (Of course, choosing a different neutral element
induces different addition formulas.)

Let C and D be smooth elliptic curves over K, and let OC and OD be the neutral
elements. An isogeny C → D is any morphism C → D that sends OC upon OD. It
can be proved (and the proof is not completely easy) that each isogeny is also a
group homomorphism C(K)→ D(K). A related result states that if ψ1 and ψ2

are isogenies C → D, then ψ1 ⊕ψ2 is also an isogeny C → D. (The mapping
ψ1 ⊕ψ2 sends a point P ∈ C to ψ1(P )⊕ψ2(P ) ∈ D, the addition being performed
in D(K̄).) Note that if n > 0, then the mapping P 7→ [n]P can be expressed as
idC ⊕ · · · ⊕ idC , where idC occurs n times. To prove that P 7→ [n]P is an isogeny
thus does not require knowledge of formula (D.3).

An endomorphism of C is an isogeny C → C. This is seemingly inconsistent with
usual conventions since here an endomorphism of C is something different than a
morphism C → C. As an example of the latter take a point Q ∈ C. The translation
tQ : P 7→ P ⊕Q is a morphism C → C, but not an endomorphism (unless Q = O)
since it maps O upon Q.

Without going into details let us justify the convention that an endomorphism
of C has to be an isogeny by saying that endomorphisms of C are, in fact, assumed
to be endomorphisms of (C,O).

All endomorphisms of C form a ring. The ring is denoted by End(C). This ring
contains a subring that is isomorphic to Z and consists of all mappings [n] : P →
[n]P . If K = Fq, then End(C) also contains the Frobenius endomorphism ϕ.

As an example how to express a rational map (ρ1, ρ2) as a morphism represented
by (A1 : A2 : A3) let us consider the doubling upon a smooth Weierstraß curve C
given by y2 = x3 + ax + b. The strategy is always the same. Replace ri/si =
ri(x1, x2)/si(x1, x2) that represents ρi by Ri(X1, X2, X3)/Si(X1, X2, X3), where
deg(Ri) = deg(Si), gcd(Ri, Si) = 1 and Ri(X1, X2, 1)/Si(X1, X2, 1) = ri/si, and
then replace (R1/S1 : R2/S2 : 1) by (R1S/S1 : R2S/S2 : S) = (A1 : A2 : A3), where
S = lcm(S1, S2).

In our example we may proceed similarly as when expressing the doubling in
projective coordinates, as done at the end of Section A. We have

r1(x1, x2)

s1(x1, x2)
=

(3x21 + a)2 − 8x1x
2
2

4x22
,

r2(x1, x2)

s2(x1, x2)
=

(3x21 + a)(12x1x
2
2 − (3x21 + a)2)− 8x42
8x32

,

R1(X1, X2, X3) = (3X2
1 + aX2

3 )2 − 8X1X
2
2X3,

S1(X1, X2, X3) = 4X2
2X

2
3 ,

R2(X1, X2, X3) = (3X2
1 + aX2

3 )(12X1X
2
2X3 − (3X2

1 + aX2
3 )2)− 8X4

2X
2
3 , and

S2(X1, X2, X3) = 8X3
2X

3
3 = S(X1, X2, X3).
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This shows that the morphism P 7→ [2]P may be represented by (A1 : A2 : A3) =
(2X2X3R1(X1, X2, X3) : R2(X1, X2, X3) : 8X3

2X
3
3 ). Unlike the rational maps,

morphisms are defined everywhere. To illustrate this assume that P = (α, β) =
(α : β : 1) is an involution. This means that β = 0. In such a case (A1 : A2 : A3)
sends P upon (0 : −(3α2 + a)3 : 0) = (0 : 1 : 0) = ∞, as expected. (Recall that
3α2 + a 6= 0 since α is a simple root of x3 + ax+ b.)

I.2. The idea of Schoof’s algorithm. Schoof’s algorithm counts the number of
Fq-rational points upon an elliptic curve E. It will be assumed that E is given by
y2 = x3 + ax+ b and that q is divisible by neither 2 nor 3.

While we shall be concerned only with Weierstraß curves, the general framework
of Schoof’s algorithm is clearly applicable to other forms of elliptic curves. Nev-
ertheless, details of the algorithm are tightly bounded with the specific properties
of Weierstraß curves. The algorithm may be adapted to normal forms in charac-
teristics 2 and 3. However, the case of y2 = x3 + ax + b is technically the least
complicated.

Recall that the order of E(K) does not change under a birational equivalence.
Hence there is always a possibility of finding a Weierstraß curve that is birationally
equivalent to a given curve E.

The complexity of Schoof’s algorithm is O(log8 q) bit operations. This is an
upper estimate that has been confirmed by practical experience. Theoretical com-
plexity that uses different estimates for the complexity of multiplication is somewhat
lower.

More advanced counting algorithms by Elkies and Atkins develop Schoof’s ideas
further on. A complete understanding of the Schoof-Elkies-Atkins algorithm (the
SEA algorithm) requires knowledge of modular polynomials.

