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Quasigroups, 3-nets and isotopy

Definition of a quasigroup. Let · be a binary operation upon a set Q. For every
a ∈ Q define La : Q→ Q and Ra : Q→ Q by

La : x 7→ ax and Ra : x 7→ xa.

Call La the left translation of the element a, and Ra the right translation.

The pair (Q, ·) is called a quasigroup if La and Ra permute Q for each a ∈ Q.
There are many alternative definitions of a quasigroup. We shall get to them later.

Operations of Q will be denoted by different symbols. For example + or ∗ or ◦.
The choice of · is implicit. Hence stating that Q is a quasigroup means that we are
considering the pair (Q, ·).

The application of · may be replaced by a juxtaposition. Thus xy is the same
as x · y. It is usual to assume that the juxtaposition binds more tightly than the
explicit use of an operation. E.g., xu · (yz · w) is the same as (x · u) · ((y · z) · w).

Multiplication table. Every binary operation may be represented by its multi-
plication (or operational) table. Both

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

and

∗ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

are multiplication tables of a quasigroup. The operation of the quasigroup upon
the left is equal to (x+ y) mod 3. The formula for the operation of the quasigroup
upon the right is x ∗ y ≡ −x − y mod 3. The latter quasigroup is idempotent, i.e.,
x ∗ x = x for every x ∈ Q.

Consider the quasigroup (Z3,+) and decompose it to the border of the table
(upon the left) and the body of the table (upon the right):

+ 0 1 2
0
1
2

0 1 2
1 2 0
2 0 1

Latin squares and quasigroups. Let S be a finite set, |S| = n. A latin square
over S is an n× n matrix A = (aij) such that for every i ∈ {1, . . . , n}

S = {ai1, . . . , ain} = {a1i, . . . , ani}.

If · is a binary operation upon set Q, then (Q, ·) is a quasigroup if and only if the
body of the operation table is a latin square.

Lines induced by a quasigroup. Let (Q, ·) be a quasigroup. Put P = Q × Q
and treat the set P as a set of points. Define Li, 1 ≤ i ≤ 3, as sets of parallel lines
(pencils) such that L1 = {ra; a ∈ Q}, L2 = {ca; a ∈ Q} and L3 = {sa; a ∈ Q},
where

ra = {(a, x); x ∈ Q} (the row of a)

ca = {(x, a); x ∈ Q} (the column of a)

sa = {(x, y) ∈ Q×Q; xy = a} (the transversal of a)
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Axioms of the 3-net. The system (P;L1,L2,L3) clearly fulfils the following ax-
ioms:

• ∀p ∈ P,∀i ∈ {1, 2, 3} ∃ ! ` ∈ Li such that p ∈ `;
• ∀i, j ∈ {1, 2, 3}, where i 6= j: (`i ∈ Li, `j ∈ Lj ⇒ |`i ∩ `j | = 1)

This can be put in words by saying that through each point there passes exactly one
line of a given pencil, and that two lines from different pencils intersect in exactly
one point.

Any system that fulfils the above two axioms is called a 3-net.

Theorem. Let (P;L1,L2,L3) be a 3-net. Then |L1| = |L2| = |L3| = |`| for any
` ∈

⋃
Li, i ∈ {1, 2, 3}.

Proof. Suppose that 1 ≤ i < j ≤ 3, `i ∈ Li, `j ∈ Lj and {1, 2, 3} = {i, j, k}. Map
`i upon `j in the following way: take q ∈ `i and consider the line `k ∈ Lk that
passes through q. This line intersects `j in a point, say q′. The mapping q 7→ q′ is
a bijection since through every point of `j there passes exactly one line of Lk.

The mapping q 7→ q′ thus also proves that |Lk| = |`i|. If `′i is another line from
Li, then |Lk| = |`′i| = |`j | by the same argument. �

Coordinatization. Let (P;L1,L2,L3) be a 3-net, and let Q be a set of the same
cardinality as Li, 1 ≤ i ≤ 3. Suppose that µi : Q → Li are bijections. If x, y ∈ Q
then there exists a unique line in L3 that passes through the intersection of µ1(x)
and µ2(y). This line is equal to some µ3(z). Hence there exists a binary operation
upon Q such that

xy = z ⇔ µ1(x) ∩ µ2(y) ∩ µ3(z) 6= ∅. (C)

The operation is a quasigroup since knowledge of y and z determines x uniquely,
and, similarly, knowledge of x and z determines y uniquely.

Let Q be a quasigroup and let µi : Q → Li be a bijection for each i ∈ {1, 2, 3}.
If (C) holds for all x, y, z ∈ Q, then (µ1, µ2, µ3) is called a coordinatization of the
3-net (P;L1,L2,L3).

Proposition. Let (P;L1,L2,L3) be a 3-net, and let Q and Q′ be quasigroups.
If µi : Q → Li and µ′i : Q

′ → Li are bijections such that both (µ1, µ2, µ3) and
(µ′1, µ

′
2, µ
′
3) are coordinatizations of the 3-net (P;L1,L2,L3), then the mappings

αi = (µ′i)
−1µi, 1 ≤ i ≤ 3, are bijections Q→ Q′ that fulfil

xy = z ⇔ α1(x)α2(y) = α3(z).

Proof. The mapping αi is a bijection since both µi : Q → Li and µ′i : Q
′ → Li

are bijections, i ∈ {1, 2, 3}. Let x, y, z ∈ Q be such that xy = z. Then µ1(x) ∩
µ2(y) ∩ µ3(z) 6= ∅, by the definition of coordinatization. This can be written as
µ′1α1(x) ∩ µ′2α2(y) ∩ µ′3α3(z) 6= ∅ since µ′iαi = µ′i(µ

′
i)
−1µi = µi. This means

that α1(x)α2(y) = α3(z) holds in Q2 since (µ′1, µ
′
2, µ
′
3) is a coordinatization of

(P;L1,L2,L3). �

Isotopy. Suppose that Q1 and Q2 are quasigroups. Suppose that α, β and γ are
bijections Q1 → Q2. The triple (α, β, γ) is called an isotopy Q1 → Q2 if and only
if

∀x, y, z ∈ Q : xy = z ⇔ α(x)β(y) = γ(z).

This can be also expressed as γ(xy) = α(x)β(y). The fact that α, β and γ are
bijections means that is suffices to verify xy = z ⇒ α(x)β(y) = γ(z). Indeed, if
α(x)β(y) = γ(z) and xy = z′, then α(x)β(y) = γ(z′) and z = z′.
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Quasigroups Q1 and Q2 are called isotopic if and only if there exists an isotopy
Q1 → Q2.

Theorem. Quasigroups Q1 and Q2 are isotopic if and only if there exists a 3-net
(P;L1,L2,L3) that may be coordinatized both by Q1 and Q2.

Proof. By the Proposition any two quasigroups coordinatizing the same 3-net are
isotopic. Suppose now that (α1, α2, α3) is an isotopy Q1 → Q2. We shall show that
both Q1 and Q2 may be used to coordinatize the 3-net of Q2 that consists of row
lines rb, column lines cb and symbol lines sb, b ∈ Q2. A coordinatization (ν1, ν2, ν3)
by Q2 is defined straightforwardly as ν1(b) = rb, ν2(b) = cb and ν3(b) = sb. The
triple (ν1, ν2, ν3) coordinatizes the 3-net since xy = z if and only if rx ∩ cy ∩ sz 6= ∅,
for any x, y, z ∈ Q2.

A coordinatization (λ1, λ2, λ3) by Q1 is defined so that λ1(a) = rα1(a), λ2(a) =
cα2(a) and λ3(a) = sα3(a), for each a ∈ Q1. Suppose that x, y, z ∈ Q1. By the
definition, λ1(x)∩λ2(y)∩λ3(z) is equal to rα1(x)∩cα2(y)∩sα3(z). This is nonempty
if and only if α1(x) · α2(y) = α3(z). Since (α1, α2, α3) is an isotopy Q1 → Q2,
the latter equality holds if and only if xy = z. Therefore xy = z if and only if
λ1(x)∩λ2(y)∩λ3(z) 6= ∅. This verifies that (λ1, λ2, λ3) is a coordinatization of the
3-net upon Q2 ×Q2. �

Elementary algebraic properties of isotopies. Suppose that (α, β, γ) : Q1 →
Q2 and (δ, ε, η) : Q2 → Q3 are isotopies. Then both (δα, εβ, ηγ) : Q1 → Q3 and
(α−1, β−1, γ−1) : Q2 → Q1 are isotopies.

To verify the former property consider x, y ∈ Q1. Then δα(x) · εβ(y) = η(α(x) ·
β(y)) = ηγ(xy). To verify the latter property consider x′, y′ ∈ Q2. There exist
unique x, y ∈ Q1 such that x′ = α(x) and y′ = β(y). Now, α−1(x′)β−1(y′) = xy =
γ−1γ(xy) = γ−1(α(x)β(y)) = γ−1(x′y′).

Note that α : Q1 → Q2 is an isomorphism if and only if (α, α, α) is an isotopism
Q1 → Q2.

Autotopies and the left nucleus. Let Q be a quasigroup. An isotopy Q → Q
is called an autotopy. All autotopies form a group. This group will be denoted by
Atp(Q).

Consider a ∈ Q and recall that La denotes the left translation of the element a.
The triple (La, idQ, La) is an isotopy if and only if La(x) · idQ(y) = La(xy) for all
x, y ∈ Q. This is the same as

a · xy = ax · y for all x, y ∈ Q.

All a ∈ Q that fulfil this conditions form a subset of Q that is called the left nucleus.
It is denoted by Nλ(Q). Elements of Nλ(Q) are those elements of Q that may be
described by saying that they ‘associate upon the left’.

Exercise. Let G be a group. Describe Atp(G).



Division, loops and principal isotopy

Local units. Let a be an element of a quasigroup Q. By the definition of quasi-
groups there exists exactly one b ∈ Q such that La(b) = a. Denote this b by fa.
The equality La(b) = a may be written as a = afa. The element fa is call the right
local unit of a.

Similarly define the left local unit ea such that eaa = a.

Associative triples. Let Q be a quasigroup. A triple (x, y, z) ∈ Q3 is said to be
associative if xy · z = x · yz.
Claim. The triple (ea, a, fa) is associative.

Proof. eaa · fa = afa = a = eaa = ea · afa.

Corollary. A quasigroup of finite order n contains at least n associative triples.

Definitions. A quasigroup Q is said to be idempotent if xx = x for every x ∈ Q.
The quasigroup Q is said to be maximally nonassociative if

∀x, y, z ∈ Q : xy · z = x · yz ⇔ x = y = z.

Exercise. Show that a maximally nonassociative quasigroup has to be idempotent.
Show that a quasigroup of finite order n contains exactly n associative triples if and
only if it is maximally nonassociative.

Existence of maximally nonassociative quasigroups. There are no maxi-
mally nonassociative quasigroups of orders 2, 3, 4, 5, 6, 7, 8, 10. Maximally nonasso-
ciative quasigroups of other orders n are known to exist for n = 9, n = 13 and for
all n ≥ 16 such that n /∈ {40, 42, 44, 56, 66, 77, 88, 90, 110} if n is not of the form 2p,
p a prime, or 2p1p2, p1 ≤ p2 < 2p1.

Challenge. Find a maximally nonassociative quasigroup of order 2p, p a prime.

Global units. An element e ∈ Q is a called a left unit if ea = e for all a ∈ Q.
Similarly define the right unit. There is at most one left unit and at most one right
unit. If there exist both of them, then they coincide since e = ef = f . An element
e ∈ Q is the left unit if and only if Le = idQ. The right unit f is characterized by
Rf = idQ. A both sided unit is also called the neutral element.

Loops and reduced latin squares. A quasigroup is called a loop if and only if
it possesses a neutral element. Suppose that Q is a loop with unit equal to 1. If
a, b ∈ Q are such that ab = b, then a = 1. This means that if a 6= 1, then La fixes
no point of Q. Similarly, if a 6= 1, then Ra is a fixed point free permutation.

Let Q be a loop on {1, 2, . . . , n} with 1 the unit. The body of the multiplication
table contains 1, 2, . . . , n in the first row (from the left to the right) and 1, 2, . . . , n
in the first column (from the top to the bottom). This is exactly the condition
when a latin square is called reduced.

Equational definition of quasigroups. Another way of saying that La is per-
mutation is to say that for any b ∈ Q there exists exactly one x ∈ Q such that
ax = b. This approach is used in another definition of a quasigroup which goes by
saying that for any a, b ∈ Q the equations

ax = b and ya = b have unique solutions x and y.

How to express these x and y? We have La(x) = b and Ra(y) = b. Thus x = L−1
a (b)

and y = R−1
a (b). By convention, set

L−1
a (b) = a\b (the left division), and

R−1
a (b) = b/a (the right division).

1
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What are the properties of the divisons when seen as binary operations? Since
LxL

−1
x (y) = y = L−1

x Lx(y) and RxR
−1
x (y) = y = R−1

x Rx(y) we get equations

x(x\y) = y = x\(xy) and (y/x)x = y = (yx)/x. (D)

Claim. If (Q, ·, \, /) fulfils (D), then (Q, ·) is a quasigroup.
Proof. To show that ax = b possesses a unique solution note first that a(a\b) = b,
and then observe that ax1 = ax2 implies x1 = a\(ax1) = a\(ax2) = x2.

We can thus regard (D) as an alternative definition of a quasigroup. This is a
definition in the sense of universal algebra. A quasigroup is an algebra (Q, ·, \, /)
where all operations are binary and the identities of (D) are satisfied.

This definition is usually called equational. The original definition may be called
combinatorial. The equational definition of loop involves a nullary operation 1, and
the laws x · 1 = x = 1 · x.
Claim. If Q is a quasigroup and x, y ∈ Q, then x/(y\x) = y = (x/y)\x. If Q is a
loop, then x/1 = x = 1\x.
Proof. Indeed, y = (y(y\x))/(y\x) = x/(y\x) and y = (x/y)\((x/y)y) = (x/y)\y.
If 1 is the unit, then x = (x · 1)/1 = x/1 and x = 1\(1 · x) = 1\x.

Subquasigroups and congruences. Passing between combinatorial and equa-
tional definition is usually done informally. However, it is worth remembering that
the equational definition exhibits in a clear fashion that subquasigroups have to be
closed under divisions and congruences of quasigroups have to be compatible with
divisions.

Exercises. (1) If Q is a finite quasigroup, then a subset closed under multiplication
is a subquasigroup and an equivalence compatible with · is a congruence of the
quasigroup.
(2) Let Q be a quasigroup. Show that an equivalence ∼ on Q is a congruence if
and only if for all x, y, z ∈ Q

x ∼ y ⇒ xz ∼ yz, zx ∼ zy, x/z ∼ y/z and z\x ∼ z\y.

Quasigroup words and reduction. Let X be a set of symbols. Denote by W (X)
the absolutely free algebra over X in signature (·, \, /). The elements of W (X) are
called quasigroup words. A quasigroup word is called reduced if it contains no
subword (subterm) of one of the forms

(st)/t, (s/t)t, t(t\s), t\(ts), t/(s\t) and (t/s)\t. (R)

For u, v ∈ W (X) write u→ v if u contains a subterm that has a form that occurs
in (R), and if v arises from u by replacing this term by s. The transitive closure
of → is denoted by →∗. A word is thus reduced if and only if it is terminal with
respect to →∗.

The reduction decreases the size of the term. Hence for each u ∈ W (X) there
exists a reduced v ∈W (X) such that u→∗ v. The following fact appears in various
contexts. Our proof will be hence brief.

Lemma. Let u,w1, w2 ∈ W (X) be such that u →∗ w1 and u →∗ w2. If both w1

and w2 are reduced, then w1 = w2.

Proof. Let u be the smallest counterexample. To get a contradiction it suffices to
show that if u → u1 and u → u2, then there exists u3 such that u1 →∗ u3 and
u2 →∗ u3. Indeed, if ui →∗ wi, i ∈ {1, 2, 3}, then w1 = w3 = w2 since both u1 and
u2 are smaller (with respect to the length of the quasigroup word) then u.

Let ui be obtained from u by replacing a subterm vi by si, where vi takes the
form (siti)/ti, (si/ti)ti, etc., as listed in (R), i ∈ {1, 2}. The situation is easy to
solve if v2 is a subterm of an occurence of t1. In that case make v2 → s2 in both
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occurence of t1 and then replace the changed subterm by s1. This means that
u2 →∗ u1. If v2 is a subterm of s1, then define u3 by making the replacement
v2 → s2 within the occurence of s1 in u2. Both u1 →∗ u3 and u2 →∗ u3 are then
true.

If there exists a subterm a1a2 of u such that v1 is a subterm of a1 and v2 a
subterm of a2, then the reductions commute and the existence of u3 is obvious.

What remains are situations that are usually called critical. These are the situa-
tions when one of the terms has a root within the other term. Suppose that v2 sits
within v1. We shall consider only the case when v1 = (s1t1)/t1. The other cases
are similar. The only nontrivial possibility in (R) with / at the top is t2/(s2\t2).
However t2 = s1t1 and t1 = s2\s2 is impossible. Therefore there must be v2 = s1t1.
If s1t1 = (s2/t2)t2, then t1 = t2 and both replacements change v1 to s1 = s2/t1.
Thus u1 = u2 and nothing has to be constructed.

If s1t1 = t2(t2\s2), then s1 = t2 and t1 = t2\s2. Thus

v1 → s1 = t2 and v1 = v2/t1 → s2/t1 = s2/(t2\s2)→ t2.

The latter replacement shows that u2 → u1. �

Denote by ≡ the least congruence of W (X) such that W (X)/≡ is a quasigroup.
This is a free quasigroup with basis {[x]≡; x ∈ X}. Denote by F (X) the subset of
W (X) that is formed by all reduced words. By the Lemma for each w ∈ W (X)
there exists a unique reduced word ρ(w) such that w →∗ ρ(w). If u → v, then
ρ(u) = ρ(v). From that it follows that u ≡ v if and only if ρ(u) = ρ(v). Hence
defining operations by

u · v = ρ(uv), u/v = ρ(u/v) and u\v = ρ(u\v)

makes F (X) a free quasigroup with basis X.
To get a free loop consider loop words in ·, \, / and 1, and add reduction rules

that change each of s/1, s · 1, 1 · s and 1\s to s.

Loops from quasigroups. Let Q be a quasigroup, and let e and f be elements of
Q. Set x ∗ y = x/f · e\y, for all x, y ∈ Q. Translations of (Q, ·) are denoted by Lx
and Rx, while translations of (Q, ∗) will be denoted by λx and ρx, x ∈ Q. Clearly,

λx = Lx/fL
−1
e and ρy = Re\yR

−1
f ,

for each x, y ∈ Q. Note that x ∗ (ef) = x/f · f = x and (ef) ∗ y = e · e\y = y. This
means that (Q, ∗) is a loop, and ef is the neutral element of this loop.

Principal isotopes. An isotopy of quasigroups (α, β, γ) : Q1 → Q2 is called prin-
cipal if the underlying sets of Q1 and Q2 coincide and γ = idQ1

. Call Q2 a principal
isotope of Q1 if there exists a principal isotopy Q1 → Q2.

Let (Q, ∗) be a principal isotope of (Q, ·). There thus exist α, β ∈ Sym(Q) such
that x ∗ y = α(x)β(y). The translations of (Q, ·) are denoted by Lx and Rx, and
those of (Q, ∗) by λx and ρx, x ∈ Q. Clearly,

λx = Lα(x)β and ρy = Rβ(y)α,

for each x, y ∈ Q. If (Q, ∗) is a loop, then there must exist x ∈ Q such that
λx = ρx = idQ. If this true, then there exist e, f ∈ Q such that β = L−1

e and

α = R−1
f . If such e, f exist, then x ∗ y = α(x)β(y) = x/f · e\y. This is a loop, as

observed above. We have proved the following statement:

Proposition 1. Let (Q, ·) be a quasigroup. A principal isotope (Q, ∗) of (Q, ·) is
a loop if and only if there exist e, f ∈ Q such that x ∗ y = x/f · e\y for all x, y ∈ Q.
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Quasigroups induced by isomorphism and isotopy. Suppose that Q is a
quasigroup and S a set. Suppose also that there exists a bijection γ : Q→ S. Then
there is only one way how to define a quasigroup operation upon S, and that is by
st = γ(γ−1(s)γ−1(t)) for all s, t ∈ Q. The quasigroup (S, ·) is called isomorphically
induced by γ.

Similarly, if α, β, γ are bijections Q → S, then st = γ(α−1(s)β−1(t)) yields the
only quasigroup upon S for which (α, β, γ) is an isotopy (Q, ·)→ (S, ·). This is the
quasigroup isotopically induced by (α, β, γ).

Loops isotopic to a quasigroup. Suppose that (α, β, γ) is an isotopy of quasi-
groups Q1 → Q2. Let (Q1, ∗) be the quasigroup isomorphically induced by the
bijection γ−1 : Q2 → Q1. Isotopies may be composed. Hence

(γ−1, γ−1, γ−1)(α, β, γ) = (γ−1α, γ−1β, idQ1)

is a principal isotopy (Q1, ·)→ (Q1, ∗), while (Q1, ∗) ∼= (Q2, ·). This gives immedi-
ately:

Proposition 2. Each quasigroup isotopic to a quasigroup Q is isomorphic to a
principal isotope of Q.

Proposition 3. Let (Q, ·, \, /) be a quasigroup. For each loop L isotopic to Q
there exist e, f ∈ Q such that L is isomorphic to a loop on Q with multiplication
x ∗ y = x/f · e\y, for all x, y ∈ Q.

Proof. By the preceding statement every loop isotopic to Q is isomorphic to a
principal isotope of Q. By Proposition 1, a principal isotope that is a loop has to
be of the form x/f · e\y. �

Exercise. Prove directly that each loop isotopic to a group G is isomorphic to G.

Notational remark: If H is a subgroup of a group G, then it is usual to write H = 1
if H is the trivial subgroup, that is if |H| = 1. Thus, if G is a permutation group
on Ω, H = 1 means that H = {idΩ}.

Regular groups. A permutation group on Ω is, by definition, every subgroup of
Sym(Ω). A permutation group H ≤ Sym(Ω) is transitive if for all α, β ∈ Ω there
exists h ∈ H such that h(α) = β. Note that it suffices if the former holds for a
single α ∈ Ω. In a transitive group all stabilizers Hα = {h ∈ H; h(α) = α} are
conjugate one to another. Hence if Hα = 1 for one α ∈ Ω, then Hα = 1 for all
α ∈ Ω.

The permutation group H ≤ Sym(Ω) is called regular if it is transitive, and if
Hα = 1, for any α ∈ Ω. Note that the latter condition may also be expressed as
h = idΩ whenever h ∈ H fixes a point.

Let G be a group. Then {Lx; x ∈ G} is a regular permutation group on G. It is
called the left regular representation of G.

Each regular permutation group may be interpreted as a left regular represen-
tation of an abstract group. To see this consider a regular group G upon Ω. Fix a
point ω ∈ Ω and identify it with the unit element 1 of an abstract group (Ω, ·) that
will be now described. For each α ∈ Ω denote by ψα the element of G that sends
1 = ω upon α. Since G is regular, the permutation ψα is determined by α uniquely.
Furthermore, G = {ψα; α ∈ Ω}. Put α ·β = ψα(β). Since G is a group, ψαψβ = ψη
for some η ∈ Ω. Now, η = ψη(1) = ψαψβ(1) = ψα(β) = α · β. Hence ψαψβ = ψαβ .
Applying this identity upon γ ∈ Ω gives the associative law α · βγ = αβ · γ. As is
easy to see, ψ−1

α = ψα−1 for each α ∈ Ω. The mappings ψα coincide with the left
translations of (Ω, ·).
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Note that denoting the neutral element by 1 is a matter of convention. If G is
abelian, then it may be more natural to denote the neutral element by 0 and the
binary operation by +.

Loops with translations closed under composition. A loop Q is said to have
left translations closed under composition if

∀x, y ∈ Q ∃z ∈ Q such that LxLy = Lz.

If this is true, then xy = LxLy(1) = Lz(1) = z, implying LxLy = Lxy for all x, y ∈
Q. But that is equivalent to associativity since LxLy(v) = x·yv and Lxy(v) = xy ·v.
This proves that a loop with left translations closed under composition has to be a
group.

Albert’s Theorem. A loop isotopic to a group G is isomorphic to G.

Proof. By Proposition 3 only the principal isotopes x/f · e\y may be considered.
The set of the left translations of such an isotope is equal to

{Lx/fL−1
e ; x ∈ G} = {LxL−1

e ; x ∈ G} = {Lxe−1 ; x ∈ G} = {Lx; x ∈ G}.
The set of left translations of the principal isotope thus coincides with that of G.
The left translations are closed under composition. The principal isotope thus must
be a group. The both groups are isomorphic since they have coinciding left regular
representations. �



Loops of small orders, semisymmetry and paratopy

It is immediate to observe that each loop of order 2 is isomorphic to (Z2,+) and
that each loop of order 3 is isomorphic to (Z3,+).

Theorem. Each loop of order ≤ 4 is a group.

Proof. What remains is the order 4. Let Q be a 4-element loop with unit e. Suppose
first that x2 = e for all x ∈ Q. Assume that Q = {0, 1, 2, 3} and e = 0. The table
upon the left may be completed in only one way to a latin square (on the right).
The multiplication table upon the right describes a group that is isomorphic to
(Z2 × Z2,+).

0 1 2 3
0 0 1 2 3
1 1 0
2 2 0
3 3 0

→

0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Assume now that there exists x 6= e such that x2 = y 6= e. The elements e, x and
y are pairwise distinct. Assume that e = 0, x = 1, y = 2 and verify the completion
to (Z4,+) below (the first cell to fill is (3, 3)).

0 1 2 3
0 0 1 2 3
1 1 2
2 2
3 3

→

0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

�

Lemma 1. Let Q be a loop of order 5. If the mapping x 7→ x2 is a permutation of
Q, then Q ∼= (Z5,+).

Proof. Put Q1 = Q\{1}. Then x 7→ x2 permutes Q1 and this permutations lacks a
fixed point. The permutation has one or two cycles. In the former case let us assume
that the permutation is equal to (a b c d). In the latter case let it be (a b)(c d). In
the former case there is only one completion to a latin square (first positions to fill
are (a, d) and (d, a)):

1 a b c d
1 1 a b c d
a a b
b b c
c c d
d d a

→

1 a b c d
1 1 a b c d
a a b d 1 c
b b d c a 1
c c 1 a d b
d d c 1 b a

Let us now consider the case of (a b)(c d).

1 a b c d
1 1 a b c d
a a b
b b a
c c d
d d c

The table upon the right cannot be com-
pleted to a latin square since the only po-
sitions to place the four entries a and b
into rows c and d are (c, d) and (d, c).

This shows that up to isomorphism there is only one loop Q of order 5 such that
x 7→ x2 permutes Q. The group (Z5,+) fulfils this requirement. �

1
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Lemma 2. Up to isomorphism there is only one loop Q of order 5 in which x 7→ x2

does not permute Q and in which there exists no x 6= 1 such that x2 = 1.

Proof. Let Q be such a loop. There exist a, b, s ∈ Q such that a2 = b2 = s 6= 1
and a 6= b. Therefore there exists c ∈ Q such that Q = {1, a, b, c, s}. This yields a
partial table in which the only row that does not carry s is the row c and the only
column that does not carry s is the column c. Hence c2 = s.

There has to be s2 ∈ {a, b, c}. Let us assume that s2 = a. If as = 1, then (a, b)
and (a, c) are the only unfilled entries in the row a, implying ab = c and ac = b.
That means {b, c} ∩ {sb, sc} = ∅. Hence sx ∈ {b, c} may happen if and only if
x = a. That is impossible. Therefore as 6= 1.

There thus exists x ∈ {b, c} such that ax = 1. With no loss of generality it may
be assumed that x = b. The rest can be completed uniquely, see below:

1 a b c s
1 1 a b c s
a a s 1
b b s
c c s
s s a

→

1 a b c s
1 1 a b c s
a a s 1 b c
b b c s a 1
c c 1 a s b
s s b c 1 a

(L5.1)

�

To finish the classification of loops of order 5 it may be thus assumed that there
exists a ∈ Q such that a2 = 1 and a 6= 1. Put X = Q \ {1, a}. Since both La and
Ra switch 1 and a, both of them act upon X. Denote La � X by σ and Ra � X by
σ̄. With no loss of generality it may be assumed that X = {b, c, d} and σ = (b c d).
Note that σ̄ is either σ or σ−1.

Lemma 3. Up to isomorphism there is only one loop Q of order 5 in which there
exist at least three x ∈ Q such that x2 = 1.

Proof. This follows from the comments above and from the unique completion
below.

1 a b c d
1 1 a b c d
a a 1 c d b
b b 1
c c
d d

→

1 a b c d
1 1 a b c d
a a 1 c d b
b b d 1 a c
c c b d 1 a
d d c a b 1

(L5.2)

�

Lemma 4. Let Q be a loop of order 5 in which there exists exactly one a ∈ Q
with a2 = 1, a 6= 1. If La 6= Ra, then the isomorphism type of Q is determined
uniquely.

Proof. By comments above it may be assumed that Ra � X = σ−1. The rest follows
from the unique completion below.

1 a b c d
1 1 a b c d
a a 1 c d b
b b d
c c b
d d c

→

1 a b c d
1 1 a b c d
a a 1 c d b
b b d a 1 c
c c b d a 1
d d c 1 b a

(L5.3)

�
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Lemma 5. Let Q be a loop of order 5 in which there exists exactly one a ∈ Q
with a2 = 1, a 6= 1. There are two classes of isomorphism to which Q may belong if
La = Ra is assumed. Loops belonging to one of these two classes are opposite (i.e.,
mirror images) to loops from the other class.

Proof. Let X and σ be as above. Since c = 1a = ab = ba = c1, there must be
c = d2. Similarly b2 = d and c2 = b. The multiplication table is thus known up to
products xy, where x, y ∈ X and x 6= y. In each such case xy ∈ {1, a}. There two
ways how to complete the table:

1 a b c d
1 1 a b c d
a a 1 c d b
b b c d 1 a
c c d a b 1
d d b 1 a c

and

1 a b c d
1 1 a b c d
a a 1 c d b
b b c d a 1
c c d 1 b a
d d b a 1 c

(L5.4/5)

To see that the two loops are not isomorphic consider the permutation type of Lx,
x ∈ X. In the loop upon the left (L5.4) the translations take the form of a 5-cycle.
Those upon the right (L5.5) consist of a 3-cycle and a transpozition. �

We have proved that there are 6 isomorphism types of loops of order 5. One
of them is the abelian group, the other are exemplified by tables (L5.1)–(L5.5).

Exercise. Prove that all nonassociative loops of order 5 are isotopic.

Parastrophes and paratopy. A parastrophe of a quasigroup (Q, ·) is a quasi-
group that is equal or opposite to one of the quasigroups (Q, ·), (Q, \) and (Q, /).
The operation x ∗ y of a parastrophe thus is one of

xy, x\y, x/y, yx, y\x and y/x.

It is easy to see that a parastrophe of a parastrophe of Q is a parastrophe of Q.
Quasigroups Q1 and Q2 are said to be paratopic if one of them is isotopic to a

parastrophe of the other. The relation ’being paratopic’ is (as can be seen easily)
an equivalence.

Main class. Two latin squares are paratopic if they are multiplication tables of
paratopic quasigroups. A main class is a class of all latin squares that consists of
all latin squares paratopic to one of them. The number of main classes of order n
hence coincides with the number of quasigroups of order n up to paratopy. This
number is as follows:

n 1 2 3 4 5 6 7 8 9
main classes 1 1 1 2 2 12 147 283 657 19 270 853 541

n = 10: 34 817 397 894 749 939

n = 11: 2 036 029 552 582 883 134 196 099

The known numbers for isotopy classes are as follows:

n 1 2 3 4 5 6 7 8 9
isotopy cl. 1 1 1 2 2 22 564 1 676 267 115 618 721 533

n = 10: 208 904 371 354 363 006

n = 11: 12 216 177 315 369 229 261 482 540

Note that for n ≥ 8 the number of isotopy classes is just a little less than 6 times
the number of main classes. This is because with n big enough it becomes less and
less likely that a quasigroup is isotopic to one of its nontrivial parastrophes.
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The numbers for isomorphism classes of loops:

n 1 2 3 4 5 6 7 8
isomorphism cl. 1 1 1 2 6 109 23 746 106 228 849

n = 9: 9 365 022 303 540

n = 10: 20 890 436 195 945 769 617

Semisymmetry. What if some parastrophes coincide? If xy = yx, then the quasi-
group is commutative. Multiplication tables of commutative binary operations are
symmetric across the main diagonal. If (Q, ·) is commutative, then x\y = y/x.

What if xy = y/x? Let us first show that in each quasigroup every of the
following identities implies the other three:

x\y = yx ⇔ x · yx = y ⇔ xy · x = y ⇔ xy = y/x. (SS)

Proof. It suffices to verify the implication x · yx = y ⇒ xy · x = y since the
converse direction follows by a mirror argument. Suppose that x · yx = y holds for
all x, y ∈ Q. Then xy · x = xy · ((x/xy)(xy)) = x/xy. That is equal to y since
x = y · xy is assumed. �

A quasigroup fulfilling the identities of (SS) is called semisymmetric. A binary
operation is called semisymmetric if x ·yx = y = xy ·x. Note that a semisymmetric
operation is always a quasigroup operation.

Notational remark. Let a1, . . . , ak be elements of set, say Ω. Then (a1 a2 . . . ak)
denotes a cycle consisting of elements a1, . . . , ak. These elements are implicitly
assumed to be pairwise distinct. The integer k is the length of the cycle. A cycle
of length k is called a k-cycle. Note that if k ≥ 3, then

(a1 a2 . . . ak) = (a2 a3 . . . a1) = (ak a1 . . . ak−1).

Mendelsohn triple systems. Let · be a binary operation on a set Q. Each
ordered pair (x, y) initializes a walk a0, a1, a2, . . . upon Q such that a0 = x, a1 = y
and ai+2 = ai ·ai+1. If the operation is semisymmetric and x 6= y, then these walks
form cycles (x y xy) since y · xy = x and xy · x = y. If x = y, then the cycle shrinks
to (x) if x = xx, and to (xxx) if x 6= xx. Recall that a quasigroup Q is called
idempotent if x = xx.

We have observed that if · is a semisymmetric idempotent operation upon Q,
then each ordered pair (x, y), x 6= y, occurs in exactly one of the 3-cycles induced
by walks of the binary operation. In other words, the 3-cycles of the operation
partition the complete oriented graph of Q.

The construction may be reversed. That is, a partition of the complete oriented
graph to 3-cycles gives rise to a binary idempotent operation by setting xy = z
whenever the partition contains a cycle (x y z). It is clear that the operation is
semisymmetric.

A Mendelsohn triple system (MTS) upon Q is a collection of 3-cycles that parti-
tions the complete oriented graph upon Q. Idempotent semisymmetric quasigroups
are also known as MTS quasigroups.

An example of an MTS on a 4-element set: cycles (a b c), (c b d), (b a d) and
(a c d). The multiplication table:

a b c d
a a c d b
b d b a c
c b d c a
d c a b d
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Challenge. Occurences of each symbol in the body of the multiplication table
above may be connected by moves of a chess knight. Construct further examples of
such latin squares. Are there other examples that may be obtained from an MTS
quasigroup?

Steiner triple systems. A semisymmetric operation that is commutative yields
a quasigroup in which all parastrophes coincide. This is why such quasigroups are
called totally symmetric.

What are the commutative MTS quasigroups, i.e., idempotent totally symmetric
quasigroups? The commutativity implies that with each cycle (a b c) there is a
cycle (c b a). The cycles may be thus replaced by 3-element sets. What arises is
a collection of 3-element subsets (called blocks) such that each 2-element subset is
contained in exactly one block. These are the Steiner triple systems (STS).

An STS of order n exists for each n ≡ 1, 3 mod 6. Numbers of STS up to
isomorphism is given by the following table.

n 1 3 7 9 13 15 19
STS up to ∼= 1 1 1 1 2 80 11 084 874 829

Prolongation. Let (Q, ∗) be an idempotent quasigroup. Assume that Q does not

contain the symbol 1. Define an operation · upon Q̂ = Q ∪ {1} in such a way that

x · 1 = 1 · x = x, 1 · 1 = 1 = x · x and x · y = x ∗ y

whenever x, y ∈ Q and x 6= y. Then Q̂ is a loop. The construction may be reversed
whenever starting from a loop Q such that x2 = 1 for each x ∈ Q.

Proposition. A prolongation of an idempotent totally symmetric quasigroup is
totally symmetric, and all totally symmetric loops may be obtained in this way.

Proof. Let (Q, ∗) be idempotent. It is clear that Q̂ is commutative if and only if

(Q, ∗) is commutative. Hence it is enough to show (1) that Q̂ is semisymmetric if
and only if (Q, ∗) is semisymmetric, and (2) that each semisymmetric loop fulfils
x2 = 1. The latter is clear since 1 = (x ·1)x = x2, by semisymmetry. For the former
property note that (x∗y)∗x = y if x = y. If x 6= y, then x∗y 6= x∗x = x, and thus

(x ∗ y) ∗ x = xy · x. On the other hand in Q̂ the identity xy · x = y holds whenever
x = y or 1 ∈ {x, y}. If x 6= y and 1 /∈ {x, y}, then xy 6= x and xy ·x = (x∗y)∗x. �

Note that by the proof prolongations of MTS quasigroups are exactly the semi-
symmetric loops.

Affine and projective STS. Let V be a vector space over a 3-element field. The
affine lines of V form an STS. Such STS are called affine. The idempotent operation
of the STS over V may be expressed by x ∗ y = −x− y.

A Hall Triple System (HTS) is an STS such that any two intersecting blocks
belong to a subsystem on 9 elements. (There is only one STS of order 9, and this
STS coincides with the affine plane of order 3.) Structure of Hall Triple Systems
will be investigated later in this course.

Consider a projective space over a 2-element field. If the space is of dimension
n, then it contains 2n+1 − 1 points. Each line consists of three elements and any
three noncollinear points belong to a Fano subplane. The lines form an STS. Such
an STS is called projective.

Let (Q, ∗) be the idempotent quasigroup of a projective STS. Suppose that x, y, z
do not belong to the same block (they are noncollinear). Consider the picture of
the Fano plane with x, y and z being the three vertices of the triangle that forms
the picture. Then (x∗y)∗z = x∗(y∗z) is the central element. This implies that the
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prolongation yields an associative loop Q̂. In this loop (which is a group) x2 = 1

for each x ∈ Q. This means that Q̂ has to be an elementary abelian 2-group.
All projective STS thus may be derived from nonzero elements of an elementary

abelian 2-group. Blocks coincide with subgroups of order 4 from which the zero is
removed.



Introducing quasifields

Incidence geometries. To understand the concept of dualization in line systems
it seems useful to start with an abstract notion of incidence geometry. The main
idea is that the relation ‘point p is upon a line `’ is read as ‘point p is incident to
line `’, where the incidence is now expressed by a relation ε ⊆ P ×L, with P being
the set of points and L the set of lines. This is an abstract approach in the sense
that no other interaction between P and L is assumed but via the relation ε. Such
systems are called (abstract) incidence geometries.

A definition of a 3-net in this context may be as follows: Let ‖ be an equivalence
upon L, with classes L1, L2 and L3. The incidence geometry (P,L) is called a 3-net
if

∀x ∈ L ∀p ∈ P ∃! y ∈ L such that x ‖ y and p ε y; and (A1)

∀x, y ∈ L : x ∦ y ⇒ ∃! p ∈ P such that p ε x and p ε y. (A2)

The definition of a 3-net as done before can be obtained from the definition above
by replacing y ∈ L with the set `y = {p ∈ P ; p ε y}, and the relation pεy by p ∈ `y.
Note that the definition of a 3-net requires that the classes of ‖ are linearly ordered
(i.e., (L1, L2, L3).)

Nets and affine planes. The definition of a 3-net may be generalized to a defi-
nition of a k-net, k ≥ 3, by requiring that the number of classes of ‖ is equal to k.
Again, the set of parallel classes—which often are called pencils—is supposed to be
linearly ordered.

Let us now drop the requirement of the linear ordering of classes of ‖ and consider
an incidence geometry defined by (A1), (A2) and

∀p, q ∈ P : p 6= q ⇒ ∃! y ∈ L such that pεy and qεy. (A3)

This may be interpreted by saying that any two points are connected by a unique
line. (The requirement of uniqueness may be dropped since by (A1) and (A2) there
cannot exist two distinct lines that would connect the points p and q, p 6= q.)

A system fulfilling (A1), (A2) and (A3) is said to be an affine plane if the
equivalence ‖ contains at least three classes. (Axiomatizations of affine planes
usually achieve the latter requirement by stipulating that there exist three points
that are not collinear.)

For the sake of completeness let it be remarked that the usual way how an
affine plane is defined is to take as axioms (A1), (A3) and the existence of three
noncollinear points, under the assumption that x ‖ y if and only if either x = y, or
there exists no p ∈ P with pεx and pεy (i.e., x ∩ y = ∅). With such a definition it
is straightforward to prove first that ‖ is an equivalence on L, and then to derive
(A2) from (A3).

Collineations. A collineation of an incidence geometry (P,L, ε) is a pair (α, β)
such that α permutes P , β permutes L and

p ε x ⇔ α(p) ε β(x), for all (p, x) ∈ P × L.

To see how to connect this notion of collineation with a standard definition of
collineation of a line system (i.e., a system in which lines are considered as sets of
points) let us first discuss a certain property of incidence geometries that is usually
assumed to be true, and that will be assumed to be true from here on when an
incidence geometry will be discussed.

For each y ∈ L put `y = {p ∈ P ; p ε y}. For each p ∈ P put cp = {y ∈ L; p ε y}
(the letter c refers to lines concurrent to p. The property mentioned above states

1
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that

∀x, y ∈ L (x = y ⇔ `x = `y) and ∀p, q ∈ P (p = q ⇔ cp = cq).

In other words a line is determined completely by points incident to the line, and
a point is determined completely by lines passing through the point. With this
condition fufilled an incidence geometry may be turned into a system of lines L =
{`y; y ∈ L}, where pεx ⇔ p ∈ `y.