We shall now give an overall description of Schoof’s algorithm.
Denote by t the trace of the Frobenius endomorphism. By Hasse’s theorem,

|t| ≤ 2
√
q. If `1 < · · · < `r are primes such that

∏
`i > 4

√
q and t mod `i is

known for each i ∈ {1, . . . , r}, then the Chinese Remainder Theorem determines t
uniquely.

Primes `1, . . . , `r are taken to be the first r primes for which
∏
`i is big enough.

The main part of Schoof’s algorithm thus is to determine t` = t mod `, where ` is
a prime that is significantly smaller than q.

If ` = 2, then t` = 0 when E(K) contains an involution, and t` = 1 otherwise.
Thus t2 = 1 if and only if the polynomial x3 + ax + b is irreducible in K[x]. Note
that the latter happens if and only if x3 + ax+ b is coprime to xq − x.

For the rest we may thus assume that ` is an odd prime.
Let us denote by E[`]∗ the nonzero elements of E[`]. Hence each P ∈ E[`]∗ is of

order `. Each such P fulfils (I.2). Since [`]P = O, we have, in fact,

ϕ2(P )⊕ [q`]P = [t`]ϕ(P ), where q` = q mod `. (I.3)

This holds for every P ∈ E[`]∗. Hence if we find τ ∈ {0, 1, . . . , `− 1} such that for
some P ∈ E[`]∗

ϕ2(P )⊕ [q`]P = [τ ]ϕ(P ),

then there must be τ = t`. The algorithm proceeds by taking values of τ =
0, 1, . . . , (`−1)/2 one after another. For each such τ the algorithm tests the existence
of P ∈ E[`]∗ such that

ϕ2(P )⊕ [q`]P = [±τ ]ϕ(P ) (I.4)

until it succeeds.
Imagine for a while that all points P = (α, β) ∈ E fulfilling (I.4) were at our

disposal. In such a case the obvious step to do would be to test whether some of
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them belongs to E[`]. Of course, P ∈ E[`] if and only if ψ`(α, β) = 0, where ψ` is
the `th division polynomial.

However, the algorithm does not run by finding all points P that fulfil (I.4). That
would be difficult to achieve. What the algorithm does is to look for properties that
such a point P has to fulfil, and to refute the incorrect values of τ when such a
property is not fulfilled.

Suppose for a while that τ is fixed and that τ > 0. Let us compare symbolically
the first coordinate of ϕ2(P )⊕[q`]P (i.e., the x-coordinate) with the first coordinate
of [τ ]P . It turns out that there exists a polynomial hX = hX,τ ∈ Fq[x] such that a
point P = (α, β) ∈ E fulfils (I.4) if and only if hX(α) = 0. To be exact, the
“if and only if” relationship holds only for those P that do not belong to E[q`]

∗

or E[±τ ]∗. These exceptions cause no problem since the goal is to decide whether
such a P can be found in E[`]∗. This is true if and only if gcd(f̄`, hX) 6= 1.

Suppose thus that f̄` and hX have a common root, say α. This means that
t` ∈ {−τ, τ}, and that there exists β ∈ F̄q such that P = (α, β) belongs to E[`]∗

and the point ϕ2(P )⊕ [q`]P shares the first coordinate with [τ ](ϕ(P )). If these two
points share also the second coordinate, then they are equal. In such a case t` = τ .
If the points to not agree then t` = −τ . Hence the second coordinates either agree
for all P ∈ E[`]∗, or for none P ∈ E[`]∗.

It turns out that if the second coordinates are compared, then the value of β
may be cancelled out. Therefore there exists a polynomial hY such that hY (α) = 0
if and only if the second coordinates agree, for any P = (α, β) ∈ E[`]∗. If hY and
f̄` have a nontrivial common divisor, then t` = τ . Otherwise t` = −τ .

The construction of polynomials hX and hY can be regarded as the computa-
tional core of Schoof’s algorithm.

Because we are interested only in gcd(hX , f̄`), the polynomial hX may be actually
computed modulo f̄` all the time. This reduces the computational complexity. The
degree of f̄` is ≤ (`2 − 1)/2. The same reduction may be done for hY and other
polynomials.

Polynomials hX and hY are not computed when t` = 0, and also in some other
cases. What exactly are these exceptional cases and how they are handled is ex-
plained below.

While points P = (α, β) ∈ E[`] are considered throughout the description of the
algorithm, neither α nor β is ever explicitly computed. All needed tests are turned
into a polynomial form that involves α only, and we are asking if such a polynomial
has a root in E[`]∗. Since any P ∈ E \E[2] belongs to E[`] if and only if f̄`(α) = 0,
such a test may be performed by testing whether the polynomial and f̄` possess a
nontrivial common divisor.