It seems natural to define a collineation of a system of lines as a permutation
of points such that a line is mapped upon a line. With an additional condition
(like finiteness of the set, or the existence and uniqueness of a line passing through
two points) this condition implies that the preimage of a line is a line. However,
in general the latter property has to be considered as a part of definition. A
collineation γ of a system of lines thus is a permutation of points such that γ(`)
and γ−1(`) is a line whenever ` is a line.

To see that both definitions of collineation coincide let us show that if (α, β) is a
collineation of (P,L), then α is collineation of the system of lines {`y; y ∈ L}, and
that if γ is a collineation of such a system of lines, then there exists β such that
(γ, β) is a collineation of (P,L).

Proof. The first step is to prove that if (α, β) is a collineation, then α(`y) = `β(y).
This is true since α(p) ∈ α(`y) ⇔ p ∈ `y ⇔ pεy ⇔ α(p)εβ(y) ⇔ α(p) ∈ `β(y), for
all (p, y) ∈ (P,L). For the converse direction assume that (P,L) is an incidence
geometry and γ is a collineation of the line system {`y; y ∈ L}. A line `y determines
the element y ∈ L completely. Hence there exists a permutation β of L such that
γ(`y) = `β(y). Now, pεy ⇔ p ∈ `y ⇔ γ(p) ∈ γ(`y)⇔ γ(p) ∈ `β(y) ⇔ γ(p)εβ(y). �

The notion of collineation need not be used only for permutations of P × L. A
collineation (P,L, ε)→ (P ′, L′, ε′) is a pair (α, β) such that α is a bijection P → P ′,
β is a bijection L → L′ and pεx ⇔ α(p)ε′β(x). In terms of systems of lines γ is a
bijection of points that both γ and γ−1 map lines upon lines.

Dual geometries and transversal designs. The dual geometry of (P,L, ε) is
the geometry (L,P, ε′), where pεx ⇔ xε′p. Let us consider axioms (A1) and (A2)
after dualization:

∀p ∈ P ∀x ∈ L ∃! q ∈ P such that p ‖ q and q ε x; and (A1’)

∀p, q ∈ P : p ∦ q ⇒ ∃!x ∈ L such that p ε x and q ε x. (A2’)

Consider a system fulfilling (A1’) and (A2’). The equivalence ‖ is now an equiv-
alence of points. Classes of ‖ are called groups (no connection to the algebraic
notion of a group). Lines will be called blocks.

(A1’) states that each block passes through exactly one point of a group and (A2’)
states that two points from distinct groups belong to exactly one block. A system of
lines fulfilling these axioms is called a transversal design, provided that the number
of groups is at least 3. If this number is equal to k, then the system is called a
transversal k-design.

Groups of a transversal k-design are of the same size and this size is equal to
the number of blocks passing through a point. Furthermore, each block is of size k.
This is easy to prove. However, the proof may be omitted since the statement is a
consequence of the fact that transversal k-designs dualize k-nets (with the exception
that groups are not required to be linearly ordered).

The order of a transversal design is the number of points in a group. Transversal
k-designs of order n are sometimes denoted as TD(k, n).
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Counting and affine planes. Let us have a k-net of a finite order n. (The order
is the number of points upon a line, and this is equal to the number of lines in a
pencil.)

The number of 2-elements sets {a, b} such that a and b are points of the net and
there exists a line ` (which is unique) that passes through both a and b is equal to

‘# pencils’ · ‘# lines in a pencil’ · ‘# of pairs upon a line’ = kn

(
n

2

)
=
kn2(n−1)

2
.

Number of all pairs of points in the net is(
n2

2

)
=

(n+1)n2(n−1)

2
≥ kn2(n−1)

2
.

Hence n ≥ k−1. The equality takes place if and only if through each point there
passes a line, i.e., when the k-net is an affine plane. We have proved:

• If n is the order of a k-net, then n+1 ≥ k. The equality takes place if and
only if the k-net is an affine plane.
• If n the order of a transversal k-design, then n+1 ≥ k. The equality takes

place if and only if the design is the dual of an affine plane.

Projective planes. A projective plane is a system of lines such that there exist
four noncollinear points, each two lines intersect in a single point, and each two
points are connected by a single line.

The notion of projective plane is self-dual. A removal of a line from a projective
plane yields an affine plane. An affine plane may be completed to a projective plane
by adding a new point for each pencil of lines. The lines of the pencil meet in this
added point (which is called a point ‘at infinity’). All points at infinity form a ‘line
at infinity’.

Building an affine plane. Let (Q,+, ·, 0, 1) be an algebra such that (Q,+, 0) is
a group, (Q∗, ·) is a quasigroup, Q∗ = Q \ {0}, and x0 = 0x = 0 for each x ∈ Q.
For a, b ∈ Q put `a,b = {(α, β) ∈ Q ×Q; β = aα + b} and `∞,b = {(b, β); β ∈ Q}.
Set Q∞ = Q ∪ {∞} and put L = {`a,b; (a, b) ∈ Q∞ × Q}. Elements of L will be
called lines. The question when the line systems L is an affine plane is addressed
below. Collineations of L will be discussed first.

Collineations in the first coordinate. Let us verify that for each d ∈ Q the
mapping (α, β) 7→ (α, β + d) is a collineation. This boils down to verifying

`a,b → `a,b+d and `∞,b → `∞,b.

However, that is obvious since β = aα+ b if and only if β + d = aα+ (b+ d).

Collineations in the second coordinate. The mapping (α, β) 7→ (α+ c, β) is a
collineation for each c ∈ Q if and only if

x(y + z) = xy + xz for all x, y, z ∈ Q.

Proof. A line `∞,b is mapped upon `∞,b+c. A line `0,b is mapped upon itself. Let
(a, b) ∈ Q∗ ×Q. The case c = 0 is trivial, let us have c ∈ Q∗. If (α, β)→ (α+ c, β)
is a collineation, then there has to exist (a′, b′) ∈ Q∗ ×Q such that

β = aα+ b ⇔ β = a′(α+ c) + b′.

Setting α = 0 yields β = b and b = a′c+ b′. Hence b′ = −a′c+ b = a′(−c) + b.
Put now α = −c. Then a(−c) + b = b′ = a′(−c) + b. Therefore a = a′, and

aα = a(α+ c)−ac for all α ∈ Q. The latter equality yields the left distributive law
since a and c are assumed to run through Q∗. �
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Under which conditions does L induce an affine plane? Fix a ∈ Q∞ and
put La = {`a,b; b ∈ Q}. Claim: Each point (α, β) belongs to exactly one ` ∈ La.
This is clear if a = ∞. Suppose that a ∈ Q, and observe that there exists exactly
one b ∈ Q such that β = aα+ b.

Lines of La thus partition the point set Q ×Q. This means that pencils of the
purported affine plane have to coincide with sets La.

Let ` and `′ be lines from different pencils. If ` ∈ L∞ or ` ∈ L0, then one of the
coordinates is fixed, and that makes ` to intersect `′ in exactly one point.

Let us have ` = `a,b and `′ = `a′,b′ , where a, a′ ∈ Q∗ and b, b′ ∈ Q, a 6= a′. The
lines ` and `′ intersect in exactly one point if and only if the equation ax + b =
a′x + b′ has exactly one solution x ∈ Q. Since the equation may be written as
a′x = ax+ (b− b′), axiom (A2) holds if and only if

∀a, b, c ∈ Q : a 6= b ⇒ ∃!x ∈ Q such that ax+ c = bx. (AF2)

The axiom (A3) holds if any two distinct points (α, β) and (α′, β′) are contained in
exactly one line `. If α = α′, then ` = `∞,α. Assume α 6= α′. The task is to solve
equations xα + β = y = xα′ + β′. The solution (x, y) is determined by the value
of x uniquely. The equation may be written as xα + (β − β′) = xα′. Hence (A3)
holds if and only if

∀a, b, c ∈ Q : a 6= b ⇒ ∃!x ∈ Q such that xa+ c = xb. (AF3)

Quasifield defined. Results above bring us to the following definition. A quasi-
field is an algebra (Q,+, ·, 0, 1) such that

• (Q,+, 0) is a group;
• (Q∗, ·, 1) is a loop;
• x(y + z) = xy + xz for all x, y, z ∈ Q; and
• for all a, b, c ∈ Q, a 6= b there exists unique x ∈ Q such that ax = bx+ c.

The definition above is the definition of a left quasifield. The right quasifield is
obtained by using mirror conditions. In the following a quasifield means the left
quasifield. For the sake of completeness recall that Q∗ = Q \ {0}.

Proposition. Let Q be a quasifield. Then a0 = 0a = 0 for every a ∈ Q. Further-
more, a(−b) = −ab and a+ b = b+ a, for any a, b ∈ Q.

Proof. To prove that a0 = 0 write a0 as a(0 + 0) = a0 + a0. To prove the mirror
equality assume that 0b 6= 0. Then b 6= 0 and there exists a ∈ Q∗ such that ab = 0b.
The equation ax = 0x hence possesses two different solutions x = b and x = 0.
That is a contradiction.

Note that 0 = a0 = a(b + (−b)) = ab + a(−b) implies a(−b) = −ab, for any
a, b ∈ Q.

Suppose now that a, b ∈ Q are such that a + b 6= b+ a. This implies a 6= 0 and
b 6= 0. Put t = b+ a− b. The assumption is that t 6= a. We have t 6= 0. There thus
exists s 6= 1 such that sa = t. Let x be the only solution to x = sx+ b. Then

x+ a− b = sx+ b+ a− b = sx+ t = sx+ sa = s(x+ a).

The equation y − b = sy thus possesses solutions y = x and y = x + a. Hence
x = x+ a, and a = 0, a contradiction. �

Prequasifields. The definition of a prequasifield differs from that of a quasifield
by relaxing the assumption of (Q∗, ·) being a loop to (Q∗, ·) being a quasigroup.
Everything above that is true for quasifields remains to be true for prequasifields.
This is also the case of the preceding proof since the equation x = sx + b may be
replaced by an equation ux = sx + b, where u ∈ Q∗ is chosen in such a way that
ua = a.
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Prequasifields yield affine planes. Systems (Q,+, 0, ·) describe an affine plane
with lines `a,b, (a, b) ∈ Q∞ ×Q, if (Q,+, 0) is a group and both (AF2) and (AF3)
hold. This has been proved above. (Conditions (AF2) and (AF3) imply that (Q∗, ·)
is a quasigroup, as may be verified easily.) To see that a prequasifield can be used to
construct an affine plane note that (AF2) is one of its axioms, while (AF3) follows
from the left distributivity since xa = xb+ c may be written as x(a− b) = c.

Left division and the left distributive law. Suppose that (Q,+, 0) is a group
and that · is a binary operation upon Q such that (Q∗, ·) a quasigroup. If · and
+ are connected by the left distributive law, then the equation a(0 + 0) = a0 + a0
implies a0 = 0 like above. Set a\0 = 0, for each a ∈ Q.

The equality a(b+c) = ab+ac holds for all b, c ∈ Q if and only if La ∈ End(Q,+).
If a ∈ Q∗, then in fact this is the same as La ∈ Aut(Q,+), and thus also the same
as L−1a ∈ Aut(Q,+). Since L−1a (b) = a\b we can state that

(∀x, y, z ∈ Q x(y + z) = xy + xz) ⇒ (∀x, y, z ∈ Q x\(y + z) = x\y + x\z).

Principal loop isotopes of a prequasifield. Let e and f be nonzero elements of
a prequasifield (Q,+, ·, 0). If x∗y = (x/f)(e\y) for all x, y ∈ Q, then (Q,+, ∗, 0, ef)
is a quasifield.

Proof. If a, b, c ∈ Q, then

a∗(b+c) = a/f ·e\(b+c) = a/f ·(e\b+e\c) = (a/f)(e\b)+(a/f)(e\c) = a∗b+a∗c.
A solution to a ∗ x = b ∗ x + c, a 6= b, has to fulfil a/f · e\x = b/f · e\x + c. This
determines x uniquely since e\x = d, where d is the only solution to a/f · y =
b/f · y + c. �

Collineation induced by isotopy. The mapping (α, β) 7→ (eα, β) yields a colli-
neation of the affine plane induced by a prequasifield (Q,+, ·, 0) on the affine plane
induced by the quasifield (Q,+, ∗, 0, ef), where e, f ∈ Q∗ and x ∗ y = x/f · e\y for
all x, y ∈ Q.

Proof. Lines `a,b are given by solutions to y = ax + b. Lines `∗a,b are given by

solutions to y = a ∗ x+ b. We have (α, β) ∈ `a,b if and only if β = (af) ∗ (eα) + b,
i.e., if and only if (eα, β) ∈ `∗af,b.

Furthermore, the line `∞,b is mapped upon `∗∞,eb since α = b if and only if
eα = eb. �

Finite quasifields. Let (Q,+, 0) be a group and (Q∗, ∗) a quasigroup that are
connected by the left distributive law. Then a0 = 0 and a(−b) = −ab, for all
a, b ∈ Q. However there is no way how to prove 0a = 0. To see this suppose that
the latter holds and change it to 0a = ϕ(a), where ϕ ∈ End(Q,+). That does not
change the assumptions on + and ·.

However, if 0a = 0 for all a ∈ Q, then there exists at most one x ∈ Q such that
ax = bx+c, whenever a, b, c ∈ Q and a 6= b. To see this assume that ax = bx+c and
ay = by+ c. Then −bx+ax = −by+ay, ax−ay = bx− by and a(x−y) = b(x−y).
This is not possible if x− y 6= 0.

By the same token there cannot be −bx+ax−c = −by+ay−c if a, b, c, x, y ∈ Q,
a 6= b and x 6= y. The mapping x 7→ −bx + ax − c is hence an injective mapping
Q→ Q whenever a, b, c ∈ Q and a 6= b. If Q is finite, then there exists x ∈ Q such
that −bx + ax − c = 0, which means ax = bx + c. This shows that in the finite
case a prequasifield may be defined by assuming that (Q,+, 0) is a group, (Q∗, ·) a
quasigroup, 0a = 0 for all a ∈ Q, and a(b+ c) = ab+ ac for all a, b, c ∈ Q.

Furthermore, verifying that (Q∗, ·) is a quasigroup may be simplified if

ab = 0 ⇔ a = 0 or b = 0, for all a, b ∈ Q. (Z)
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If the latter holds, then each La, a ∈ Q∗, has to be injective (and thus bijective in
the finite case) since ax = ay if and only if a(x− y) = 0.

Semifields. A semifield (S,+, ·, 0, 1) is an algebra such that (S,+, 0) is a group,
(S∗, ·, 1) is a loop, and both distributive laws hold (thus a(b + c) = ab + ac and
(b+ c)a = ba+ ca for all a, b, c ∈ S.) A presemifield does not require the existence
of the unit element.

By standard arguments, a0 = 0 = 0a and a(−b) = −ab = (−a)b, for all a, b ∈ S.
Each semifield is a quasifield since if ax = bx + c and a 6= b, then −bx + ax =
(−b + a)x = c, and that determines x uniquely. For the finite (pre)semifield the
quasigroup property of · may be replaced by (Z).

Note that the definition of a semifield differs from the definition of a division
ring (a skewfield) by dropping the associativity of the multiplication.

Nearfields. A nearfield (N,+, ·, 0, 1) is an algebra such that both (N,+, 0) and
(N∗, ·, 1) are groups, and the left distributive law holds.

By standard arguments, a0 = 0 and a(−b) = −ab for all a, b ∈ N . If 0b 6= 0,
then a(0b) = (a0)b = 0b for all a ∈ N . That cannot be true if N∗ is nontrivial,
i.e. if |N | ≥ 3. On two elements the definition above allows for the multiplication
given by xy = y. This is an exceptional case that is not regarded to be a nearfield.
To avoid it, the axioms may be extended by stating explicitly that 0x = 0 for all
x ∈ N .

A finite nearfield fulfils the conditions of finite quasifield. An infinite nearfield
need not be a quasifield. However, it may be proved that every nearfield N fulfils
a+ b = b+ a and (−a)b = −ab, for all a, b ∈ N . A nearfield which is a quasifield is
called planar as it determines an affine plane (and thus also a projective plane).

Note that the definition of a nearfield differs from the definition of a division
ring (a skewfield) by dropping the right distributive law. In fact, our definition is
that of the left nearfield. The right nearfield assumes the right distributive law.

Connections to projective planes. If a is a point and ` a line of a projective
plane then there may exist a collineation called perspectivity that is determined
uniquely by (a, `) (a is called the center and ` the axis). Projective planes deter-
mined by division rings contain a perspectivity for each pair (a, `). In fact this
is a way how to characterize them. Assumptions of the form that a perspectivity
exists for certain pairs (a, `) gives rise to notions of quasifield, semifield, nearfield in
the sense that if the respective assumptions are fulfilled, then the projective plane
induces an affine plane that may be coordinatized by a quasifield or a semifield or
a nearfield.

Remarks on coordinatization and isotopy. Note that above we have proved
that affine planes coordinatized by isotopic prequasifields are isomorphic. From the
geometric standpoint isotopic quasifields are nothing else but different coordinati-
zations of the same geometric structure.

Note that a principal isotope x/f · e\y of a semifield is again a semifield, and
that the same is true for nearfields. Two semifields (or nearfields) are said to be
isotopic, if one of them is isomorphic to the principal isotope of the other. It is
easy to adapt Albert’s theorem to nearfields, showing thus that isotopic nearfields
are isomorphic.



Nearfields

Definition of nearfield and commutativity. By definition, (N,+, ·, 0, 1) is a
nearfield if (N,+, 0) and (N∗, ·, 1) are groups, x(y+z) = xy+xz for all x, y, z ∈ N ,
and the 2-element structure with xy = y is avoided. To avoid it, it may be assumed,
e.g., that 0 · 1 = 0.

In every nearfield x+y = y+x, for every x and y. The proof of commutativity is
nontrivial in the general case. In finite case the commutativity follows from the fact
that finite nearfields are quasifields. Another proof of commutativity in the finite
case relies upon the fact that x 7→ cx is an automorphism of (N,+, 0) for every
c ∈ N∗. This means that c = c · 1 is an automorphic image of the element 1. Hence
all elements of N∗ are of the same order. This is possible if and only if each element
of N∗ is of a prime order p. Therefore (N,+, 0) is a p-group. A p-group always
contains a nontrivial center. A nontrivial element of this center is an automorphic
image of 1. Hence 1 belongs to the center. Each element of N∗ is thus central.
This proves that the additive group of a finite nearfield is an elementary abelian
p-group, p a prime.

Further on the additive group of (N,+) will always be considered to be commu-
tative.

Opposite elements in a nearfield. As observed earlier, 0a = a0 = 0 and
a(−b) = −ab in every nearfield N . In a nearfield a + b = b + a. Here we shall
show that (−a)b = −ab for all a, b ∈ N .

Lemma. An element a ∈ N fulfils a2 = 1 if and only if a = ±1.

Proof. (−1)(−1) = −(−1) = 1. If a2 = 1, then a(a+1) = a2 +a = 1+a = 1(a+1).
If a+ 1 6= 0, then a = 1. If a+ 1 = 0, then a = −1. �

Lemma. Every a ∈ N fulfils (−1)a = −a.

Proof. This is clear if a = 0. Assume a 6= 0 and consider b ∈ N∗ such that ab = 1.
Then ba = 1 and (a · (−1) · b)(a · (−1) · b) = a · (−1) · (−1) · b = a · b = 1. By the
lemma, a · (−1) · b = ±1. If a · (−1) · b = 1 = ab, then −a = a(−1) = a. In such
a case 0 = a + a and 0 = b(a + a) = ba + ba = 2. That implies −1 = 1. Hence
a · (−1) · b = −1 in every case. This yields a · (−1) = (−1)a, by multiplying by a
on the right. Hence (−1)a = a(−1) = −a. �

To finish note that −ab = (−1)ab = (−1)a · b = (−a)b, for all a, b ∈ N .

Few notions from permutation groups. Let G be a permutation group upon
Ω. Recall that Gα = {g ∈ G; g(α) = α}, for all α ∈ Ω. A similar notation is used
for the pointwise stabilizer of α1, . . . , αk ∈ Ω (assuming implicitly that the latter
elements are pairwise distinct). Set

Gα1,...,αk
= {g ∈ G; g(α1) = α1, . . . , g(αk) = αk}.

The group is transitive if for all α, β ∈ Ω there exists g ∈ G such that g(α) = β.
Note that for G to be transitive it suffices that there exists α ∈ Ω such that for
each β ∈ Ω there exists g ∈ G such that g(α) = β.

The group G is said to be 2-transitive if for all α, β, γ, δ ∈ Ω such that α 6= β
and γ 6= δ there exists g ∈ G such that g(α) = γ and g(β) = δ. Note that for G to
be 2-transitive it suffices that there exist α, β ∈ Ω, α 6= β, such that for all γ, δ ∈ Ω,
γ 6= δ, there exists g ∈ G such that g(α) = γ and g(β) = δ.

If G is 2-transitive, and there exists only one g ∈ G such that g(α) = γ and
g(β) = δ, then g is said to be sharply 2-transitive.

1
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Note that the similar notion of sharp 1-transitivity coincides with the notion of
a regular permutation group. Note also that a 2-transitive permutation group is
sharply 2-transitive if and only if Gα,β = 1, whenever α, β ∈ Ω and α 6= β.

The permutation group G is said to be a Frobenius group if it is transitive, but
not regular, and fulfils Gα,β = 1 whenever α, β ∈ Ω and α 6= β. By a well known
theorem a finite Frobenius group contains a normal subgroup that consists of the
identity mapping and of all mappings g ∈ G such that g(α) = α for no α ∈ Ω (the
regular permutations of G). This subgroup is normal and is called the Frobenius
kernel. Each sharply 2-transitive group is a Frobenius group. The converse is not
true.

Affine mappings of a nearfield. Let N be a nearfield. Denote by Aff(N) the
set of all mappings x 7→ ax+ b, where a ∈ N∗ and b ∈ N . The set Aff(N) forms a
group and this group is sharply 2-transitive.

As explained above, to prove this it suffices to show that for c, d ∈ N , c 6= d,
there exist a unique affine mapping x 7→ ax + b that sends 0 upon c and 1 upon
d. These assumptions mean that c = a0 + b = b and d = a1 + b = a + b. Setting
a = d− c and b = c thus does the job.

Finite nearfields are equivalent to sharply 2-transitive groups. Let G be a
sharply 2-transitive permutation group upon a finite set N . Choose an element of
N and denote it by 0. The Frobenius kernel of G is a regular group upon N . Hence
N may be considered as a group (N,+, 0), where + is defined in such a way that
the Frobenius kernel coincides with the set of left translations La, a ∈ N . (The
way how to define + is described in the passage about regular group.)

The Frobenius kernel is a normal subgroup of G. Hence if g ∈ G, then for each
a ∈ N there exists b ∈ N such that gLag

−1 = Lb. If g ∈ G0, then gLa(0) = g(a) =
b = Lb(0) = Lbg(0). Thus gLag

−1 = Lg(a) for each g ∈ G0 and a ∈ N .
Choose a nonzero element of N and denote it by 1. Define multiplication upon

N so that 0a = 0 and ab = ϕa(b) whenever a, b ∈ N , a 6= 0 and ϕa is the unique
element of G0 that sends 1 upon a. Put N∗ = N \ {0} and denote by ϕ∗

a the
restriction of ϕa to N∗. By the definition ab = ϕ∗

a(b) for all a, b ∈ N∗. The group
G0 consists of all ϕa, a ∈ N∗. Permutations ϕ∗

a coincide with left translations of
(N∗, ·). That makes (N∗, ·) a group. Note that · is defined in accordance with the
general procedure of deriving an abstract group from a regular group. The neutral
element of N∗ is equal to 1 since ϕ1 = idN .

The left distributive law a(b+c) = ab+ac clearly holds if a = 0. Assume a ∈ N∗.
Then a(b+ c) = ϕaLb(c) = Lϕa(b)ϕa(c) = Lab(ac) = ab+ ac.

Dickson nearfields. Finite nearfields are thus equivalent to sharply 2-transitive
permutation groups. All such groups are known. Their classification belongs
to Zassenhaus. Here it will not be discussed. The simplest example of proper
nearfields (that is nearfields that do not satisfy the right distributive law) are Dick-
son nearfields.

A Dickson nearfield is obtained by replacing the multiplication · of Fq2 (the finite
field of order q2), q odd, by multiplication ◦ that is defined as follows:

a ◦ b =

{
ab if a is a square;

abq if a is a nonsquare.

Exercise. Show that (Fq2 ,+, ◦, 0, 1) is a nearfield, for any q > 1 that is a power of
odd prime.

Exercise. The smallest order of a Dickson nearfield (and, in fact, of any proper
nearfield) is 9. Prove that (F∗

9, ◦) is isomorphic to Q8, the group of quaternions.
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Quasigroups from nearfields. Let (N,+, ·, 0, 1) be a nearfield. Choose an ele-
ment c ∈ N , c /∈ {0, 1}, and define a binary operation ∗c upon N by

x ∗c y = x+ (y − x)c for all x, y ∈ N.
Suppose that a, b ∈ N .

a ∗c y = b ⇔ a+ (y−a)c = b ⇔ y − a = (−a+ b)c−1, and

x ∗c a = b ⇔ x+ (a−x)c = b ⇔ (−a+ x) + (a− x)(c) = −a+ b

⇔ (a− x)(−1) + (a− x)(c) = −a+ b ⇔ (a− x)(−1 + c) = −a+ b

⇔ a− x = (−a+ b)(−1 + c)−1.

Both equations thus possess a unique solution. That makes (N, ∗c) a quasigroup.
This quasigroup is idempotent since a ∗c a = a+ (a− a)c = a+ 0c = a.

Theorem. Let N be a nearfield, c ∈ N , c /∈ {0, 1}. Then Aff(N) ≤ Aut(N, ∗c).

Proof. The group Aff(N) is generated by mappings x 7→ x+v, v ∈ N , and mappings
x 7→ ux, u ∈ N∗. The proof uses the commutativity of +. If x, y ∈ N , then
(x+ v) ∗c (y + v) = x+ (y − x)c+ v = (x ∗c y) + v since (y + v)− (x+ v) = y − x.
Furthermore, ux ∗c uy = ux + (uy − ux)c = ux + u(y − x)c = u(x + (y − x)c) =
u(x ∗c y). �

A lemma of general nature. Let (Q, ∗) be an idempotent quasigroup. If x, y ∈ Q
are such that (x, x, y) or (y, x, x) is an associative triple, then x = y.

Proof. Assume x ∗ (x ∗ y) = (x ∗ x) ∗ y. Since (x ∗ x) ∗ y = x ∗ y there must be
x ∗ y = y = y ∗ y. Thus x = y. �

Flexibility. A binary operation · is said to be flexible if it fulfils the flexible law
xy · x = x · yx.

Let N be a nearfield, and c ∈ N \ {0, 1}. The aim now is to prove that ∗c is
flexible if and only if c(1− c) = (1− c)c. If c(1− c) 6= (1− c)c then (a, b, a) is never
associative if a, b ∈ N and a 6= b.

First note if (Q, ·) is a quasigroup and α ∈ Aut(Q), then (a, b, c) ∈ Q3 is associa-
tive if and only if (α(a), α(b), α(c)) is associative. This is because α(a)α(b) ·α(c) =
α(ab · c) and α(a) · α(b)α(c) = α(a · bc).

Consider a, b ∈ N , a 6= b. Since Aff(N) is 2-transitive, there exists α ∈ Aff(N)
such that α(0) = a and α(1) = b. Recall that Aff(N) ≤ Aut(N, ∗c). This means
that (a, b, c) is associative if and only if (0, 1, 0) is associative.

Plugging x = 0 into x ∗c y = x + (y − x)c gives 0 ∗c y = yc. Furthermore,
x ∗c 0 = x+ (−x)c = x1 + x(−c) = x(1− c). Hence

0 ∗c (1 ∗c 0) = (1 ∗c 0)c = (1− c)c, and

(0 ∗c 1) ∗c 0 = c ∗c 0 = c(1− c).

Flexibility in Dickson nearfields. The operation of the Dickson nearfield upon
Fq2 is denoted by ◦. For i, j ∈ {0, 1} set i = 0 if c is square and i = 1 if it is a
nonsquare. Similarly set j = 0 if 1− c is a square, and j = 1 othewise. Then

ij 00 01 10 11
c ◦ (1− c) c(1− c) c(1− c) c(1− c)q c(1− c)q = c− cq+1

(1− c) ◦ c c(1− c) cq(1− c) c(1− c) cq(1− c) = cq − cq+1

The table shows that if c is a nonsquare or 1− c is a nonsquare, then c ◦ (1− c) =
(1 − c) ◦ c implies c = cq or 1 − c = (1 − c)q. Now, Fq is a subfield of Fq2 that
consists of all a ∈ Fq2 that fulfil aq = a. Since each element of Fq is a square in
Fq2 , the equality c ◦ (1 − c) = (1 − c) ◦ c holds if and only if both c and 1 − c are
squares.
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In other words, (Fq2 , ∗c) is flexible if and only if both c and 1 − c are squares,
whenever c ∈ Fq2 and c /∈ {0, 1}.

Maximal nonassociativity via nearfields. Let c be an element of a nearfield
N such that c(1 − c) 6= (1 − c)c. If (x, y, z) is a nondiagonal associative triple in
(N, ∗c), then the elements x, y and z have to be pairwise distinct, by the results
above.

Since there exists α ∈ Aff(N) ≤ Aut(N, ∗c) such that α(0) = x and α(1) = y,
the quasigroup (N, ∗c) is maximally nonassociative if and only if (0∗c1)∗cz 6=
0 ∗c (1 ∗c z) for every z ∈ N , z /∈ {0, 1}. Note that

(0 ∗c 1) ∗c z = c+ (z − c)c and 0 ∗c (1 ∗c z) = (1 + (z − 1)c)c.

Maximal nonassociativity via Dickson nearfields. It may be proved that for
each odd q > 1, q a power of an odd prime, there exists c ∈ Fq2 such that the
quasigroup (Fq2 , ∗c) is maximally nonassociative. The proof is nonconstructive—
the idea is to estimate the number of c ∈ Fq2 , c /∈ {0, 1}, for which there exists a
nondiagonal associative triple, and show that this number is less than q2 − 2.

The case of q = 3 is easy to verify by hand. It turns out that (F9, ∗c) is maximally
nonassociative whenever c /∈ F3. Furthermore, if c, d ∈ F9 \ F3, then (F9, ∗c) ∼=
(F9, ∗d).

The weighted average. Consider now the quasigroup (F, ∗c) in the case when F
is a field (or, more generally, a division ring), and c /∈ {0, 1}. The operation

x ∗c y = x+ (y − x)c = x(1− c) + yc

is known as the weighted average. It fulfils the medial law xy · uv = xu · yv. That
may easily be verified directly. Another way how to prove it is to use a construction
below. The connection to the construction is by the fact that both x 7→ xc and
x 7→ x(1− c) are automorphisms of the group (F,+, 0).

Another name for the medial law is the entropic law.

A construction. Let (G,+) be an Abelian group, and let α and β be commuting
automorphisms of (G,+) (thus αβ = βα). Furthermore, let c be an element of G.
For x, y ∈ G set

x ∗ y = α(x) + β(y) + c.

Then (G, ∗) is quasigroup isotopic to (G,+). If x, y, u, v ∈ G, then

(x ∗ y) ∗ (u ∗ v) = (α(x) + β(y) + c) ∗ (α(u) + β(v) + c)

= α2(x) + αβ(y) + βα(u) + β2(v) + α(c) + β(c) + c

= α2(x) + αβ(u) + βα(y) + β2(v) + α(c) + β(c) + c

= (x ∗ u) ∗ (y ∗ v).

Note that if c = 0 and α + β = idG, then x ∗ x = x. This is the case of the
weighted average. Idempotent medial quasigroups are flexible. Indeed if (Q, ·) is
such a quasigroup, then x · yx = xx · yx = xy · xx = xy · x.

Toyoda theorem. Let (Q, ∗) be a medial quasigroup. Then Q may be equipped with
the structure of an abelian group in such a way that there exist α, β ∈ Aut(Q,+)
and c ∈ Q that fulfil αβ = βα and x ∗ y = α(x) + β(y) + c, for all x, y ∈ Q.

The proof of Toyoda theorem takes about one page. One of the methods is to use
properties of autotopisms.



Orthogonality and transversals

Quasigroups induced by a coordinatization of an affine plane. A finite
affine plane may be obtained from (Q,+, ·, 0, 1), where (Q,+, 0) is a group, (Q∗, ·, 1)
a loop, if 0a = a0 = 0 for all a ∈ Q and the equation ax + c = bx has a unique
solution whenever a, b ∈ Q and a 6= b. This is what will be assumed further on.
In infinite case the existence of the affine plane also needs the condition that the
equation xa+ c = xb has a unique solution whenever a, b ∈ Q and a 6= b.

For each c ∈ Q∗ define a binary operation ∗c on Q, c ∈ Q∗, by

a ∗c b = a+ cb for every a, b ∈ Q.

If x ∗c b = a, then x + cb = a and x = a − cb. If a ∗c y = b, then a + cy = b,
cy = −a+ b and y = c\(−a+ b) (c\0 is defined as 0). This shows that (Q, ∗c) is a
quasigroup for all c ∈ Q∗.

Suppose now that c, d ∈ Q∗ and c 6= d. Let us consider u, v ∈ Q and ask for
which (x, y) ∈ Q2

x ∗c y = u and x ∗d y = v.

Any such (x, y) fulfils x = u − cy and x = v − dy. Thus cy − u = −x = dy − v.
Therefore cy = dy − v + u. Since c 6= d there exists only one y ∈ Q that fulfils the
latter equality, and (u− cy, y) is the only solution to the equations above.

The latter fact may be expressed also by saying that the quasigroups (Q, ∗c) and
(Q, ∗d) are orthogonal, in the sense described below.

Orthogonality. Quasigroups (Q, ·) and (Q, ∗) are said to be orthogonal if for all
u, v ∈ Q there exists exactly one pair (x, y) ∈ Q × Q such that xy = u and
x ∗ y = v. Two latin squares of the same order (and the same set of symbols)
are said to be orthogonal if they may be interpreted as multiplication tables of
orthogonal quasigroups.

A set of quasigroups (Q, ∗1), . . . , (Q, ∗k) is said to be mutually orthogonal if
(Q, ∗i) and (Q, ∗j) are orthogonal whenever 1 ≤ i < j ≤ k. Similarly define
mutually orthogonal latin squares. The latter is often abbreviated as MOLS.

If (Q,+, ·, 0, 1) coordinatizes an affine plane and |Q| = n, then (Q, ∗c), c ∈ Q∗
is a set of n − 1 mutually orthogonal quasigroups. The affine plane induced by
(Q,+, ·, 0, 1) thus yields n− 1 mutually orthogonal latin squares of order n.

For each n ≥ 2 denote by N(n) the maximum size of MOLS of order n. We shall
explain why N(n) ≤ n− 1 and why a set of n− 1 MOLS describes an affine plane
of order n or, and thus also a a projective plane of order n. (The order of an affine
plane is the number of points upon a line. The order of an projective plane is the
number of points upon a line diminished by one.)

Transversal designs from orthogonal quasigroups. Suppose that (Q, ∗i), 1 ≤
i ≤ k, is a set of mutually orthogonal quasigroups, k ≥ 2. Put Ω = Q ×
{∞, 0, 1, . . . , k}. Construct a block design upon Ω with groups Q× {∞}, Q× {0},
Q × {1}, . . . , Q × {k} in such a way that {(a∞,∞), (a0, 0), (a1, 1), . . . , (ak, k)}
is a block if and only if there exist x, y ∈ Q such that (a∞, a0, a1, . . . , ak) =
(x, y, x ∗1 y, . . . , x ∗k y).

A block is thus fully determined by x = a∞ and y = a0. If 1 ≤ i ≤ k, then it
is also fully determined by x = a∞ and x ∗i y = ai, or by y = a0 and x ∗i y = ai.
If 1 ≤ i < j ≤ k then for any ai and aj there exist unique x, y ∈ Q such that
x ∗i y = ai and x ∗j y = aj . This means that there exists a unique block that
passes through (ai, i) and (aj , j). We have verified that the design is a transversal
(k + 2)-design of order n = |Q|.
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Orthogonal quasigroups from transversal designs. Let us have a transversal
(k+2)-design, k ≥ 2. Denote the groups by G∞, G0 and Gi, 1 ≤ i ≤ k. The groups
are of the same size. Let Q be a set for which there exist bijections γj : Q → Gj ,
j ∈ {∞, 0, 1, . . . , k}. Bijections γ∞, γ0 and γi, 1 ≤ i ≤ k, provide a quasigroup
(Q, ∗i) in which x ∗i y = z whenever there exists a block of the design that passes
through γ∞(x), γ0(y) and γi(z).

Suppose that 1 ≤ i < j ≤ k and consider u, v ∈ Q. There exists exactly one
block B of the design that passes through γi(u) and γj(v). Let x, y ∈ Q be such
that γ∞(x) ∈ B and γ0(y) ∈ B. Then x ∗i y = u and x ∗j y = v. The block B is
determined uniquely by (i, j, u, v). There thus exists a unique pair (x, y) ∈ Q ×Q
such that x ∗i y = u and x ∗j y = v. This means that quasigroups (Q, ∗1), . . . ,
(Q, ∗k) are mutually orthogonal.

Maximum number of orthogonal latin squares. A transversal (k+ 2)-design
of order n satisfies k+ 2 ≤ n+ 1, and the equality holds if and only if the design is
a dual of an affine plane.

Therefore k ≤ N(n) ≤ n − 1, and N(n) = n − 1 if and only if there exists a
projective plane of order n. If n is a power of a prime, then N(n) = n − 1. It is
widely believed that there are no other n > 1 with N(n) = n− 1. Lower estimates
of N(n) are a popular topic. For the upper estimates the following seem to be the
only results available:

• N(6) = 1 (a classical result belonging to Euler);
• N(10) ≤ 8 (one of the first big achievements of computer based combina-

torics);
• N(n) ≤ n− 2 if n ≡ 1, 2 mod 4 and n cannot be expressed as a sum of two

integer squares. (This is known as Bruck-Ryser Theorem.)

There are many constructions of two orthogonal latin squares. The construction
is more difficult if n = 4k + 2. A pair of orthogonal latin squares exists for each
n > 2, n 6= 6. Thus N(n) ≥ 2 if n > 2 and n 6= 6.

Definition of a transversal. Let L be a latin square. A set T of cells of L is
called a transversal if

(1) in each row there occurs exactly one cell of T ;
(2) in each column there occurs exactly one cell of T ; and
(3) every symbol occurs in exactly one cell of T .

It is easy to observe that isotopic transformations map a transerval upon a transver-
sal, and that a transformation of a latin square upon its parastrophe maps transver-
sals upon transversals. The number of transversals hence is an invariant of the main
class of a given latin square.

Transversals in order 5. Let L be a latin square. To find a transversal one may
start from a cell in the uppermost row, look for a cell in the next row which is
not in a conflict with the chosen cell (i.e., contains a different symbol and is in a
different row) and continue in the similar manner further on. This can lead to a
stalemate—at some row there is no way how to continue. Two examples of partial
transversals that cannot be completed are the two cases upon the left below. The
latin square in question is a representative of the (only) isotopy class of latin squares
of order 5 that are not isotopic to a latin square induced by addition modulo 5.
This square possesses exactly three transversals, all of them pass through the cell
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in the leftmost column that carries the symbol 2. One of them is upon the right.

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1
5 3 1 2 4

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1
5 3 1 2 4

1 2 3 4 5

2 1 4 5 3

3 4 5 1 2

4 5 2 3 1

5 3 1 2 4

Transversals in order 4. The latin square upon the left is given by addition
modulo 4. As will proved later, this square possesses no transversal. Next to
it there is an isotopic square which was obtained by switching middle two rows
and columns. By flipping the intercalate in the bottom right corner there arises a
latin square that yields the multiplication table of a Klein group. The indicated
two transversals comprise all transversals that pass through the cell in the left top
corner. This latin square possesses eight transversals.

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3
2 0 3 1
1 3 2 0
3 1 0 2

0 1 2 3

2 0 3 1

1 3 0 2

3 1 2 0

0 1 2 3

2 0 3 1

1 3 0 2

3 1 2 0

Transversals and complete mappings. Let Q be a quasigroup. A mapping
ϕ : Q→ Q is said to be complete if

• ϕ is a permutation of Q; and
• the mapping x 7→ xϕ(x) is also a permutation of Q.

If ϕ is a complete mapping of Q, then the cells (x, ϕ(x)) form a transversal in
the multiplication table of Q. On the other hand, for each transversal T of the
multiplication table there exists a permutation ϕ such that (x, ϕ(x)) are the cells
of T . This is because cells of T cover all rows and all columns. The fact that
each symbol occurs exactly once in a cell of T means that x 7→ xϕ(x) permutes Q.
Transversals and complete mappings thus describe the same phenomenon.

Transversals and orthogonal squares. Let (Q, ·) be a quasigroup. Let (Q, ∗)
be a quasigroup orthogonal to (Q, ·). Choose a ∈ Q. For each x ∈ Q there is
only one solution y to x ∗ y = a. Denote this solution by ϕa(x) (thus ϕa(x) gives
the result of division of a by x in (Q, ∗)). Since y is determined uniquely, ϕa is a
permutation of Q. For each b ∈ Q there exists exactly one pair (x, y) such that
xy = b and x ∗ y = a. Since y is equal to ϕa(x), by the definition of ϕa, the
existence and uniqueness of (x, y) may be rephrased by saying that for each b there
exists exactly one x ∈ Q such that xϕa(x) = b. In others words, x 7→ xϕa(x) is a
permutation of Q. The mapping ϕa is complete for each a ∈ Q.

If a 6= b, then ϕa(x) 6= ϕb(x) for each x ∈ Q. This means that the transversals
Ta = {(x, ϕa(x)); x ∈ Q} form a decomposition of the multiplication table of (Q, ·).