I.3. When the first coordinates coincide. When starting to process an odd
prime `, the first step to be performed is to add ϕ2(P ) and [q`]P under the as-
sumption that P ∈ E[`]∗. But which formula to use? To decide that, the al-
gorithm finds out whether there exists P ∈ E[`]∗ such that ϕ2(P ) = [±q`]P . If
P = (α, β) ∈ E \ E[q`], then [q`](P ) can be expressed by means of (D.3). Since

ϕ2(P ) = (αq
2

, βq
2

) it is easy to see that the first coordinates of both ϕ2(P ) and
[q`](P ) depend only upon α. This yields a polynomial s̄` ∈ Fq[x] such that the
first coordinates agree if and only if s̄`(α) = 0. The existence of P ∈ E[`]∗ with
ϕ2(P ) = [±q`]P is thus equivalent to gcd(s̄`, f̄`) 6= 1. Let the latter be true.

Thus either ϕ2(P ) = [q`]P or ϕ2(P ) = [−q`]P . In the latter case t` = 0. To test
whether t` = 0 compare the second variables of ϕ2(P ) and [−q`]P . It turns out
that by using β2 = α3 + aα + b the value of β can be cancelled out from such an
equation, and we get a polynomial in x. Now, t` = 0 if and only if α is the root
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of this polynomial for each (α, β) ∈ E[`]∗, and that takes place if and only if this
polynomial is a multiple of f̄`.

If the polynomial is coprime to f̄`, then ϕ2(P ) = [q`]P for some (but necessarily
for all) P ∈ E[`]∗. This is a special case which differs from the cases considered
above. Historically it is important since this has been the departing point for Elkies
improvements.

The equality ϕ2(P ) = [q`]P does not yield immediately the value of t`. Replacing
ϕ2(P ) with [q`]P in (I.3) gives [2q`]P = [t`]ϕ(P ). Thus ϕ(P ) = [2q`/t`]P (the
fraction is evaluated modulo `) and

[q`]P = ϕ2(P ) = ϕ([2q`/t`]P ) = [(2q`/t`)
2]P.

Therefore [t2` ]P = [4q`]P and t2` ≡ 4q` mod `. This gives two possible values for
t`. Denote one of them by τ . We are asking whether [2q`]P = [τ ]ϕ(P ) for some
P ∈ E[`]∗. This can be written as ϕ(P ) = [γ]P , where γ = 2q`/τ . A test for that
can be devised similarly as the tests described earlier. If no such P exists, then
t` = −τ .

I.4. Comments on the SEA algorithm. In Schoof’s algorithm, when there is
computed the gcd of a polynomial and f̄`, the polynomial is in most cases either
coprime to f̄` or a multiple of f̄`. This is because the equation (I.3) either holds
for all P ∈ E[`]∗, or for none P ∈ E[`]∗. However the equation ϕ2(P ) = [q`]P
may hold only for some P ∈ E[`]∗, and not for all of them. What is behind this
phenomenon?

We have E[`] ∼= Z` × Z`. This means that (E[`],⊕) can be regarded as a vector
space of dimension 2 over Z`. The Frobenius endomorphism when restricted to
this vector space is a linear automorphism, i.e., a linear transformation with trivial
kernel. Denote this restriction by ψ. By Cayley-Hamilton Theorem, ψ2− tr(ψ)ψ+
det(ψ) = 0. It is now clear why t is called the trace of Frobenius endomorphism.

The polynomial T 2− t`T + q` may have a root in Z`. If it does have a root, then
` is called an Elkies prime. If the polynomial is irreducible over Z`, then ` is called
an Atkin prime.

Assume that ` is an Elkies prime. Then ψ possesses one or two eigenvalues. If λ
is such an eigenvalue, then there exists P ∈ E[`]∗ such that ϕ(P ) = [λ]P . We have
encountered such a situation above, with λ = 2q`/t`. That is a special case. In the
SEA algorithm an eigenvalue λ is determined for each Elkies prime `.

Since we do not know t` in advance we also do not know in advance whether ` is
an Elkies or Atkin prime. However, there exist methods using modular polynomials
that allow to establish this without actually computing t`. Furthermore there exist
methods involving modular polynomials and curves isogenous to E that allow,
for each Elkies prime, to perform the testing for λ more efficiently. Once λ is
known, we can use the existence of P ∈ E[`]∗ with ϕ(P ) = [λ]P to express (I.3)
as [λ2](P )⊕ [q`]P = [t`λ]P , which implies that t` = λ+ q`/λ (the fraction and the
addition is evaluated modulo `).

Another ingredient of the SEA algorithm is a method how to obtain, in case of
an Atkin prime, a relatively small set T` such that t` has to belong to T`.
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S. Schoof’s algorithm

Let it be assumed that q is a prime power not divisible by 2 and 3, and that
a, b ∈ Fq are such that y2 = x3 + ax+ b determines a smooth Weierstraß curve E.
Polynomials hX , hY and s̄` are assumed to have the same meaning as in Section I.
Here we shall explain how exactly they are computed.

Any polynomial in one variable that is computed in Schoof’s algorithm may be
immediately reduced modulo f̄`, where ` is the prime that is being processed. This
fact is not being reflected in the ensuing description of Schoof’s algorithm.

The description contains declarations of only those variables and procedures the
meaning of which is not clear from the context. It skips declarations of procedures
equalx, nonequalx, tyzero and eigen that are explained separately.