The process described above may be reversed in the sense that if L is a latin
square of order n that is partitioned by transversals T1, . . . , Tn, then this partition
yields an orthogonal latin square. To define such a square consider a bijection γ of
{1, . . . , n} upon the set of symbols, and put γ(k) into cell (i, j) if (i, j) belongs to
Tk.
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No transversals modulo 2n. Consider the addition modulo 2n, n ≥ 1. First
note that if α permutes Z2n , then∑

i∈Z2n

α(i) ≡
2n−1∑
i=0

i ≡ 2n−1 mod 2n

This is because i+ (2n − i) ≡ 0 mod 2n whenever 0 ≤ i < 2n−1.
Suppose now that ϕ is a complete mapping of (Z2n ,+). Since ϕ permutes Z2n ,

there has to be
∑
ϕ(x) = 2n−1. Since ψ : x → x + ϕ(x) also permutes Z2n , there

has to be
∑
ψ(x) = 2n−1. However∑
ψ(x) =

∑
(x+ ϕ(x)) =

∑
x+

∑
ϕ(x) = 2n−1 + 2n−1 = 0,

a contradiction. Thus the addition table modulo 2n possesses no transversal.

Groups of odd order. If G is a group of odd order then the main diagonal is a
transversal of the multiplication table of G. In other words x 7→ x2 permutes G.

To verify this it suffices to show that x2 = y2 implies x = y, for any x, y ∈ Q.
Choose m = 2k+ 1 such that the orders of both x and y divide m. Thus xm = 1 =
ym, and

x = xm+1 = x2(k+1) = (x2)k+1 = (y2)k+1 = ym+1 = y.

Complete mappings and groups. If ϕ is a complete mapping of a group G,
then Raϕ is also a complete mapping of G, for any a ∈ G. Indeed x 7→ xϕ(x) is a
permutation of G if and only x 7→ xϕ(x)a is a permutation of G.

Note that the latter observation may not be generalized to loops since the as-
sociativity of groups is involved. The observation has an important consequence:
Each complete mapping of a group induces a set of complete mappings all of which
together partition the multiplication table into transversals. A transversal of a
group multiplication table thus induces a latin square that is orthogonal to the
table.

Orthomorphisms. An orthomorphism of a group G is a permutation ψ of G such
that x 7→ x−1ψ(x) is a permutation of G.

If ψ is an orthomorphism, then ϕ : x 7→ x−1ψ(x) is a complete mapping since
ψ(x) = xϕ(x). If ϕ is a complete mapping of G, then x 7→ xϕ(x) is an ortho-
morphism. There is thus a 1–1 connection between orthomorphisms and complete
mappings.

Note that what is here called a complete mapping or an orthomorphism, might
be precised by calling it a left complete mapping or a left orthomorphism (the right
complete mapping would refer to ϕ(x)x and the right orthomorphism to ϕ(x)x−1).
Note also that the notion of orthomorphism may be generalized to quasigroups, by
writing x\ψ(x) in place of x−1ψ(x).

Orthomorphisms and automorphisms. An automorphism α of a group G is
said to be fixed point free if α(x) = x implies x = 1, for all x ∈ G. An auto-
morphism of a finite group is an orthomorphism if and only if it is fixed
point free. Indeed, x−1ϕ(x) = y−1ϕ(y) ⇔ yx−1 = ϕ(yx−1).

There are many groups which offer a plenty of fixed point free automorphisms.
If V is a vector space then an invertible linear mapping ϕ ∈ GL(V ) is fixed point
free if and only if 1 is not its eigenvalue. If V is an elementary abelian p group,
then V may be equipped with the structure of a finite field, say F . In such a
case the mapping x 7→ λx is a fixed point free automorphism of (F,+) whenever
λ ∈ F ∗, λ 6= 1. In fact, a complete set of mutually orthogonal latin squares may be
constructed in this way.
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Orthomorphisms and normal subgroups. Let N be a normal subgroup of a
finite group G, and let ν be an orthomorphism of N . Suppose that G/N is of order

k and that t1, . . . , tk are representatives of cosets modulo N . Suppose also that ψ̃
is an orthomorphism of G/N . Set ψ(nti) = ν(n)tj whenever ψ̃(tiN) = tjN , n ∈ N
and 1 ≤ i ≤ k. The claim is that ψ is an orthomorphism of G.

Proof. The fact that ψ permutes G follows immediately from the definition. Sup-
pose that x−1ψ(x) = y−1ψ(y). Assume that x = nti and y = mtj . Then

(tiN)−1ψ̃(tiN) = (tjN)−1ψ̃(tjN), which results in tiN = tjN and i = j. As-

sume that tkN = ψ̃(tiN), and put t = ti = tj and s = tk.
The assumption is that (nt)−1 · ν(n)s = (mt)−1 · ν(m)s. Cancelling t−1 on the

left and s on the right yields n−1ν(n) = m−1ν(m) and n = m. Hence x = y. �

The existence of a complete mapping in a finite group. As shown above,
the existence of a complete mapping in a group may be proved via factorization.
Normal subgroups of solvable groups are more easily accessible. Hence it is no
wonder that they were the first for which it was proved that

a group of even order possesses a complete mapping if and only if
its Sylow 2-group is not cyclic.

The complete proof of this fact depends upon the Classification of Finite Simple
Groups (CFSG).

Ryser’s conjecture states that in each latin square of odd order there exists a
transversal. The least order for which it is not known whether the conjecture holds
is equal to eleven.

In fact, Ryser originally conjectured that the order of a latin square has the same
parity as the number of transversals it possesses. This is true for even orders, as
proved by Balasubramanian. On the other hand, there exist latin squares of odd
order with even number of transversals.

Filling a latin square row by row. A latin rectangle is a k × n table such that
each of the k rows contains each of the n-element symbols, and no symbol appears
twice in the same column. Latin squares thus are the n× n latin rectangles.

Using a result that is known as Hall’s matching theorem it is not difficult to
show that each latin rectangle may be completed to a latin square.

Smetaniuk proved that an n× n array that is filled in at most n− 1 cells may be
completed to a latin squares if there are no two cells in the same row or column
that would be filled by the same symbol.

Exercise. Let G be a group. Describe all subsquares of the multiplication table
of G.



Moufang identities

Left and right isotopes. Let Q be a loop, and let e be an element of Q. A full
name for the loop (Q, ∗), x ∗ y = x/e · y, might be the left loop principal isotope
induced by e. For simplicity let this be called a left isotope. Similarly, x∗y = x ·f\y
defines the right isotope induced by f .

Suppose that x ∗ y = x · f\y. What are the left isotopes of (Q, ∗)? Denote
by // the right division in (Q, ∗). Thus x//y = z ⇔ x = z ∗ y ⇔ x = z · f\y
⇔ z = x/(f\y). The operation of the left isotope of (Q, ∗) induced by e thus is
x//e∗y = (x/(f\e)) ·(f\y). If (f, e) runs through Q×Q, then (f\e, e) runs through
Q×Q too. This implies:

(1) The set of left isotopes of right isotopes of Q coincides with the
set of all principal loop isotopes of Q, and
(2) the set of right isotopes of left isotopes of Q also coincides with
the set of all principal loop isotopes of Q.

The statement above was proved under the assumption that Q is a loop. In fact it
holds for every quasigroup Q.

LIP loops. A loop Q is said to possess left inverses if

∀x ∈ Q ∃y ∈ Q such that Ly = L−1
x .

As will be proved, if Q possesses left inverses then

x(1/x · y) = y, 1/x · (xy) = y, x\1 · (xy) = y and x(x\1 · y) = y

for all x, y ∈ Q. On the other hand, if any of these identities holds, then Q
possesses left inverses. To prove the latter is easy since x(1/x · y) = y means that
LxL1/x = idQ, and the other identities may be intepreted similarly.

Let x, y ∈ Q be such that L−1
x = Ly. Then y(xz) = z for all z ∈ Q. Setting

z = 1 yields yx = 1 and y = 1/x. Setting z = x\1 yields y = x\1. The assumption
L−1
x = Ly also means that x(yz) = z for all z ∈ Q. Thus xy = 1, and y = x\1.

Setting z = y\1 gives x = y\1. Hence y = 1/(y\1) = 1/x too.
A loop that possesses left inverses thus fulfils all of the four identities. Therefore

1/x = x\1 for each x ∈ Q. If 1/x = x\1, then the notation x−1 may be used.
Saying that Q ‘possesses left inverses’ refers to the fact that the set {Lx; x ∈ Q}

is closed under the taking of an inverse permutation. A more traditional way of
saying that Q possesses left inverses is to say that Q has the left inverse property
(LIP). Furthermore, instead of saying that Q has the left inverse property it is usual
to say that Q is a LIP loop. As explained above, if Q is a LIP loop, then

∀x, y ∈ Q x · x−1y = x−1 · xy = y.

This may be also expressed as L−1
x = Lx−1 . RIP loops fulfil yx ·x−1 = y = yx−1 ·x.

That means R−1
x = Rx−1 .

Left isotopes and LIP loops. Let (Q, ∗) be a left isotope of a loop Q, say
x ∗ y = x/e · y. For x ∈ Q denote by λx the left translation of (Q, ∗), and by Lx the
left translation of Q. Then λx = Lx/e. Hence

{λx; x ∈ Q} = {Lx; x ∈ Q}.

This implies that Q is a LIP loop (i.e., posseses left inverses) if and only if (Q, ∗)
is a LIP loop. We have proved:

(1) A left isotope of a LIP loop is a LIP loop; and
(2) A right isotope of a RIP loop is a RIP loop.

1
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Left Bol loops. Let Q be a loop. The following is equivalent:

(1) The set LQ = {Lx; x ∈ Q} is closed under twists (i.e., if α, β ∈ LQ, then
αβα ∈ LQ);

(2) the set LQ = {Lx; x ∈ Q} is closed under inverted twists (i.e., if α, β ∈ LQ,
then αβ−1α ∈ LQ);

(3) if x, y ∈ Q, then LxLyLx = Lx·yx;
(4) each right isotope of Q is a LIP loop;
(5) each isotope of Q is a LIP loop;
(6) Q satisfies the identitity x(y · xz) = (x · yx)z.

Proof. First note that LxLyLx = Lx·yx means that x · (y · xz) = (x · yx)z. Hence
(3) ⇔ (6). If LxLyLx = Lz, then z = Lz(1) = LxLyLx(1) = x · yx. Hence (1) ⇔
(3) ⇔ (6).

If Q satisfies (2) then Q is a LIP loop since L−1
x = L1L

−1
x L1 ∈ LQ. Thus

Lx = L−1
x−1 and LxLyLx = LxL

−1
y−1Lx ∈ LQ, for any x, y ∈ Q. Hence (2) ⇒ (1). To

prove the converse by the same method it suffices to show that the identity of (6)
implies the left inverse property. That follows from setting y = 1/x. Indeed, then
x(1/x · xz) = xz, and so 1/x · xz = z. Therefore (1) ⇒ (2). We have shown that
(1) ⇔ (2) ⇔ (3) ⇔ (6).

Clearly, (5) ⇒ (4). The converse follows from the fact that each loop isotope
of Q is isomorphic to a principal loop isotope, each principal loop isotope is a left
isotope of a right isotope, and each left isotope of a LIP loop is a LIP loop.

To finish it thus suffices to verify (2) ⇔ (4). Consider f ∈ Q and denote by
λx the left translation of (Q, ∗), x ∗ y = x · f\y. Clearly, λx = LxL

−1
f . What

does it mean that the set {LxL−1
f ; x ∈ Q} is closed under inversions? This means

that for each x ∈ Q there exists y ∈ Q such that LxL
−1
f LyL

−1
f = idQ. Hence

L−1
f LxL

−1
f Ly = idQ, L−1

y LfL
−1
x Lf = idQ and Ly = LfL

−1
x Lf . In other words,

(Q, ∗) is a LIP loop if and only if for each x ∈ Q there exists y ∈ Q such that
LfL

−1
x Lf = Ly. This is true for all f ∈ Q if and only if the set LQ is closed under

inverted twists. �

The identity x(y · xz) = (x · yx)z is known as the left Bol law. Loops that fulfil
this law are called left Bol loops or just Bol loops. The right Bol loops are those
that fulfil the right Bol law z(xy · x) = (zx · y)x.

Moufang loops. A loop Q is called Moufang if it is both the left and the right
Bol loop. Moufang loops are thus those loops that satisfy both identities x(y ·xz) =
(x · yx)z and z(xy · x) = (zx · y)x.

The variety of Moufang loops is much bigger than the variety of groups. Never-
theless, Moufang loops are not so far from groups as other loop varieties. This is
well documented by the Moufang’s theorem:

Let Q be a Moufang loop. If x, y, z ∈ Q are such that x ·yz = xy ·z,
then 〈x, y, z〉 is a group.

The theorem of Moufang may be rephrased by saying that associating elements
generate an associating subloop (i.e., a group).

The proof of the theorem is relatively complicated and needs several pages.

Operations in a LIP loop. The left division of a LIP loop is dispensible since
x\y = x−1y for all elements x and y of a LIP loop Q. LIP loops may thus be
considered as algebras in signature (·, /,−1, 1) such that

x · 1 = x = 1 · x, (x−1)−1 = x, x−1 · xy = y and (y/x)x = y = (yx)/x.
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IP loops. A loop Q is said to have the inverse property if it is both a LIP loop
and a RIP loop. Loops with inverse property are called IP loops. An IP loop may
be considered as an algebra in signature (·,−1, 1) such that

x · 1 = x = 1 · x, (x−1)−1 = x and x−1 · xy = y = yx · x−1.

Lemma. If x, y ∈ Q and Q is an IP loop, then

(xy)−1 = y−1x−1.

Proof. The statement may be modified to y−1 = (x\y)−1x−1, by writing y as x\y.
Now,

y−1 = (x\y)−1x−1 ⇔ y−1x = (x\y)−1 ⇔ x = y(x\y)−1

⇔ x · (x\y) = y ⇔ y = y.

�

IP Bol loops are Moufang. A left Bol loop Q is a LIP loop. A right Bol loop is
a RIP loop. A Moufang loop is hence an IP loop. The statement to prove is:

Lemma. A RIP left Bol loop is Moufang.

Proof. In a left Bol loop x(y · xz) = (x · yx)z. If such loop is an IP loop, then

(x(y · xz))−1 = (z−1x−1 · y−1)x−1 and ((x · yx)z)−1 = z−1(x−1y−1 · x−1),

yielding thus the right Bol law. �

Flexibility and the Moufang law. The flexible law is the identity x ·yx = xy ·x.
Note that a loop Q is flexible if and only if LxRx = RxLx for all x ∈ Q.

Lemma. A loop Q is Moufang if and only if Q is a flexible Bol loop.

Proof. Let Q be a Moufang loop. Then Q is an IP loop such that x·(y·xz) = (x·yx)z
for all x, y, z ∈ Q. Setting z = x−1 yields xy = (x ·yx)x−1. Therefore xy ·x = x ·yx.

Let Q be a left Bol loop that is flexible. It is enough to verify that Q is a RIP
loop. The flexibility induces the identity x · (y · xz) = (xy · x)z. Setting z = x−1

yields xy = (xy · x)x−1. �

Two Moufang identities. Let Q be a loop. The following is equivalent:

(1) Q is Moufang;
(2) Q fulfils x(y · xz) = (xy · x)z;
(3) Q fulfils z(x · yx) = (zx · y)x;
(4) (RxLx, L

−1
x , Lx) ∈ Atp(Q) for all x ∈ Q; and

(5) (R−1
x , LxRx, Rx) ∈ Atp(Q) for all x ∈ Q.

Proof. Setting z = 1 yields the flexible law in both of the identities above. The
flexible law changes them into a Bol identity. Flexible Bol loops are Moufang. It
remains to observe that

x(y · xz) = (xy · x)z ⇔ Lx(yz) = x · yz = (xy · x)(x\z) = RxLx(y) · L−1
x (z);

z(x · yx) = (zx · y)x ⇔ R−1
x (z) · LxRx(y) = (z/x)(x · yx) = zy · x = Rx(zy).

�

Autotopisms describing Bol loops. The left Bol loop identity may be expressed
as x · yz = (x · yx)(x\z). Hence

Q is left Bol ⇔ (LxRx, L
−1
x , Lx) ∈ Atp(Q) for all x ∈ Q;

Q is right Bol ⇔ (R−1
x , RxLx, Rx) ∈ Atp(Q) for all x ∈ Q.
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Switching translations. Let Q be an IP loop. Denote the operation of the inverse
as a mapping I. Thus I(x) = x−1 for each x ∈ Q. Then

IRxI = L−1
x and ILxI = R−1

x for every x ∈ Q.

Proof. If x, y ∈ Q, then IRxI(y) = I(y−1x) = (y−1x)−1 = x−1y = L−1
x (y). �

Switching components of an isotopism. Suppose that Q is an IP loop and that
α, β, γ ∈ Sym(Q). If (α, β, γ) ∈ Atp(Q), then (γ, IβI, α) ∈ Atp(Q).

Proof. The assumption is that α(x)β(y) = γ(xy) for all x, y ∈ Q. This can be
expressed as α(x) = γ(xy)(β(y))−1 = γ(xy) · Iβ(y). Replacing x with xy−1 yields

α(xI(y)) = γ(x) · Iβ(y). Thus α(xy) = γ(x) · IβI(y).

�

The third Moufang identity. A loop Q fulfils the identity

xy · zx = x(yz · x) ⇔ (Lx, Rx, LxRx) ∈ Atp(Q) for each x ∈ Q.
Each such loop is a flexible IP loop.

Proof. To get the RIP set z = 1/x. Then xy = x((y ·1/x)x), and thus y = (y ·1/x)x
for all x, y ∈ Q. To get flexibility set z = 1. The flexibility implies that the identity
is equivalent to its mirror image xy · zx = (x · yz)x. That yields the LIP. �

The equivalence of Moufang identities. Let Q be a loop. Each of the following
identities is equivalent to Q being Moufang:

x(y · xz) = (xy · x)z, (lM)

(zx · y)x = z(x · yx), (rM)

xy · zx = x(yz · x), and (mMl)

xy · zx = (x · yz)x. (mMr)

Proof. We already know that (lM) ⇔ (rM). By flexibility, (mMl) ⇔ (mMr). Com-
posing autotopism expressions of (lBol) and (rM) implies that

(LxRx, L
−1
x , Lx) (R−1

x , LxRx, Rx) = (Lx, Rx, LxRx) ∈ Atp(Q)

in every Moufang loop Q. Thus (lM) ⇒ (mM). To get the converse implica-
tion note that switching components of (Lx, Rx, LxRx) yields (LxRx, IRxI, Lx) =
(RxLx, L

−1
x , Lx) since loops fulfilling (mM) are flexible IP loops. �

Description of nuclei. Similar technique may be used to prove that in a Moufang
loop Nλ(Q) = Nρ(Q) = Nµ(Q). Recall that if Q is a loop, then

Nλ(Q) = {a ∈ Q; a · xy = ax · y for all x, y ∈ Q};
Nµ(Q) = {a ∈ Q; x · ay = xa · y for all x, y ∈ Q}; and

Nρ(Q) = {a ∈ Q; x · ya = xy · a for all x, y ∈ Q}.
It is clear that

a ∈ Nλ(Q) ⇔ (La, idQ, La) ∈ Atp(Q), and

a ∈ Nρ(Q) ⇔ (idQ, Ra, Ra) ∈ Atp(Q).

Middle nucleus and translations. Let Q be a loop. Then

a ∈ Nµ(Q) ⇔ (Ra, L
−1
a , idQ) ∈ Atp(Q) ⇔ (R−1

a , La, idQ) ∈ Atp(Q).

Proof. Indeed, x · ay = xa · y holds for all x, y ∈ Q if and only if xy = xa · a\y or,
alternatively, x/a · ay = xy, for all x, y ∈ Q. �
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Nuclei in Bol loops and Moufang loops.

(1) Let Q be left Bol. Then Nλ(Q) = Nµ(Q).
(2) Let Q be right Bol. Then Nρ(Q) = Nµ(Q).
(3) Let Q be Moufang. Then Nλ(Q) = Nµ(Q) = Nρ(Q).

Proof. It suffices to verify the first claim. Recall that in every left Bol loop
(LxRx, L

−1
x , Lx) ∈ Atp(Q), for every x ∈ Q. The equality

(L−1
a , idQ, L

−1
a ) (LaRa, L

−1
a , La) = (Ra, L

−1
a , idQ)

thus implies that (La, idQ, La) ∈ Atp(Q) if and only if (Ra, L
−1
a , idQ) ∈ Atp(Q). �

The left and right alternative laws. These are the laws x · xz = xx · z and
zx · x = z · xx, respectively. Loops satisfying these laws are said to have the left or
right alternative property. The loops themselves are then known as LAP and RAP
loops.

The left Bol law x(y · xz) = (x · yx)z yields the left alternative law by setting
y = 1. Left Bol loops are thus LAP loops, while right Bol loops are RAP loops.

Exercise. A loop Q is a left Bol loop if and only if each loop isotope of Q fulfils
the LAP. A loop Q is a right Bol loop if and only if each loop isotope of Q fulfils
the RAP.

Power associativity. A loop Q is said to be left power associative if it is LIP and
fulfils

LxiLxj (y) = Li+jx (y) for all x, y ∈ Q and all i, j ∈ Z.

The left power associativity may be paraphrased by saying that terms of the
form

x±1x±1 · · ·x±1y

are independent of bracketing.
It may be proved that left Bol loops are left power associative. The proof is not

difficult.

Diassociativity. A loop Q is said to be diassociative if the subloop 〈x, y〉 is asso-
ciative (and thus a group) for any choice x, y ∈ Q.

Moufang loops are diassociative. This follows, e.g., from flexibility and Mo-
ufang’s theorem. There exist direct proofs of diassociativity in Moufang loops.
However, they are not much simpler than the proof of the Moufang’s theorem.



Extra loops

In this section it will be proved that Moufang loops with squares in the nucleus
coincide with loops fulfilling the identity xy ·xz = x(yz ·x). Such loops are called ex-
tra loops. The section concludes by a construction of extra loops that encompasses
the loop of octonions, which is probably the most well known Moufang loop.

Other results of this section include a proof that all nuclei are associative subloops
(i.e., groups).

From autotopisms to nuclear elements. Let Q be a loop and let α, β, γ ∈
Sym(Q).

(1) (α, idQ, γ) ∈ Atp(Q) ⇒ ∃ a ∈ Nλ(Q) such that α = γ = La;
(2) (idQ, β, γ) ∈ Atp(Q) ⇒ ∃ a ∈ Nρ(Q) such that β = γ = Ra; and

(3) (α, β, idQ) ∈ Atp(Q) ⇒ ∃ a, b ∈ Nµ(Q) such that ab = 1, α = Ra = R−1
b

and β = L−1
a = Lb.

Proof. If (α, idQ, γ) ∈ Atp(Q), then α(x)y = γ(xy) for all x, y ∈ Q. Setting y = 1
yields α = γ, setting x = 1 provides ay = γ(y), where a = α(1).

Suppose that (α, β, idQ) ∈ Atp(Q). Then α(x)β(y) = xy for all x, y ∈ Q.

Substitutions x = 1 and y = 1 give β = L−1
a , where a = α(1), and α = R−1

b ,
where b = β(1). Thus x/b · a\y = xy for all x, y ∈ Q. Putting x = b provides
Lb = L−1

a = β, and y = a yields R−1
b = Ra = α. Therefore LaLb = RaRb = idQ

and thus 1 = idQ(1) = LaLb(1) = ab = RaRb(1) = ba. �

LIP and RIP elements. Let Q be a loop. An element a ∈ Q is said to be a LIP
element if there exists b ∈ Q such that L−1

a = Lb. Arguments used in case of LIP
loops may be applied without a change to show that if L−1

a = Lb, then b = 1/a =
a\1. Hence b may be denoted by a−1. If x ∈ Q, then a−1(ax) = x = a(a−1x).

RIP elements are defined symmetrically. An element that is both RIP and LIP
is called an IP element.

Nuclei and inverse properties. If (La, idQ, La) ∈ Atp(Q), Q a loop, then
(L−1

a , idQ, L
−1
a ) ∈ Atp(Q). Therefore for each a ∈ Nλ(Q) there exists b ∈ Nλ(Q)

such that L−1
a = Lb. This shows that elements of the left nucleus satisfy the LIP,

and that Nλ(Q) is closed under inverses. Similarly elements of the right nucleus
satisfy the RIP, and Nρ(Q) is closed under inverses.

If c ∈ Nµ(Q), then (R−1
c , Lc, idQ) ∈ Atp(Q). By the statement above there exist

a, b ∈ Nµ(Q) such that R−1
c = Ra = R−1

b and Lc = L−1
a = Lb. Hence c = b. This

means that each element of a middle nucleus is an IP element, and Nµ(Q) is closed
under inverses.

Nuclei are groups. Let Q be a loop. Then each of sets Nλ(Q), Nµ(Q) and Nρ(Q)
is an associative subloop of Q (i.e., a group).

Proof. Suppose that a, b ∈ Nλ(Q). Then

(La, idQ, La)(Lb, idQ, Lb) = (LaLb, idQ, LaLb) ∈ Atp(Q).

Therefore there exists c ∈ Nλ(Q) such that Lc = LaLb. Since c = Lc(1) =
LaLb(1) = ab, we have ab ∈ Nλ(Q) for all a, b ∈ Nλ(Q). If a, b, c ∈ Nλ(Q),
then a · bc = ab · c. This proves that Nλ(Q) is a subsemigroup of Q in which every
element possesses an inverse. That makes Nλ(Q) a group.

The case of Nρ(Q) can be obtained by mirroring. To prove that Nµ(Q) is a
semigroup closed under inverses start from

(R−1
a , La, idQ)(R−1

b , Lb, idQ) = (R−1
ab , Lab, idQ), for all a, b ∈ Nµ(Q).

�
1
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The nucleus. If Q is a loop, then N(Q) = Nλ(Q) ∩Nρ(Q) ∩Nµ(Q) is called the
nucleus of Q. In general all three nuclei may by pairwise distinct. Since each of
them is a subloop of Q, the nucleus always is an associative subloop of Q. In some
cases, like in Moufang loops, all three nuclei coincide and are equal to N(Q).

Inverted Moufang indentities. Let Q be a Moufang loop. Then

(xy · z)x−1 = x(y · zx−1) and x−1(y · zx) = (x−1y · z)x.

Proof. This is essentially only one identity since x = (x−1)−1. The identity can be
also expressed as xy·z = x(y·zx−1)x. The right hand is equal to xy·(zx−1·x) = xy·z,
by (Mm). �

The argument might be reversed. Since both

(xy · z)(x\1) = x(y · z(x\1)) and (xy · z)(1/x) = x(y · z(1/x))

yield the IP property, as may be verified readily, each of them is an equivalent
formulation of the Moufang identity.

An identity induced by squares in nucleus. Let Q be a Moufang loop such
that x2 ∈ N(Q) for every x ∈ Q. Then Q satisfies the identity

(xy · z)x = x(y · zx). (mE)

Proof. (xy · z)x = (xy · z)(x−1 · x2) = ((xy · z)x−1)x2 = (x(y · zx−1))x2 = x(y ·
(zx−1)x2) = x(y · zx). �

Equivalence of the extra identities. The identity (mE) is equivalent to each
these two identities:

xy · xz = x(yx · z) and (lE)

zx · yx = (z · xy)x. (rE)

Proof. Let us first verify that each of the three identities yields a flexible IP loop.
The flexibility may be obtained by setting z = 1. Further on, only (mE) and (lE)
will be considered since (rE) is a mirror image of (lE).

In the case of (xy · z)x = x(y · zx) set z = 1/x to get the RIP, and y = x\1 to
obtain the LIP. For xy · xz = x(yx · z) set z = x\1 to get the RIP. To obtain the
LIP consider first the equality

xy · (x · yz) = x(yx · yz) = x · y(xy · z).

The RIP implies the existence of two sided inverses. Setting z = (xy)−1 gives
xy · (x · y(xy)−1) = xy. Hence x · y(xy)−1 = 1. Since x−1 is the two sided inverse,
y(xy)−1 = x−1. Applying the RIP yields y = x−1(xy).

Writing (xy · z)x = x(y · zx) as (xy · z/x)x = x · yz shows that Q satisfies (mE)
if and only if

∀x ∈ Q (Lx, R
−1
x , R−1

x Lx) ∈ Atp(Q).

Expressing xy · xz = x(yx · z) as (x(y/x) · xz = x · yz yields the formulation

∀x ∈ Q (LxR
−1
x , Lx, Lx) ∈ Atp(Q).

Since we are dealing with IP loops, a switching of coordinates and the identity
IR−1

x I = Lx provide

(LxR
−1
x , Lx, Lx) ∈ Atp(Q) ⇔ (Lx, R

−1
x , LxR

−1
x ) ∈ Atp(Q).

The rest follows from the flexibility. �
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Extra loops are Moufang loops with squares in the nucleus. Identities
(mE), (rE) and (lE) are known as the extra identities. A loop satisfying an extra
identity is said to be an extra loop. A loop Q is extra if and only if Q is a Moufang
loop such that x2 ∈ N(Q) for each x ∈ Q.

Proof. As shown above, Moufang loops with nuclear squares fulfil (mE). To prove
the converse consider an extra loop Q. Both (LxR

−1
x , Lx, Lx) and (Lx, R

−1
x , R−1

x Lx)
are autotopisms for each x ∈ Q. Hence

(R−1
x Lx, Lx, Lx)(L−1

x , Rx, L
−1
x Rx) = (R−1

x , LxRx, Rx)

is an autotopism of Q for each x ∈ Q too. This means that Q is a Moufang loop
since these autotopisms describe the identity (rM).

By the (mM) identity, (Lx, Rx, LxRx) ∈ Atp(Q) for every x ∈ Q. Therefore

(Lx, Rx, LxRx)(L−1
x , Rx, L

−1
x Rx) = (idQ, R

2
x, LxRxL

−1
x Rx)

is an autotopism for each x ∈ Q. Hence x2 = R2
x(1) ∈ Nρ(Q) = N(Q), for each

x ∈ Q. �

The centre. For a loop Q put

Z(Q) = {a ∈ N(Q); ax = xa for every x ∈ Q.}

This is the centre of Q. An element a ∈ N(Q) thus belongs to the centre if and
only if La = Ra.

Central elements are IP elements since Z(Q) ⊆ Nµ(Q). If a, b ∈ Z(Q), then
Lab = Lba = LbLa = RbRa = Rab and La−1 = L−1

a = R−1
a = Ra−1 . That makes

Z(Q) a subgroup of N(Q).
A subloop Z of Q is said to be central if Z ≤ Z(Q).
Consider a central subloop Z ≤ Q. If x, y ∈ Q and a, b ∈ Z, then xa = yb implies

y = xc = cx, where c = ab−1 = b−1a. This shows that Q may be partitioned into
cosets xZ = Zx. We have xZ · yZ = xyZ for all x, y ∈ Q, and this defines the
structure of a factor loop Q/Z. (Later we shall pay attention to conditions under
which a factor loop Q/S may be defined if S ≤ Q is not necessary central.)

Involutory Moufang loops are groups. A loop Q is said to be involutory if
x2 = 1 for all x ∈ Q. As is well known, involutory groups are commutative, and
thus coincide with the class of elementary abelian 2-groups. Let us observe that
the same is true for Moufang loops.

They are commutative since if x, y ∈ Q, then xy · yx = xy2x = x2 = 1, and that
implies yx = (xy)−1 = xy. Hence y = x2y = x(xy) = xyx for all x, y ∈ Q. They
are associative since zx · y = y · zx = y · zx−1 = x(y · zx−1)x = xy · z = z · xy.

A journey to octonions. A 4-element vector space may be represented by a
triangle. The vertices correspond to nonzero vectors. The sum of two distinct
vertices is the third vertex.

An 8-element vector space may be represented by a Fano plane. The vertices
correspond to nonzero vectors. The sum of two distinct vertices is the vertex that
completes the line passing through the two vertices.

Suppose that v0, v1 and v2 are pairwise distinct nonzero elements of a 8-element
vector space V such that v2 6= v0 + v1. Define a sequence of vectors vi, i ≥ 0, by
setting vi+3 = vi + vi+1. Thus

v3 = v0 + v1, v4 = v1 + v2, v5 = v2 + v3 = v0 + v1 + v2, v6 = v3 + v4 = v0 + v2,

v7 = v4 + v5 = v0, v8 = v5 + v6 = v1 and v9 = v6 + v7.
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Hence vi, 0 ≤ i ≤ 6, are all nonzero vectors of V , the indices i may be computed
modulo 7, and {vi, vi+1, vi+3}, 0 ≤ i ≤ 6, are all lines of the Fano plane that is
induced by V .

We have obtained a representation of Fano plane upon an oriented cycle of 7
elements. Let it be called a circular representation of Fano plane.

Let us get oriented. An oriented triangle may be thought of as a representation
of the quaternion group Q8. If the triangle is oriented as (a0 a1 a2), then there
exists a unique quaternion group upon {ai,−ai; 0 ≤ i ≤ 2} ∪ {−1, 1} such that
a2i = −1 and aiai+1 = ai−1, i ∈ Z3.

Suppose now that each line of a Fano plane obtains one of two possible orien-
tations. This yields seven oriented 3-cycles each of which is further on interpreted
as a quaternion group. Elements −1 and 1 are considered to be common for all of
the seven quaternion groups. Denote by U their union. Any two elements x, y ∈ U
occur in one of these groups, and so their product is well defined. This makes U
a loop, and this loop is diassociative. The set Z = {−1, 1} is a central subgroup,
and U/Z ∼= (V,+).

The question is whether there exists an orientation that makes U a Moufang
loop (and thus also an extra loop). In fact, there exist several such orientations.
However, loops produced by these orientations are mutually isomorphic.

The orientation that is standardly used to produce a Moufang loop is based upon
the circular representation of Fano plane. This results in setting U = {ei,−ei; 0 ≤
i ≤ 6} ∪ {−1, 1} where −1 is a central element equal to each e2i , and eiei+1 = ei+3,
0 ≤ i ≤ 6. This loop is known as the loop of octonions. More precisely U is
the loop of octonion units, similarly as {±1,±i,±j,±k} is the group of quaternion
units. (Quaternions H are a division ring upon R4 and octonions O are an algebra
upon R8.)

In fact U is up to isomorphism the only Moufang loop Q of order 16 for which
there exists a central subloop Z = {1, z} such that x2 = z for each x ∈ Q \ Z.

We shall now show that if such a loop Q exists, then it has to be isomorphic to
U . However, the very existence of Q will be verified later.

Proof. First note that there exists an 8-element vector space V such that (V,+) ∼=
Q/Z. This is because Q/Z is an involuntory Moufang loop. If x, y ∈ Q \ Z and
y /∈ {x, xz}, then 〈x, y〉/Z is isomorphic to Klein group, and 〈x, y〉 is a group
isomorphic to the group of quaternions Q8. This follows from the diassociativity of
Q (a direct proof is also possible). Hence xy = yxz and xyx = y.

Denote the nonzero vectors of V by vi, 0 ≤ i ≤ 6, so that each {vi, vi+1, vi+3}
is a line of the corresponding Fano plane. For i ∈ {0, 1, 2} choose any ei such that
eiZ = vi. Set e3 = e0e1, e4 = e1e2, e5 = e2e3 and e6 = e3e4. Then eiZ = vi
for every i ∈ {0, . . . , 6}. The choice and definitions of ei establish an orientation
(vi, vi+1, vi+3) of a line for i ∈ {0, 1, 2, 3}. It remains to observe that the Moufang
law forces out this orientation for the remaining values of i as well. Now, e4e5 =
e1e2 · e2e3 = e2e1z · ze3e2 = e2e1 · e3e2 = e2 · e1e3 · e2 = e2e0e2 = e0. Similarly,
e5e6 = e2e3 · e3e4 = e3 · e2e4 · e3 = e3e1e3 = e1. Finally, e6e0 = e3e4 · e0 =
(e0e1 · e4)e0 = z(e1e0 · e4)e0 = z(e1 · e0e4e0) = ze1e4 = e4e1 = e2. �

A construction using quadratic forms. Let V be a vector space over a field
F . A mapping g : V → F is said to be a quadratic form if h : (x, y) 7→ g(x + y) −
g(x) − g(y) is a bilinear form V × V → F and g(λx) = λ2g(x) for all x ∈ V and
λ ∈ F . If char(F ) = 2, then the bilinear form is alternating (which means that
h(x, x) = 0 for every x ∈ V ).

Recall that if h : V ×V → F is alternating and bilinear, then h(x, y) = −h(y, x),
for all x, y ∈ F (no assumption on char(F ) is being made here). Recall also that
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a multilinear mapping f : V n → F is said to be alternating if f(x1, . . . , xn) = 0
whenever xi = xj , where 1 ≤ i < j ≤ n. If σ ∈ Sn and f is alternating, then

f(xσ(1), . . . , xσ(n)) = (−1)sgn(σ)f(x1, . . . , xn). Alternating multilinear mappings in
characteristic two thus are symmetric.

Theorem. Let V be a vector space over a field F , char(F ) = 2, and let q : V ×V →
F be such that for each v ∈ V the mapping x 7→ q(x, v) is a quadratic form, while
the mapping x 7→ q(v, x) is a linear form. Put Q = V × F and define a binary
operation upon Q by

(u, a)(v, b) = (u+ v, q(u, v) + a+ b)

and assume that q(u + v, u) = q(u, u) + q(v, u) for all u, v ∈ V . Then (Q, ·) is a
Moufang loop. Furthermore, the mapping A : V ×V ×V → F defined by A(u, v, w) =
q(u + v, w) + q(u,w) + q(v, w) is an alternating trilinear mapping, and a triple of
elements ((u, a), (v, b), (w, c)) ∈ Q3 is associative if and only if A(u, v, w) = 0.

Proof. The multilinearity of A follows directly from the assumptions on q. Clearly,
A(u, v, w) = A(v, u, w) and A(u, u, v) = 0, for any u, v, w ∈ V . To verify that A
is an alternating trilinear form it thus remains to show that A(u, v, u) = 0. This
follows from q(u+ v, u) + q(u, u) + q(v, u) = q(u, u) + q(v, u) + q(u, u) + q(v, u) = 0.

The neutral element is (0, 0) since q(u, 0) = q(0, u) for all u ∈ V . The operation
· thus yields a loop. Each element (0, a) is central and (u, a) = (u, 0)(0, a). A triple
((u, a), (v, b), (w, c)) is thus associative if and only if the triple ((u, 0), (v, 0), (w, 0))
is associative. Now, ((u, 0) · (v + w, q(v, w)) = (u + v + w, q(u, v + w) + q(v, w))
is equal to (u + v, q(u, v)) · (w, 0) = (u + v + w, q(u + v, w) + q(u, v)) if and only
if A(u, v, w) = q(u,w) + q(v, w) + q(u + v, w) is equal to 0 since q(u, v + w) =
q(u, v) + q(u,w).

To verify that (Q, ·) is a Moufang loop it suffices to show that

(u, 0)(v, 0) · (w, 0)(u, 0) = (u, 0)((v, 0)(w, 0) · (u, 0)).

Note that (v, 0)(w, 0)·(u, 0) = (v+w, q(v, w))(u, 0) = (v+w+u, q(v+w, u)+q(v, w)).
The left hand side of the Moufang identity is

(u+ v, q(u, v)) · (w + u, q(w, u)) = (v + w, q(u, v) + q(w, u) + q(u+ v, w + u)),

while the right hand side is equal to

(u, 0)·(u+v+w, q(v+w, u)+q(v, w)) = (v+w, q(u, u+v+w)+q(v+w, u)+q(v, w)).

The question thus is whether

q(u, v) + q(u+ v, u) + q(w, u) + q(u+ v, w) =

q(u, v) + q(u, u) + q(v, u) + q(w, u) + q(u+ v, w)

is equal to
q(u, v) + q(u, u) + q(u,w) + q(v + w, u) + q(v, w).

That really holds since q(v, u) + q(w, u) + q(v + w, u) = A(v, w, u) is equal to
A(u, v, w) = q(u+ v, w) + q(u,w) + q(v, w). �

Parameters for quadratic forms. Let F be a field of characteristic 2, let V be a
vector space over F , and let b1, . . . , bn be a basis of V . A quadratic form g : V → F
is fully determined by values of g at bi and bi + bj , 1 ≤ i < j ≤ n. This fact follows
from the formula

g
(∑

λibi

)
=
∑
i

λ2i g(bi) +
∑
i<j

λiλj(g(bi) + g(bj) + g(bi + bj))

that may be easily proved. Whenever g(bi), g(bj) and g(bi + bj) are given, then the
formula defines a quadratic form.
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Suppose now that n = 3 and set

q
(∑

λibi,
∑

νibi

)
= λ21(ν1 + ν2 + ν3) + λ22(ν2 + ν3) + λ23ν3

+ λ1λ2ν3 + λ1λ3ν2 + λ2λ3ν1.

Fixing any value of the second coordinate thus yields a quadratic form, while fixing
any value for the first coordinate provides a linear form. Set A(u, v, w) = q(u,w) +
q(v, w) + q(u + v, w). This is a trilinear form. Suppose that u =

∑
λibi, v =∑

ρibi and w =
∑
νibi. Since λ2i + ρ2i = (λ + ρi)

2 the first part of the formula
defining q contributes nothing to A(u, v, w). Let now {i, j, k} = {1, 2, 3}. Then
λiλjνk + ρiρjνk + (λi + ρi)(λj + ρj)νk = λiρjνk + λjρiνk. Since A(u, v, w) is
obtained by summing over all i, j, k, there has to be A(u, v, w) = det(u, v, w) (i.e.,
a determinant of the matrix in which the columns are formed by coefficients of
u, v and w, respectively). Thus A(u, v, u) = 0, and that shows that q as defined
can be used to build a Moufang loop on V × F . The operation of the loop is
(u, a)(v, b) = (u+ v, q(u, v) + a+ b).

Use now the same formula for F = {0, 1}. To see that the construction yields a
Moufang loop in which (u, a)(u, a) = (0, 1) whenever u 6= 0 we have to show that if
at least one of λi ∈ F is nonzero and u = λ1b1 + λ2b2 + λ3b3, then q(u, u) = 1.

It is easy to verify that

q(u, u) = λ1λ2λ3 + λ1λ2 + λ2λ3 + λ1λ3 + λ1 + λ2 + λ3.