Procedure equalx is called when ϕ2(P ) and [q`]P agree in the first variable for
some P ∈ E[`]∗, while noequalx is used when E[`]∗ carries no such P .

Schoof’s algorithm:

INPUT: q, a and b that determine a Weierstraß curve E.
OUTPUT: The order of E(Fq).

VARIABLES: B is the product of primes.

M is the set of (`, t`).
r is the return value from nonequalx.

B = 2;
` = 2;
if (gcd(xq−x, x3+ax+b) = 1) then τ = 1 else τ = 0;
M = {(2, τ)};
while (B < 4

√
q) do:

` = nextprime(`);
B = B ∗ `;
if (gcd(s̄`, f̄`) 6= 1)

then τ = equalx(`)
else do:

τ = 0;
do:

τ = τ + 1;
r = nonequalx(`, τ);

until (r 6= 0);
if (r = −1) then τ = −τ ;

M = M ∪ {(`, τ)};
Recover t using the set M and the CRT.

Return q+1−t.

Suppose that m ≥ 2 and that P = (α, β) ∈ E. By (D.3) the first coordinate
of [m]P is equal to α − (ψm−1ψm+1ψ

−2
m )(α, β). Using the transformation of (D.5)

this yields α − f̄m−1(α)f̄m+1(α)/4β2f̄2m(α) if m is even, while for m odd we get
α− f̄m−1(α)f̄m+1(α)4β2/f̄2m(α). Therefore the first coordinate of [m]P , m ≥ 2, is
equal to

α− f̄m−1(α)f̄m+1(α)

4(α3 + aα+ b)f̄2m(α)
if m is even, and

α− 4(α3 + aα+ b)f̄m−1(α)f̄m+1(α)

f̄2m(α)
if m is odd.

(S.1)



47

Thus s̄`(x) = xq
2 − x if q` = 1,

s̄`(x) = 4(xq
2

−x)(x3+ax+b)f̄2q`(x) + f̄q`−1(x)f̄q`+1(x) if q` is even, and

s̄`(x) = (xq
2

−x)f̄2q`(x) + 4(x3+ax+b)f̄q`−1(x)f̄q`+1(x) if q` > 1 is odd.

From (D.3) there also may be derived a formula for the second coordinate of [m]P ,
m ≥ 2:

β
f̄m+2(α)f̄2m−1(α)− f̄m−2(α)f̄2m+1(α)

16(α3+aα+b)2f3m(α)
if m is even, and

β
f̄m+2(α)f̄2m−1(α)− f̄m−2(α)f̄2m+1(α)

f̄3m(α)
if m is odd.

(S.2)

The procedure equalx calls as a subprocedure the procedure tyzero(`,m) with
parameter m equal to q`. This procedure returns TRUE if there exists P = (α, β) ∈
E[`]∗ such that ϕ2(P ) = [−m]P , under the assumption that there exists P ∈ E[`]∗

for which the first coordinates of ϕ2(P ) and [−m]P agree.
Let us now describe the content of tyzero. The procedure is concerned with

the equality −βq2 = βrm(α)/sm(α), where rm, sm ∈ Fq[x] correspond to (S.2).
Thus rm = f̄m+2f̄

2
m−1 − f̄m−2f̄2m+1 if m is even, etc. Since β2 = α3+aα+b and

β 6= 0, the equality takes the form (α3+aα+b)(q
2−1)/2 = −rm(α)/sm(α). If t` = 0,

then each α ∈ E[`]∗ fulfils this equality. That takes place if and only if f̄` divides

sm(x)(x3+ax+b)(q
2−1)/2 + rm(x).

The other procedure called by equalx is called eigen. The parameters are ` and
m. The procedure returns TRUE if there exists P ∈ E[`]∗ such that ϕ(P ) = [m]P .
The procedure has two parts, the first part tests the first coordinate and produces
a polynomial g` ∈ Fq[x] that can be regarded as an input for the second part which
tests the second coordinate. In Schoof’s algorithm the first part may be skipped
if gcd(s̄`, f̄`) is remembered, since at this point of the algorithm that polynomial
coincides with g` (the exact meaning of g` is described below).

The first part is similar to the derivation of s̄`. The only difference is that the

term xq
2 − x is replaced by xq − x. Indeed, we are asking whether there exists

(α, β) ∈ E[`]∗ such that αq = α− (ψm−1ψm+1ψ
−2
m )(α, β), and derive a polynomial

in variable x for which α has to be a root. To see if there exists a root of such
a polynomial that really belongs to E[`]∗ we compute the gcd of this polynomial
with f̄`, and denote the gcd by g`. If g` = 1, then the procedure returns FALSE.
Assume that g` is nontrivial. There are some special situations when g` = f̄`
(e.g. if λ is a double root of the characteristic polynomial induced by the Frobenius
endomorphism). In the other situations the polynomial g` is of degree (` − 1)/2.
The points (α, β) ∈ E[`]∗ that fulfil g`(α) = 0 form a subgroup of E[`]∗. For the
second part of the test only these points are to be considered because these are the
points from which the eigenspace, if it exists, is constructed.