This yields 1 if λ1 = λ2 = λ3 = 1. If λ3 = 0, then the formula to consider is
λ1λ2 +λ1 +λ2. That is equal to 0 if and only if λ1 = λ2 = 0. We can thus conclude
by stating:

The loop of octonion units. There exists a Moufang loop Q upon elements
±1,±e0, . . . ,±e6 such that (−1)(±ei) = ∓ei, e2i = −1, −1 is a central element,
eiej = −ejei if 0 ≤ i ≤ 6, and

eiei+1 = ei+3, eiei+2 = ei−1, eiei+3 = −ei+1

for each i ∈ {0, . . . , 6}, with the indices computed modulo 7.
Let V be a vector space over F with nonzero vectors v0, . . . , v6 such that vi +

vi+1 = vi+3 for each i ∈ {0, . . . , 6}. Denote by π the mapping ±ei 7→ vi, ±1 7→ 0.
Then π is a homomorphism (Q, ·)→ (V,+). A triple (x, y, z) ∈ Q3 is associative if
and only if det(π(x), π(y), π(z)) = 0 since the trilinear mapping A coincides with
the determinant. The associativity is thus equivalent to linear dependence.



Multiplication groups

Preliminaries involving permutation groups. Let G be a permutation group
upon a set Ω. Fix an element ω ∈ Ω. The set of all g ∈ G that fixes ω is said to be
the stabilizer of G at ω. It is a subgroup and is denoted by Gω.

Lemma 1. Suppose that g ∈ G and α = g(ω). Then Gα = gGωg
−1. If G is

transitive, then Gω ∩ Z(G) = 1.

Proof. Let h be an element of G. Then h ∈ Gα ⇔ h(α) = α ⇔ hg(ω) = g(ω) ⇔
g−1hg(ω) = ω ⇔ g−1hg ∈ Gω ⇔ h ∈ gGωg−1. Suppose that G is transitive and
that h ∈ Z(G) fixes ω. Since G is transitive, for each α ∈ Ω there exists g ∈ G such
that g(ω) = α. Since h ∈ Gω, ghg−1 ∈ Gα. Therefore h = ghg−1 ∈ Gα. Hence
h(α) = α for each α ∈ Ω. Thus h = idΩ. �

Recall that if S is a subset of a group G, then NG(S) = {g ∈ G; gSg−1 = S}
is called the normalizer of S, and CG(S) = {g ∈ G; gs = sg for all s ∈ S} the
centralizer of S. Both NG(S) and CG(S) are subgroups of G. To prove that H ≤ G
is a subgroup of NG(S) it suffices to verify that hSh−1 ⊆ S for every h ∈ H. Indeed,
h−1S(h−1)−1 ⊆ S is the same as S ⊆ hSh−1. Similarly for centralizers.

Lemma 2. Let g be an element of G. Then Gg(ω) = Gω if and only if g ∈ NG(Gω).

Proof. By Lemma 1, Gg(ω) = Gω if and only if gGωg
−1 = Gω, which is the same

as g ∈ NG(Gω). �

Lemma 3. Let h and g be elements of G. Then hGω = gGω if and only if g(ω) =
h(ω), while Gωh = Gωg if and only if g−1(ω) = h−1(ω).

Proof. Since (Gωh)−1 = h−1Gω, only the first equality needs to be verified. Now,
hGω = gGω ⇔ h−1g ∈ Gω ⇔ h−1g(ω) = ω ⇔ g(ω) = h(ω). �

A set Γ ⊆ Ω is said to be a block (of G) if it is nonempty and satisfies the
implication

g(γ) ∈ Γ ⇒ g(Γ) ⊆ Γ

for all g ∈ G and γ ∈ Γ.

Lemma 4. Let Γ be a block. If g ∈ G, then either g(Γ) = Γ or g(Γ) ∩ Γ = ∅. In
any case, g(Γ) is a block of G as well.

Proof. Suppose first that there exist β, γ ∈ Γ such that g(γ) = β. Then g(Γ) ⊆ Γ
by the definition of a block. Since g−1(β) = γ, g−1(Γ) ⊆ Γ too. Hence g(Γ) = Γ.
We have proved that this is true whenever γ(Γ) ∩ Γ 6= ∅.

To prove that g(Γ) is always a block, consider α ∈ g(Γ) and h ∈ G such that
h(α) = β ∈ g(Γ). Then hg(g−1(α)) = g(g−1(β)), and thus g−1hg(g−1(α)) =
g−1(β). Both g−1(α) and g−1(β) belong to Γ. Therefore g−1hg(Γ) = Γ, which
means h(g(Γ)) = g(Γ). We have shown that g(Γ) is a block. �

Blocks Γ1 and Γ2 are said to be conjugate if there exists g ∈ G such that
g(Γ1) = Γ2. The relation ‘to be conjugate’ clearly is an equivalence upon the set of
all blocks of G.

Corollary 5. Suppose that G is transitive. If Γ is a block of G, then the set of
all g(Γ), g ∈ G, partitions the set Ω. Furthermore, two blocks are conjugate if and
only if they induce the same partition of Ω.

Proof. Indeed, the transitivity ensures that the sets g(Γ) are blocks that cover all
of Ω. Moreover, any two such blocks are conjugate. The rest follows from Lemma 4
in an immediate fashion. �

1
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An equivalence ∼ of Ω is said to be stable under G if

α ∼ β ⇔ g(α) ∼ g(β) for each α, β ∈ Ω and g ∈ G.

In fact it is enough to prove that the implication

α ∼ β ⇒ g(α) ∼ g(β) for each α, β ∈ Ω and g ∈ G.

is satisfied, since then g(α) ∼ g(β) implies α = g−1g(α) ∼ g−1g(β) = β.

Lemma 6. Let ∼ be a stable equivalence. If α ∈ Ω and g ∈ G, then [α]∼ and
[g(α)]∼ are conjugate blocks. If G is transitive, then the blocks of ∼ form a partition
of Ω by conjugate blocks. On the other hand, every such partition induces a stable
equivalence.

Proof. By the definition of stable equivalence, g([α]∼) = [g(α)]∼, for every α ∈ Ω
and each g ∈ G. If Γ = [ω]∼ and g(ω) ∈ Γ, then g(Γ) = Γ. Hence each block of ∼
is a block of G. The rest follows from Corollary 5. �

Lemma 7. For α, β ∈ Ω set α ∼ β ⇔ Gα = Gβ. The equivalence ∼ is stable under
G. Furthermore, suppose that G is transitive, that ω ∈ Ω and that Γ = {α ∈ Ω;
Gω ⊆ Gα}. If Γ is a block of G, then Γ = [ω]∼.

Proof. If Gα = Gβ and g ∈ G, then Gg(α) = Gg(β), by Lemma 1. Suppose now
that G is transitive and that ω and Γ are as in the statement. Suppose that α ∈ Γ
and let g ∈ G be such that g(ω) = α. Then Gω ⊆ gGωg−1 = Gα, by Lemma 1 and
the definition of Γ. Since g(Γ) = Γ there is also g−1(ω) ∈ Γ, and so Gω ⊆ g−1Gωg.
Therefore Gω = gGωg

−1 = Gα. �

The following characterization of blocks is nearly self-evident. Note that it differs
from the definition of a block by considering the defining property just for one
element, i.e. the element ω.

Lemma 8. Suppose that Γ is a subset of the orbit G(ω) that contains ω. The
following is equivalent:

(1) Γ is a block;
(2) the ensuing implication holds for all g ∈ G:

g(ω) ∈ Γ ⇒ g(Γ) ⊆ Γ and g−1(ω) ∈ Γ;

(3) the ensuing implication holds for all g ∈ G:
g(ω) ∈ Γ ⇒ g(Γ) = Γ.

Proof. Points (2) and (3) are equivalent since if (2) holds, then g−1(ω) ∈ Γ implies
g−1(Γ) ⊆ Γ. If Γ is a block, then (3) holds, by Lemma 4. For the converse assume
that g(γ) ∈ Γ for some γ ∈ Γ and g ∈ G. Since Γ ⊆ G(ω), there exists h ∈ G
such that h(ω) = γ. This gives h(Γ) = Γ, gh(ω) ∈ Γ and gh(Γ) = Γ. Hence
g(Γ) = Γ. �

Lemma 9. Let H ≤ G be such that Gω ≤ H. Then Γ = H(ω) (the orbit of ω
under the action of H) is a block of G, and H = {g ∈ G; g(ω) ∈ Γ}.

Proof. Let g ∈ G be such that g(ω) ∈ H(ω). Then g(ω) = h(ω) for some h ∈ H.
Therefore h−1g ∈ Gω ≤ H, and thus g ∈ H. Hence g(H(ω)) = (gH)(ω) = H(ω).
That makes H(ω) a block. If g(ω) ∈ Γ, g ∈ G, then there exists h ∈ H such that
g(ω) = h(ω). Hence h−1g ∈ Gω ≤ H, and so g = h(h−1g) ∈ H. �

Lemma 10. Let Γ ⊆ G(ω) be a block of G such that ω ∈ Γ. Put H = {h ∈ G;
h(ω) ∈ Γ}. Then H is a subgroup of G that contains Gω, and Γ = H(ω).

Proof. Since Γ is a block within the orbit of ω, there has to be H = {h ∈ G; h(Γ) =
Γ}, by Lemma 8. This implies that H is a subgroup of G and that Γ = H(ω). �
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Note that {ω} is always a block of G and that the orbit G(ω) is also a block.
Lemmas 9 and 10 establish a 1-to-1 correspondence between blocks Γ ⊆ G(ω)

that include ω, and subgroups of G that contain Gω. The correspondence respects
inclusions. Hence it yields an isomorphism between the lattice of blocks that are
subsets ofG(ω) and contain ω, and the interval [Gω, G] in the lattice of all subgroups
of G. If G(ω) 6= {ω}, then Gω 6= G. In such a case the interval [Gω, G] contains
only two elements (two subgroups) if and only if there exists no block that is a
proper subset of G(ω) and contains at least two elements.

The permutation group G is said to be primitive if it is nontrivial and the only
blocks of G are Ω and {α}, α ∈ Ω. Since G(ω) is a block, a primitive group has to
be transitive. In view of the correspondence described above, the following claim
may be stated without a proof.

Lemma 11. A nontrivial transitive permutation group G is primitive if and only
if Gω is a maximal subgroup of G.

Lemma 12. If H EG and Γ is an orbit of H, then Γ is a block.

Proof. Suppose that ω ∈ Γ and put K = HGω. This is a subgroup of G, since
H EG. If k ∈ K, then there exists h ∈ H such that k(ω) = h(ω). Thus Γ = K(ω).
The statement follows from Lemma 9. �

Lemma 13. Let ∼ be the equivalence upon Ω given by Gα = Gβ. Assume that G
is transitive and put Γ = [ω]∼. Then Γ is a block of G, and {g ∈ G; g(ω) ∈ Γ} =
NG(Gω).

Proof. The set Γ is a block by Lemmas 7 and 6. By Lemma 2, Γ = NG(Gω)(ω).
The rest follows from Lemma 9 since NG(Gω) contains Gω. �

Suppose that U ≤ V are groups and that S ⊆ V . Call S a left transversal to
U in V if SU = V , 1 ∈ S, and s1U = s2U ⇒ s1 = s2, whenever s1, s2 ∈ S.
The right transversal is defined in a mirror way. A set that is both left and right
transversal is known as a two-sided tranversal, or just a transversal. The notion of
transversal is sometimes defined without stipulating that the transversal contains
the unit element 1.

The core of U in V is the greatest normal subgroup N E V that is contained in
U . Note that N =

⋂
g∈V gUg

−1.

Lemma 14. Let S be a subset of G that contains idG. S is the left transversal to
Gω in G if and only if for each α ∈ G(ω) there exists exactly one s ∈ S such that
s(ω) = α. Similarly, the set S is the right transversal to Gω in G if and only if for
each α ∈ G(ω) there exists exactly one s ∈ S such that s(α) = ω.

Proof. This follows from the description of cosets of Gω, as given in Lemma 3. �

Lemma 15. If G is transitive, then the core of Gω is trivial.

Proof. By Lemma 1, the core of Gω is equal to the intersection of all Gα, α ∈ Ω.
Of course, the only permutation that fixes each α ∈ Ω is the identity. �

Proposition 16. Suppose that T is a left transversal to Gω in G, and that X ⊆ G
generates G. For each α ∈ G(ω) denote by tα that element of T which sends ω
upon α. Then

Gω = 〈t−1
x(α)xtα; α ∈ G(ω) and x ∈ X〉.

Proof. For S ⊆ G set S±1 = {s, s−1; s ∈ S}. Each element of G may be thus
expressed as xn · · ·x1, where xi ∈ X±1, 1 ≤ i ≤ n. Denote by Y the set of all
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elements t−1
x(α)xtα, α ∈ G(ω) and x ∈ X. If β = x(α), then the inverse of such an

element is equal to t−1
x−1(β)x

−1tβ . Hence

Y ±1 = {t−1
x(α)xtα; α ∈ G(ω) and x ∈ X±1}.

Note that Y ±1 ⊆ Gω and that tω = idΩ.
Suppose now that g = xn · · ·x1 ∈ Gω, where x1, . . . , xn ∈ X±1. Put αi =

xi · · ·x1(ω), 0 ≤ i < n, and insert tαi
t−1
αi

= tαi
t−1
xi(αi−1) in between xi+1 and xi,

1 ≤ i < n. That makes

g = tωgtω = t−1
ω xn · · ·x1tω =

(
t−1
xn(αn−1)xntαn−1

)
· · ·
(
t−1
x1(α0)x1tα0

)
an element of 〈Y 〉. �

Quasigroup congruences. Let Q be a quasigroup. Set

LMlt(Q) = 〈Lx; x ∈ Q〉,
RMlt(Q) = 〈Rx; x ∈ Q〉 and

Mlt(Q) = 〈Lx, Rx; x ∈ Q〉.
Call these groups the left multiplication group, the right multiplication group and
the multiplication group of Q, respectively.

Proposition 17. Let Q be a quasigroup. An equivalence ∼ on Q is a congruence
if and only if for all x, y, z ∈ Q

x ∼ y ⇒ xz ∼ yz, zx ∼ zy, x/z ∼ y/z and z\x = z\y.

Proof. If ∗ is a binary operation on Q, then ∼ is compatible with ∗ if and only if
x ∼ y ⇒ x ∗ z ∼ y ∗ z and z ∗ x ∼ z ∗ y holds for all x, y, z ∈ Q. To see that this is
true consider a, b, c, d ∈ Q such that a ∼ b and c ∼ d. If the implication holds for
all x, y, z ∈ Q, then a ∗ c ∼ b ∗ c ∼ b ∗ d.

Due to this fact the proof may be restricted to verifying implications x ∼ y ⇒
z/x ∼ z/y and x ∼ y ⇒ x\z ∼ y\z. It is enough to prove the latter implication
because of mirror symmetry. Before doing so let us observe that all implications
assumed may be considered as equivalences. E.g., we have x ∼ y ⇔ xz ∼ yz. To
prove the converse direction suppose that xz ∼ yz. By the assumptions of the
statement (xz)/z ∼ (yz)/z. However (xz)/z = x and (yz)/z = y. Similarly in the
other cases.

Thus x\z ∼ y\z ⇔ z ∼ x(y\z) ⇔ z/(y\z) ∼ (x(y\z))/(y\z). Now, z/(y\z) = y
and x(y\z))/(y\z) = x. �

Theorem 18. Let Q be a quasigroup and let ∼ be an equivalence upon Q. The
equivalence ∼ is a congruence of Q if and only if it is stable under Mlt(Q).

Proof. The equivalence ∼ is stable under Mlt(Q) if x ∼ y implies g(x) ∼ g(y)
for each x, y ∈ Q and g ∈ G. For the implication to hold it suffices if it holds
for generators of Mlt(Q) and the inverses of these generators. That follows from
Proposition 17 sinceRz(x) = xz, Lz(x) = zx, R−1

z (x) = x/z and L−1
z (x) = z\x. �

Corollary 19. Let S be a nonempty subset of a quasigroup Q. The set S is a block
of a congruence if and only if it is a block of Mlt(Q). Each such block determines
exactly one congruence of Q.

Proof. Indeed, blocks of a stable equivalence are blocks of the permutation group,
and each block of a transitive group fully determines a stable equivalence. �

Corollary 20. Let Q be a quasigroup, |Q| > 1. The quasigroup is simple if and
only if Mlt(Q) is a primitive permutation group.
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Proof. Recall that a transitive group is said to be primitive if it possesses no non-
trivial block (i.e., a block that differs from the underlying set and contains more
than than one element.) �

Inner mapping group. Let Q be a loop. The stabilizer (MltQ)1 is known as
the inner mapping group. It is denoted by Inn(Q). Thus ϕ ∈ Inn(Q) if and only if
ϕ(1) = 1 and ϕ ∈ Mlt(Q).

Theorem 21. Let Q be a loop. Then Inn(Q) = 〈L−1
xy LxLy, R

−1
yxRxRy, R

−1
x Lx;

x, y ∈ Q〉.

Proof. Use Proposition 16 with G = Mlt(Q), X = {Ly, Ry; y ∈ Q} and T = {Ly;
y ∈ Q}. Note that T is indeed a (left) transversal to Inn(Q) since Ly(1) = y for
every y ∈ Q, and L1 = idQ.

By Proposition 16 the set of all L−1
xy LxLy and L−1

yxRxLy generate Inn(Q). Ob-

viously, R−1
x Lx ∈ Inn(Q). The rest follows from Ly = Ry(R−1

y Ly) and L−1
yx =

(R−1
yxLyx)−1R−1

yx . �

Mappings L−1
xy LxLy, R−1

yxRxRy, R−1
x Lx are known as the standard generators

of Inn(Q). There are many other mappings that belong to Inn(Q). For example
[Lx, Ry] = L−1

x R−1
y LxRy ∈ Inn(Q) for all x, y ∈ Q.

Normal subloops. Let ∼ be a congruence of a loop Q. If x ∼ 1 and y ∼ 1, then
xy ∼ 1, x/y ∼ 1 and x\y ∼ 1 since 1 = 1 · 1 = 1/1 = 1\1. The set [1]∼ is thus a
subloop of Q.

A subloop of a loop Q is called normal if it is a block of a congruence. By
Corollary 19 the normal subloop determines exactly one congruence of Q. Denote
the congruence by ∼. Blocks of ∼ are the blocks of Mlt(Q) conjugate to N = [1]∼.
Hence they are equal to Lx(N) = xN = Nx = Rx(N). A block xN = Nx is called
a coset of N . The fact that N is a normal subloop of Q is denoted, like in groups,
by N EQ.

Theorem 22. Let Q be a loop and let N be a subloop of Q. The following is
equivalent:

(i) N is normal;
(ii) ϕ(N) ⊆ N for each ϕ ∈ Inn(Q);
(iii) ϕ(N) = N for each ϕ ∈ Inn(Q);
(iv) xN = Nx, x(yN) = (xy)N and (Ny)x = N(yx) for all x, y ∈ Q.

Proof. If N is a block of a congruence ∼, x ∈ N and ϕ ∈ Inn(Q), then 1 = ϕ(1) ∼
ϕ(x). Hence (i) ⇒ (ii). If (ii) holds and ϕ ∈ Inn(Q), then both ϕ(N) ⊆ N and
ϕ−1(N) ⊆ N are true. Thus ϕ(N) = N , and (ii) ⇒ (iii). The condition (iv) can
be also expressed as L−1

xy LxLy(N) = N , R−1
yxRxRy(N) = N and R−1

x Lx(N) = N .
In view of Theorem 21 this means that (iii) ⇔ (iv).

It remains to prove (iii) ⇒ (i). Each element of Mlt(Q) may be written as Lxϕ,
where ϕ ∈ Inn(Q) and x ∈ Q. (This is because the set of all left translations forms
a transversal to Inn(Q).) If x ∈ N , then Lxϕ(N) = xN = N . If x /∈ N , then
Lxϕ(N) = xN and xN ∩N = ∅. This means that N is a block of Mlt(Q). �

Centres. Recall that the centre of a loop Q is defined as the set of all z ∈ Q such
that z ∈ N(Q) = Nλ(Q) ∩Nµ(Q) ∩Nρ(Q) and that zx = xz for all x ∈ Q.

The following facts are direct enough to be stated without a proof.

Lemma 23. Let a be an element of a loop Q. Then

(1) a ∈ Nλ ⇔ R−1
yxRxRy(a) = a for all x, y ∈ Q;

(2) a ∈ Nµ ⇔ [Lx, Ry](a) = a for all x, y ∈ Q; and
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(3) a ∈ Nρ ⇔ L−1
xy LxLy(a) = a for all x, y ∈ Q;

Theorem 24. Let Q be a loop. Then Z(Q) is a normal subloop of Q. An element
z ∈ Q belongs to Z(Q) if and only if ϕ(z) = z for all ϕ ∈ Inn(Q). Further-
more, Z(Mlt(Q)) = {Lz; z ∈ Z(Q)} = {Rz; z ∈ Z(Q)} and NMlt(Q)(Inn(Q)) =
Inn(Q)Z(Mlt(Q)).

Proof. If a ∈ Z(Q), then a is fixed by every standard generator of Inn(Q), by
Lemma 23 and Theorem 21. Thus each ϕ ∈ Inn(Q) fixes every a ∈ Z(Q). For the
converse direction use Lemma 23 and observe again that Tx(a) = a ⇔ ax = xa.