We are thus asking whether βq is equal to βrm(α)/sm(α), where rm and sm are
derived from (S.2) as in the procedure tyzero, and where g`(α) = 0. This is true
if g`(x) divides (x3+ax+b)(q−1)/2sm(x) − rm(x) (alternatively: if the latter two
polynomials possess a nontrivial common divisor).

PROCEDURE equalx(`)
INPUT: Prime ` for which there exists P ∈ E[`]∗ such that there agree

x-coordinates of ϕ2(P ) and [q`]P.
OUTPUT: The value of t`.

if (tyzero(`, q`) = TRUE)
return 0;

τ = sqrt(4q`) mod `;
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γ = 2q`/τ mod `;
if (eigen(`, γ) = TRUE)

return τ
else return −τ;

The description of procedure nonequalx is short too. In this case the computa-
tional content is delegated to the description of polynomials hX and hY (and not
to subroutines).

PROCEDURE nonequalx(`, τ)
INPUT: Prime ` such that the x-coordinates of ϕ2(P ) and [q`]P differ

for every P ∈ E[`]∗.
Positive τ < `/2 that is a candidate for t`.

OUTPUT: 0 if t` 6= ±τ, 1 if t` = τ, −1 if t` = −τ.
if (gcd(hX , f̄`) = 1) return 0;

if (gcd(hY , f̄`) = 1) return −1;
return 1;

When nonequalx is invoked, then it is already known that the generic addition
formula holds for ϕ2(P ) ⊕ [q`]P whenever P ∈ E[`]∗. Put m = q` to spare some
indices.

Write (S.1) and (S.2) in a compact form

[m](α, β) =

(
α− cm(α)

dm(α)
, β

rm(α)

sm(α)

)
. (S.3)

Note that this can be used even for m = 1 if we set d1(x) = r1(x) = s1(x) = 1 and

c1(x) = 0. With this notation ϕ2(P )⊕ [m]P = (αq
2

, βq
2

)⊕ [m](α, β) is equal to(
λ2 − αq

2

− α+
cm(α)

dm(α)
, λ

(
2αq

2

− λ2 + α− cm(α)

dm(α)

)
− βq

2

)
, where

λ =
βq

2 − βrm(α)/sm(α)

αq2 − α+ cm(α)/dm(α)
= β

dm(α)

sm(α)

(α3+aα+b)(q
2−1)/2sm(α)− rm(α)

dm(α)(αq2 − α) + cm(α)
.

Since in the first coordinate λ occurs only as a square, the occurrence of β may be
completely eliminated from the expression of the first coordinate of ϕ2(P )⊕ [m]P .

We have

[τ ]ϕ(P ) = ϕ([τ ]P ) =

(
αq − cτ (αq)

dτ (αq)
, βq

rτ (αq)

sτ (αq)

)
.

Therefore comparing the first coordinate of ϕ2(P )⊕ [m]P with αq − cτ (αq)/dτ (αq)
results into a polynomial condition on α. This is how polynomial hX is derived.
The first coordinates thus agree if and only if hX(α) = 0, assuming dm(α) 6= 0,
sm(α) 6= 0 and dτ (α) 6= 0. The latter assumptions cause no difficulty since an
element of E[q`]

∗ or E[τ ]∗ is never an element of E[`]∗.

Since β may be eliminated from λ2 and since βq
2

= β(α3 + aα+ b)(q
2−1)/2 and

βq = β(α3 + aα + b)(q−1)/2 we see that when comparing the second coordinate
of [τ ]ϕ(P ) with the second coordinate of ϕ2(P ) ⊕ [m]P the value of β may be
cancelled out. Therefore the equality of the second coordinates may be expressed
via a polynomial in α too. This is the polynomial hY .
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J. Normal forms, discriminant and j-invariant

Applications of elliptic curves that rely upon the difficulty of the discrete loga-
rithm problem use equations with as little parameters as possible for the sake of
efficiency when computing the group operation. The related cryptosystems have
shorter keys than similar cryptosystems that are based on the difficulty of number
factorization because the latter problem problem is easier to solve than the former
problem. The reason is the existence of the number field sieve. No similar algorithm
is known for elliptic curves. If the parameters of an elliptic curve are well chosen,
then there seem to be no other attacks on mathematical principles of the problem
but those that correspond to general (black box) attacks on the DLP. Of course,
quantum computers may change the landscape completely, and dramatically, in
particular if they will be widely available.

In the world of postquantum cryptography various concepts arise, and some of
them use elliptic curves in a completely different way. This requires concepts that
are different than the DLP.

As an example how the focus may change let us mention that in the advent
of elliptic curve cryptography curves in characteristic two were considered as an
attractive alternative to curves over primes since at that time no efficient methods
solving the DLP in small characteristics were known.

Normal forms, discriminant and j-invariant are used in such discussions freely.
They are considered as something that is well known and does not need an expla-
nation. The purpose of this section is to provide such an explanation for the case
of Weierstraß equations.

J.1. Normal forms. Recall that a Weierstraß curve is given by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (J.1)

We assume that the coefficients ai belong to a field K, and say that two Weierstraß
equations are linearly K-equivalent, if there exists an invertible linear substitution
over K that turns one such equation into a multiple of the other equation. For the
sake of brevity the term “linearly K-equivalent” is shortened to “K-equivalent.”

Let us first consider a somewhat weaker notion, in which only those substitutions
are considered that turn an equation into an equation in a way that never allows
for a possibility of a nontrivial multiple. Such substitutions necessarily have the
form of y 7→ y + sx + t and x 7→ x + r. Indeed, the substitution for x may not
include y with a nonzero coefficient since in a Weierstraß equation the unknown y
does not occur in the third power. Note that the substitution is invertible for any
choice of r, s, t ∈ K.

These substitutions turn (J.1) into

(y+sx+t)2+a1(x+r)(y+sx+t)+a3(y+sx+t) = (x+r)3+a2(x+r)2+a4(x+r)+a6,

and that can be expressed as

y2 + (2s+a1)xy + (2t+a1r+a3)y =

x3 + (3r+a2−s2−a1s)x2 + (3r2+2a2r+a4−2st−a1rs−a1t−a3s)x
+ (r3+a2r

2+a4r+a6−t2−a1rt−a3t). (J.2)

If char(K) 6= 2, 3, then there exists exactly one triple (r, s, t) ∈ K3 such that

2s+ a1 = 0.

3r + a2 − s2 − a1s = 0, and

2t+ a1r + a3 = 0.

(J.3)
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In other words, there exists exactly one triple (r, s, t) ∈ K3 that transforms (J.1)
into an equation y2 = x3 + ax+ b.

If char(K) = 3, then (J.2) takes the form

y2 + (a1−s)xy + (a1r+a3−t)y =

x3 + (a2−s2−a1s)x2 + (a4−a2r+st−a1rs−a1t−a3s)x
+ (r3+a2r

2+a4r+a6−t2−a1rt−a3t).

Setting s = a1 yields a2 − s2 − a1s = a2 + a21. The equations in which a2 + a21 = 0
are termed supersingular. By setting s = a1 and t = a1r+ a3 they are transformed
into

y2 = x3 + (a4 − a3a1)x+ (r3 + (a4−a3a1)r + (a23+a6)).

A supersingular curve in characteristic three may thus attain the form y2 = x3 +
ax + b, but with a much bigger degree of freedom in the choice of b. Obviously, if
K is algebraically closed, then r may be chosen in such a way that b vanishes.

If char(K) = 3 and a2 + a21 6= 0, the choice of s = a1 and t = a1r + a3 produces

y2 = x3 + (a2+a21)x2 + (a4−a1a3−(a2+a21)r)x

+ (r3+a2r
2+a4r+a6+a21r

2+a23−a1a3r).

In the nonsupersingular case there is thus only one choice of (r, s, t) ∈ K3 that
transforms (J.1) into a form y2 = x3 + ax2 + b, and in that case a = a2 + a21.

Suppose now that char(K) = 2. Then (J.1) attains the form

y2 + a1xy + (a1r+a3)y = x3 + (r+a2+s2+a1s)x
2

+ (r2+a4+a1rs+a1t+a3s)x+ (r3+a2r
2+a4r+a6+t2+a1rt+a3t).

A supersingular curve is obtained when a1 = 0. In such a case the choice r = a2+s2

yields

y2 + a3y = x3 + (s4+a3s+a
2
2+a4)x+ (s6+(a22+a4)s2+t2+a3t+a4a2+a6).

If K is algebraically closed, then s and t may be chosen in such a way that the
equation is K-equivalent to y2 + a3y = x3.

If a1 6= 0, then t and r may be chosen in such a way that there exists a c ∈ K
such that the equation is K-equivalent to

y2 + a1xy = x3 + (a3a
−1
1 +a2+s2+a1s)x

2 + c.

If K is algebraically closed, then s may be chosen in such a way that the form
y2 + a1xy = x3 + c is attained.

To sum up, for every Weierstraß equation there exist substitutions x 7→ x + r
and y 7→ y + sx+ t such that exactly one of the following forms is attained:

y2 = x3 + a4x+ a6, if char(K) 6= 2, 3,

y2 = x3 + a4x+ a6, where char(K) = 3,

y2 = x3 + a2x
2 + a6, where char(K) = 3 and a2 6= 0,

y2 + a3y = x3 + a4x+ a6, where char(K) = 2, and

y2 + a1xy = x3 + a2x
2 + a6, where char(K) = 2 and a 6= 0.

If char(K) = 2, then in the nonsupersingular case the coefficients a2 and a6 are
not determined uniquely and can be expressed by polynomials in one parameter,
while in the supersingular case the coefficients a4 and a6 polynomially depend
on two parameters. Similarly, the coefficient a6 is polynomially dependent in the
supersingular case of characteristic three.
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To determine if two Weierstraß equations are K-equivalent it is possible to pro-
ceed in two stages, firstly applying the substitutions x 7→ x+ r and y 7→ y + sx+ t
described above, and then substitutions x 7→ u−2x and y 7→ u−3y. If the first
stage produces an equation that is determined uniquely (as if char(K) 6= 2, 3), then
the second stage can be used straightforwardly to decide if the equations are K-
equivalent or not. However, if the first stage produces equations with coefficients
that may be parameterized, then all possible values of these parameters have to be
taken into account when deciding the K-equivalence.

If the substitutions x 7→ u−2x and y 7→ u−3y are applied to y2 = x3 + a4x+ a6,
then we get u−6y2 = u−6x3 + a4u

−2x+ a6, and that is

y2 = x3 + u4a4x+ u6a6. (J.4)

In the remaining three cases we obtain

y2 = x3 + u2a2x
2 + u6a6, where char(K) = 3,

y2 + a3u
3y = x3 + u4a4x+ u6a6, where char(K) = 2, and

y2 + a1uxy = x3 + u2a2x
2 + u6a6, where char(K) = 2 as well.

If char(K) = 2, then u is chosen so that u4a4 = 1 and u = a−11 , respectively. The
former choice is possible if K is perfect, which is usually assumed.

Standardly there are considered five normal forms:

(SH1) y2 = x3 + a4x+ a6 and char(K) /∈ {2, 3};
(SH2a) y2 + xy = x3 + a2x

2 + a6 and char(K) = 2;
(SH2b) y2 + a3y = x3 + a4x+ a6 and char(K) = 2;
(SH3a) y2 = x3 + a2x

2 + a6, a2 6= 0 and char(K) = 3; and
(SH3b) y2 = x3 + a4x+ a6 and char(K) = 3.

Only (SH2a) uses a nontrivial application of u, setting u = a−11 . If K is algebraically
closed, then there exists a choice of u and of the other parameters such that the
equation is transformed to one of the following forms:

(SH1) y2 = x3 + x+ a6 or y2 = x3 + 1 or y2 = x3;
(SH2a) y2 + xy = x3 + x2 + a6;
(SH2b) y2 + y = x3 or y2 = x3;
(SH3a) y2 = x3 + x2 + a6; and
(SH3b) y2 = x3 + x or y2 = x3.

The above equations are determined uniquely, with the exception of varying the
sign of a6 in (SH1), and replacing a6 by ηa6, η3 = 1, in (SH3a). Note that to get
one of these forms only a finite degree extension of K is necessary since what we
need is a split field for one or two polynomials over K.

There is another way how to decide whether two Weierstraß equations are K̄-
equivalent. If they are nonsingular (smooth), then this is true if and only if the have
the same j-invariant. To define j-invariant we first need to define the discriminant.

J.2. Discriminant. The discriminant D(a) of a polynomial =
∑
aix

i ∈ K[x] is
often used just for the purpose of deciding whether a has or does not have multiple
roots. Indeed, D(a) = 0 if and only if a posseses a multiple root, as implied by the
following well known result:

Proposition J.1. Assume that a =
∑
aix

i ∈ K[x], n = deg(a) ≥ 1. Then
D(a) = 0 if and only if a possesses a multiple root. If α1, . . . , αn are the roots of
a, then

D(a) = a2n−2n

∏
i<j

(αi − αj)2.
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However, this formula should not be considered as the definition of D(a) since
it refers to roots, not coefficients. The definition is based upon the more general
notion of resultant, and can be presented in this way:

The discriminant D(a) of a polynomial a =
∑
aix

i ∈ K[x], n = deg(a) ≥ 1, is
equal

(−1)(
n
2)a−1n det(R(a, a′), where

R(a, a′) =



an an−1 an−2 · · · 0 0 0
0 an an−1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · a1 a0 0
0 0 0 · · · a2 a1 a0
nan (n−1)an−1 (n−2)an−2 · · · 0 0 0

0 nan (n−1)an−1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 2a2 a1 0
0 0 0 · · · 3a3 2a2 a1


The discriminant of a cubic polynomial is thus given by

D(ax3 + bx2 + cx+ d) = b2c2 − 4ac3 − 4b3d+ 18abcd− 27a2d2 (J.5)

since

− a−1

∣∣∣∣∣∣∣∣∣∣
a b c d 0
0 a b c d
3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c

∣∣∣∣∣∣∣∣∣∣
= −a−1

∣∣∣∣∣∣∣∣∣∣
a b c d 0
0 a b c d
0 b 2c 3d 0
0 0 b 2c 3d
0 0 3a 2b c

∣∣∣∣∣∣∣∣∣∣
= −a−1

∣∣∣∣∣∣∣∣
a b c d
ab 2ca 3da 0
0 b 2c 3d
0 3a 2b c

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2ca− b2 3da− cb −db

b 2c 3d
3a 2b c

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
2ca 3da+ cb 2db
b 2c 3d

3a 2b c

∣∣∣∣∣∣ = −4ac3 − 27d2a2 − 9abcd− 4db3

+12abcd+ 3abcd+ c2b2 + 12abcd.

Suppose now that the Weierstraß equation is given by y2 = f(x), where f(x) =
x3 + a2x

2 + a4x+ a6. By (J.5),

D(f) = a22a
2
4 − 4a34 − 4a32a6 + 18a2a4a6 − 27a26.

For reasons that will become apparent later, define b2, b4 and b6 so that f(x) =
x3 + b2

4 x
2 + b4

2 x+ b6
4 . Thus b2 = 4a2, b4 = 2a4 and b6 = 4a6.

Obviously,

16D(f) = −8b34 + 9b2b4b6 − 27b26 + b22(b24 − b2b6)/4. (J.6)

The transformation of (J.3) cannot be used when char(K) = 3. However, the
standard completion of a quadratic equation to square works for any characteristic
different from two. This means to set s = −a1/2, t = −a3/2 and r = 0. With these
values the equation (J.3) turns into

y2 = x3 + (a2+a21/4)x2 + (a4+a1a3/2)x+ (a6+a23/4).
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Define now b2, b4 and b6 for any Weierstraß equation given by (J.1) in such a way
that the above equation gets the form y2 = x3 + b2

4 x
2 + b4

2 x+ b6
4 . Thus

b2 = 4a2+a21, b4 = 2a4+a1a3 and b6 = 4a6+a23. (J.7)

Define one more quantity, and that is b8, by

b8 = 4a2a6 + a2a
2
3 + a21a6 − a24 − a1a3a4. (J.8)

If char(K) 6= 2, then

b2b6 − b24
4

=
(4a2 + a21)(4a6 + a23)− (2a4 + a1a3)2

4

= 4a2a6 + a2a
2
3 + a21a6 − a24 − a1a3a4 = b8.

For a Weierstraß curve C given by (J.1) define the discriminant by

∆(C) = −8b34 + 9b2b4b6 − 27b26 − b22b8.
Comparing this definition with (J.6) shows that ∆(C) = 16D(f) if char(K) 6= 2
and C is given by y2 = f(x) = x3 + a2x

2 + a4x+ a6.

Theorem J.2. Let C be a Weierstraß curve given by equation (J.1). Then ∆(C) =
0 if and only if C is singular.

If C̃ is given by an equation obtained via transformations x 7→ x + r and y 7→
y + sx+ t, then ∆(C̃) = ∆(C).

If C̃ is given by an equation obtained via transformations x 7→ u−2x and y 7→
u−3y, then ∆(C̃) = u12∆(C).

This theorem may be proved by a direct verification. However, the polynomials
that have to be compared are very long. There exists a short proof that relies upon
the properties of the polynomial discriminants, upon the connection (J.6), and upon
the fact that in both (J.7) and (J.8) there appears no fraction. The latter may be
used for an argument that transfers the validity of the theorem in characteristic
zero to a positive characteristic via factorization.

The definition of the discriminant together with (J.7) and (J.8) can be used to
compute the discriminant value for the normal forms:

type b2 b4 b6 b8 ∆(C)
SH1 0 2a4 4a6 −a24 −64a34 − 432a26 = −8b34 − 27b26
SH2a 1 0 0 a6 a6 = b8
SH2b 0 0 a23 a24 a43 = b26
SH3a a2 0 a6 a2a6 −a32a6 = −b22b8
SH3b 0 −a4 a6 −a24 −a34 = −b34

J.3. The j-invariant. Substitutions x 7→ x+ r and y 7→ y+ sx+ t do not change
the value of b2i, 1 ≤ i ≤ 4. On the other hand the substitutions x 7→ u−2x and
y 7→ u−3y change b2i to u2ib2i. Because of that they also change c4 to u4c4 and u6
to u6c6 if

c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6.

Let C be a Weierstraß curve given by (J.1). Suppose that C is nonsingular, i.e. that
∆(C) 6= 0. The j-invariant of C is defined by

j(C) =
c34

∆(C)
.

From Theorem J.2 it follows that it C and C̃ are K-equivalent, then j(C) = j(C̃).
Furthermore,

j(C) = j(C̃) ⇐⇒ C and C̃ are K̄-equivalent.
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The value of the j-invariant for the normal forms is as follows:

type c4 c6 j(C)
SH1 −48a4 −864a6 6912a34/(4a

3
4 + 27a26) = c34/(c

3
4 − c26)

SH2a 1 1 1/a6
SH2b 0 0 0
SH3a a22 −a32 −a32/a6
SH3b 0 0 0

Let the curve C be defined over a field of characteristic p > 0. The curve is said to
be supersingular if C[p] = O (i.e., the group of C contains no element of order p).
Note that supersingular curves are nonsingular, by definition. If p ∈ {2, 3}, then C
is supersingular if and only if j(C) = 0.

Two smooth Weierstraß curves are birationally equivalent over K if and only if
they are given by K-equivalent Weierstraß equations. Since any elliptic curve E is
birationally equivalent to a Weierstraß curve, the j-invariant of E is well defined
too. In fact, j(E) is an invariant of the function field K̄(E).