Since N(Q) is a subloop of Q, the product ab belongs to N(Q) for all a, b ∈ Z(Q).
Therefore Lab = LaLb = RaRb = Rba = Rab. Also, La−1 = L−1

a = R−1
a = Ra−1 .

Hence Z(Q) is a subloop of Q. Since Inn(Q) fixes each element of a ∈ Z(Q) it
has to be a normal subloop, by Theorem 22. That makes Z(Q) a block of Mlt(Q).
Elements z ∈ Z(Q) have been characterized as those elements of Q that are fixed by
each ϕ ∈ Inn(Q). In other words z ∈ Z(Q) ⇔ Inn(Q) ⊆ (Mlt(Q))z. By Lemma 7,
z ∈ Z(Q) ⇔ Inn(Q) = (Mlt(Q))z.

If z ∈ Z(Q), then Lz = Rz and both LzRx = RxLz and RzLx = LxRz are clearly
true for each x ∈ Q. Hence Lz ∈ Z(Mlt(Q)). If ψ ∈ Z(Mlt(Q)) and ϕ ∈ Inn(Q),
then ϕ(ψ(1)) = ψ(ϕ(1)) = ψ(1). Hence ψ(1) = z ∈ Z(Q), and L−1

z ψ ∈ Inn(Q).
No nontrivial element of Inn(Q) may be central, say by Lemma 1. This verifies
the description of Z(Mlt(Q)) and shows that Inn(Q)Z(Mlt(Q)) = {ψ ∈ Mlt(Q);
ψ(1) ∈ Z(Q)}. The latter group is also equal toNMlt(Q)(Inn(Q)), by Lemma 13. �

Nilpotency. Let S be a set of subsets of a set X. Suppose that X ∈ S and that S
contains the least element, say I. Thus I ⊆ X for each X ∈ S. In the application
below X = Q, Q a loop, and I is the trivial subloop, i.e. I = {1}.

Suppose that upon S there are defined two transformations, say α and β. Let
both of them respect inclusions, i.e., if S1, S1 ∈ S and S1 ⊆ S2, then α(S1) ⊆ α(S2)
and β(S1) ⊆ β(S2). Futhermore, let both of them be monotonous, with α(S) ⊇ S
and β(S) ⊆ S, for every S ∈ S.

Finally, let α and β be interconnected by

βα(S) ⊆ S and αβ(S) ⊇ S, for every S ∈ S.

In such a situation it is possible to build lower series X ⊇ β(X) ⊇ β2(X) ⊇ . . . ,
and upper series I ⊆ α(I) ⊆ α2(I) ⊆ . . . . It is well known that the lower series
ends at I if and only if the upper series ends at X, and that, if the latter is true,
then both series are of equal length. If the length is n+ 1, then n is the nilpotency
class of S (with respect to α and β) and S is said to be nilpotent. Of course, if S
is deterministically derived from an object O, then the notions of nilpotency and
nilpotency class are related to that object.

The objects in question now are loops, and the systems of subsets are the normal
subloops of a loop Q. If N E Q, then there obviously exists a unique M E Q
such that N ≤ M and M/N = Z(Q/N). This is the operator α. The normal
subloops αi(1), i ≥ 0, are the iterated centers Zi(Q), with Z1(Q) = Z(Q) and
Zi+1(Q)/Zi(Q) = Z(Q/Zi(Q)).

The inclusion M = α(N) ⊇ N follows from the fact that N/N is the trivial
subgroup of Q/N . Hence N/N ≤ Z(Q/N). Suppose now that N1 ≤ N2 are normal
subloops of Q. Denote by π the homomorphism Q/N1 → Q/N2, xN1 7→ xN2. If
M E Q is such that N1 ≤ M and M/N1 ≤ Z(Q/N1), then π(M/N1) ≤ Z(Q/N2).
Express π(M/N1) as L/N2. Then M ≤ L. Setting M = α(N1) yields α(N1) ≤
α(N2).

Let us now show that for each N E Q there exists the least normal subloop
M EQ such that M ≤ N and N/M ≤ Z(Q/M). The operator β is defined so that
β(N) = M .
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To verify the existence of M first note that Mlt(Q/N) coincides with the action of
Mlt(Q) upon the cosets modulo N . Indeed, cosets are conjugate blocks, and hence
Mlt(Q) acts upon them. Now, Lx sends yN upon x(yN) = (xy)N = LxN (yN).
The action of Lx coincides with LxN , and this is similarly true for every Rx. The
coincidence is transferred to the multiplication groups since these groups are gen-
erated by the left and the right translations.

The fact that aN belongs to Z(Q/N) thus means that each standard generator
of Inn(Q) maps aN upon aN , by Theorem 24. If Mi, i ∈ I, are all MiEQ such that
Mi ≤ N and N/Mi ≤ Z(Q/Mi), then M =

⋂
Mi is a normal subloop of Q. Each

standard generator of Inn(Q) maps aMi, a ∈ N , to aMi, for every i ∈ I. Hence it
maps aM = a(

⋂
Mi) =

⋂
(aMi) upon aM , which implies N/M ≤ Z(Q/M).

The obvious inclusion N/N ≤ Z(Q/N) implies β(N) ≤ N . Consider now normal
subloops N1 and N2 such that N1 ≤ N2. Let M E Q be such that N2/M ≤
Z(Q/M). Consider a ∈ N1 and ϕ ∈ Inn(Q). Then ϕ(aM) = aM since a ∈ N2 and
N2/M ≤ Z(Q/M). Furthermore, aN1 = N1 and ϕ(N1) = N1, because N1 E Q.
Hence ϕ(a(M ∩ N1)) = a(M ∩ N1). Therefore a(M ∩ N1) ∈ Z(Q/(N1 ∩ M)),
and thus N1/(M ∩ N1) ≤ Z(Q/(M ∩ N1)). Setting M = β(N2) implies that
β(N1) ≤ β(N2) ∩N1 ≤ β(N2).

It remains to verify that βα(N) ≤ N and αβ(N) ≥ N , for every N E Q. If
M = α(N), then M/N = Z(Q/N). Hence N ≥ K, where K = β(M) is the least
normal subloop such that K ≤ M and M/K ≤ Z(Q/K). Therefore βα(N) ≤ N .
To see αβ(N) ≥ N , just note that N/β(N) ≤ Z(Q/β(N)).

This is why the first steps in the theory of nilpotent loops resemble those in
the theory of nilpotent groups. A loop Q is thus nilpotent of class k if and only if
Zk(Q) = Q and k ≥ 0 is the least possible. Furthermore, each loop of nilpotency
class 2 may be, up to isomorphism, expressed by an operation upon G× Z, where
both (G,+) and (Z,+) are abelian groups, and

(a, u) · (b, v) = (a+ b, u+ v + ϑ(a, b)) for all u, v ∈ Z and a, b ∈ G,

where ϑ : G×G→ Z fulfils ϑ(0, a) = ϑ(a, 0) = 0, for all a ∈ G.
To see this consider a loop of nilpotency class two, and set Z = Z(Q). From each

coset modulo Z choose exactly one element. The chosen elements form a set, say
G, and this set may be endowned with the structure of the factorloop Q/Z. The
factorloop is an abelian group. The operation of G will thus be written additively.
If gi ∈ G and zi ∈ Z, i ∈ {1, 2}, then there exists g3 ∈ G and z3 ∈ Z such that
g1g2 = g3z3. Note, that (g1z1)(g2z2) = g3(z3z1z2) and that g3 = g1 + g2. Denote
z3 by ϑ(g1, g2). This yields g1z1 · g2z2 = (g1 + g2)(ϑ(g1, g2)z1z2). Writing elements
of Z additively thus shows that Q is isomorphic to a loop with operation

(g1, z1) · (g2, z2) = (g1 + g2, ϑ(g1, g2) + z1 + z2).

To get (0, 0) as the neutral element of this loop it suffices to assume that the neutral
element of Q is the element that is chosen from Z (which is also a coset). Such a
choice also stipulates that ϑ(g, 0) = 0 = ϑ(0, g) for all g ∈ G.

The definition of nilpotency by means of the operators α and β allows to intro-
duce further concepts for which the term nilpotency may be used. These concepts
are not discussed here. The nilpotency defined above is sometimes called central
nilpotency in order to distinguish it from those other concepts.

Left and right nuclei. Let Q be a loop. By Lemma 23, Nλ(Q) are the points
fixed by (RMlt(Q))1, and Nρ(Q) are the points fixed by (LMlt(Q))1. A similar
characterization in terms of the multiplication groups is as follows:

Proposition 25. Let Q be a loop. Then

(1) {La; a ∈ Nλ(Q)} = CMlt(Q)(RMlt(Q)) = CSym(Q)(RMlt(Q)), and
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(2) {Ra; a ∈ Nρ(Q)} = CMlt(Q)(LMlt(Q)) = CSym(Q)(LMlt(Q)).

Proof. If a ∈ Nλ(Q) and x, y ∈ Q, then LaRx(y) = a·yx = ay ·x = RxLa(y). Hence
[La, Rx] = idQ if and only if a ∈ Nλ(Q). If ϕ ∈ (Sym(Q))1 and [Laϕ,Rx] = idQ
for each x ∈ Q, then aϕ(yx) = aϕ(y) · x for all x, y ∈ Q. Setting y = 1 yields
La = Laϕ. Thus ϕ = idQ. �

Proposition 26. Let Q be a loop. If RMlt(Q) E Mlt(Q), then Nλ(Q) E Q. If
LMlt(Q)EMlt(Q), then Nρ(Q)EQ.

Proof. If RMlt(Q) E Mlt(Q), then the centralizer of RMlt(Q) is also a normal
subgroup of Mlt(Q). In such a case Nλ(Q) is an orbit of a normal subgroup of
Mlt(Q). The rest follows from Lemma 12 and Corollary 19. �

Proposition 27. If Q is a left Bol loop, then RMlt(Q)EMlt(Q) and Nλ(Q)EQ.
If Q is a right Bol loop, then LMlt(Q)EMlt(Q) and Nρ(Q)EQ. If Q is a Moufang
loop, then N(Q) E Q and both LMlt(Q) and RMlt(Q) are normal subgroups of
Mlt(Q).

Proof. By Proposition 26 it suffices to show that RMlt(Q) E Mlt(Q) if Q is left
Bol, that is if x(y · xz) = (x · yx)z for all x, y, z ∈ Q. The latter identity can be
written as LxRxz = RzLxRx. This means L−1

x RzLx = RxzR
−1
x . Nothing more is

needed since Q is a LIP loop and RMlt(Q) is generated by the right translations
Rx, x ∈ Q. �

Transversals. Let H ≤ G be groups. A pair (A,B) of subsets of G is said to
form H-connected transversals if A is a left transversal to H in G, B is a right
transversal to H in G, and [a, b] ∈ H for all (a, b) ∈ A×B.

Lemma 28. Let Q be a loop. Put G = Mlt(Q) and H = Inn(Q). Furthermore,
set A = {Lx; x ∈ Q} and B = {Rx; x ∈ Q}. Then (A,B) forms H-connected
transversals, 〈A,B〉 = G, and the core of H in G is trivial.

Proof. As follows from Lemma 14 both A and B are both-sided transversals of H to
G. The core of H in G is trivial by Lemma 15. Finally, LxRy(1) = RyLx(1) = xy
for all x, y ∈ Q. �

There seems to be nothing remarkable in Lemma 28. The point is that the
statement may be reversed. The proof is not long, but will not be included. We
have:

Theorem 29. Let G and H be groups, and A and B subsets of G such that H ≤ G,
(A,B) forms H-connected transversals, 〈A,B〉 = G, and the core of H in G is
trivial. Then there exists a loop Q such that G = Mlt(Q), H = Inn(Q), A = {Lx;
x ∈ Q} and B = {Rx; x ∈ Q}.



Pseudoautomorphisms and constructions of Moufang loops

Let Q be a loop, c ∈ Q and g a permutation of Q. Call g a left pseudoautomor-
phism with companion c if

cg(x) · g(y) = c · g(xy) for all x, y ∈ Q.

A right pseudoautomorphism f with companion d fulfils f(x) · f(y)d = f(xy)d. It
may happen that a permutation, say h, is both a left and right pseudoautomor-
phism (in fact this is always the case when Q is Moufang). Then h is called a
pseudoautomorphism. If h is a pseudoautomorphism, then it may be necessary to
distinguish between a left companion (corresponding to c) and a right companion
(corresponding to d). Note that a left pseudoautomorphism may have more than
one companion, and that this is true for right pseudoautomorphisms as well.

Denote by LPs(Q) the set of all (c, f) such that f is a left pseudoautomorphism
with companion c, and by RPs(Q) the set of all (g, d) such that g is a right pseu-
doautomorphism with companion d.

Both LPs(Q) and RPs(Q) may be regarded as groups. To understand this let us
first observe that

(c, g) ∈ LPs(Q) ⇔ (Lcg, g, Lcg) ∈ Atp(Q); and

(f, d) ∈ RPs(Q) ⇔ (f,Rdf,Rdf) ∈ Atp(Q).

The key connection between autotopisms and pseudoautomorphisms follows from
a simple observation:

(c, g) ∈ LPs(Q) ⇒ g(1) = 1 and (f, d) ∈ RPs(Q) ⇒ f(1) = 1.

This is obvious since cg(x) · g(1) = cg(x) for all x ∈ Q. The point is that an
autotopism (α, β, γ) with α(1) = 1 or β(1) = 1 yields a pseudoautomorphism. We
shall prove:

(α, β, γ) ∈ Atp(Q) and β(1) = 1 ⇒ (α(1), β) ∈ LPs(Q) and α = γ = Lα(1)β;

(α, β, γ) ∈ Atp(Q) and α(1) = 1 ⇒ (α, β(1)) ∈ RPs(Q) and β = γ = Rβ(1)α.

Proof. Assume β(1) = 1. Setting y = 1 in α(x)β(y) = γ(xy) yields α = γ. Setting
x = 1 gives Lα(1)β = α. �

This makes LPs(Q) a group with unit (1, idQ) and operations

(c, f)(d, g) = (cf(d), fg) and (c, f)−1 = (f−1(c\1), f−1).

To see why the operations are defined as stated, observe that

(Lcf, f, Lcf)(Ldg, g, Ldg) = (LcfLdg, fg, LcfLdg),

(Lcf, f, Lcf)−1 = (f−1L−1c , f−1, f−1L−1c ),

LcfLdg(1) = cf(d) and f−1L−1c (1) = f−1(c\1). Similarly, RPs(Q) is a group with
operations

(f, c)(g, d) = (fg, f(d)c) and (f, c)−1 = (f−1, f−1(1/c)).

The group LPs(Q) is thus isomorphic to the subgroup of Atp(Q) formed by all
(α, β, γ) ∈ Atp(Q) such that β(1) = 1. The isomorphism sends (α, β, γ) upon
(α(1), β).

The following observation is obvious but important:

(c, idQ) ∈ LPs(Q) ⇔ c ∈ Nλ(Q) and (idQ, d) ∈ RPs(Q) ⇔ d ∈ Nρ(Q).
1
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Pseudoautomorphisms with two companions. Let Q be a loop. Suppose that
c, d ∈ Q and that f permutes Q.

(1) Assume (c, f) ∈ LPs(Q). Then f−1(c\1) = 1/f−1(c), and
(d, f) ∈ LPs(Q) ⇔ c/d ∈ Nλ(Q).

(2) Assume (f, c) ∈ RPs(Q). Then f−1(1/c) = f−1(c)\1 and
(f, d) ∈ RPs(Q) ⇔ d\c ∈ Nρ(Q).

Proof. Suppose that (c, f) ∈ LPs(Q). Then f(y) = cf(f−1(c\1)) · f(y) is equal
to cf(f−1(c\1) · y) for every y ∈ Q. Setting y = f−1(c) and cancelling c yields
1 = f(f−1(c\1) · f−1(c)). Thus 1 = f−1(c\1) · f−1(c) and f−1(c\1) = 1/f−1(c).

Suppose now that (d, f) also belongs to LPs(Q). Then (c, f) · (f−1(d\1), f−1) =
(c(d\1), idQ) ∈ LPs(Q) as well. Hence n = c(d\1) ∈ Nλ(Q). Recall that n is an LIP
element. Therefore d(d\1) = 1 = n−1(c(d\1)) = (n−1c)(d\1), implying n−1c = d,
c = nd and n = c/d.

If n = c/d ∈ Nλ(Q), then n−1c = d and (L−1n Lcf, f, L
−1
n Lcf) ∈ Atp(Q). This

yields (d, f) ∈ LPs(Q) since L−1n Lcf(1) = n−1c = d. �

When a pseudoautomorphism is an automorphism. If (c, f) ∈ LPs(Q), then
f ∈ Aut(Q) if and only if c ∈ Nλ(Q). If (f, c) ∈ RPs(Q), then f ∈ Aut(Q) if and
only if c ∈ Nρ(Q).

Proof. Note that f ∈ Aut(Q) ⇔ (1, f) ∈ LPs(Q) ⇔ (f, 1) ∈ RPs(Q). �

Companions and the inverse property. Let Q be an IP loop. Then (c, f) ∈
LPs(Q) if and only if (f, c−1) ∈ RPs(Q). If (c, f) ∈ LPs(Q), then f(x−1) =
(f(x))−1, for every x ∈ Q.

Proof. Suppose that (c, f) ∈ LPs(Q). Setting y = x−1 in cf(xy) = cf(x) · f(y)
gives c = cf(x) · f(x−1). Since Q is an IP loop, c = cf(x) · (f(x))−1. Hence
(f(x))−1 = f(x−1) for every x ∈ Q. Inverting cf(x−1y−1) = cf(x−1) · f(y−1)
therefore yields f(y) · f(x)c−1 = f(yx)c−1. �

Commutators and associators. Let Q be a loop. If x, y ∈ Q, then [x, y] =
(yx)−1(xy) is called the commutator of x and y. If Q is diassociative, then the
commutator may be bracketed in any way that respects the order of variables. To
get a direct proof of this fact for Moufang loops note that (x−1y−1)(xy) = x−1(y−1 ·
xy) since x((x−1y−1) · xy) = (x(x−1y−1)x)y = y−1x · y and y−1 · xy = y−1x · y as
y−1(xy)y−1 = y−1x. The remaining equalities may be obtained by mirroring.

If x, y, z ∈ Q, then [x, y, z] = (x · yz)\(xy · z) is called the associator of x, y and
z.

Standard generators in a Moufang loop. Suppose that x and y are elements
of a Moufang loop Q. Then RPs(Q) contains

(R−1x Lx, x
3), (L−1xy LxLy, [y

−1, x−1]), (R−1yxRxRy, [x, y]) and ([Lx, Ry], [y, x−1]).

Furthermore, L−1xy LxLy = [R−1x , Ly] and R−1yxRxRy = [L−1x , Ry].

Proof. Since (R−1z , LzRz, Rz) and (Lz, Rz, LzRz) are autotopisms for each z ∈ Q,
there are also autotopisms

(R−1x Lx, LxR
2
x, RxLxRx) and (L−1xy LxLy, R

−1
xyRxRy,M

−1
xy MxMy),

where Mz = LzRz. Now, LxR
2
x(1) = x3 and R−1xyRxRy(1) = (yx)(y−1x−1) =

[y−1, x−1]. Hence both (R−1x Lx, x
3) and (L−1xy LxLy, [y

−1, x−1]) belong to RPs(Q).
Further autotopisms are

(L−1yxLxLy, R
−1
yxRxRy,−) and ([Lx, Ry], R−1x MyRxM

−1
y ,−),
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with L−1yxLxLy(1) = (yx)−1(xy) = [x, y] andR−1x MyRxM
−1
y (1) = R−1x (y·y−2x·y) =

R−1x (y−1x · y) = [y, x−1]. The former case yields ([x, y], R−1yxRxRy) ∈ LPs(Q).

Hence (R−1yxRxRy, [y, x]) ∈ RPs(Q).

The equation xy · zx = x · yz · x implies Lxy = MxLyR
−1
x and Rzx = MxRzL

−1
x .

Hence L−1xy LxLy = RxL
−1
y M−1x LxLy = [R−1x , Ly]. Proceeding in the mirror way

yields R−1zxRxRz = LxR
−1
z M−1x RxRz = [L−1x , Rz]. �

Associators and the right nucleus. Recall that the associator [x, y, z] is defined
as (x · yz)\(xy · z). There is certain amount of arbitrary decision in this definition.
Each of / and \ is eligible to use, and there is no obvious reason for the order of
x · yz and xy · z. However, this is not a big deal since associators are nearly always
used in situations when the way of their definition matters much less than it might
have been expected.

Suppose that x, y and z are elements of a loop Q. If [x, y, z] ∈ Nρ(Q), then

z = L−1xy LxLy(z) · [x, y, z].

Proof. Multiplying the equality to be proved by xy upon the left yields

xy · z = (xy)(((xy)\(x · yz))[x, y, z]).

Since [x, y, z] ∈ Nρ(Q), the right hand side is equal (x · yz)[x, y, z]. The equation
xy · z = (x · yz)[x, y, z] is true since this is the definition of [x, y, z]. �

The above statement has a number of variations and extensions. However, at
this point a detailed treatment will be restricted only to the case of loops Q that
are of nilpotency class two. For such a loop there exist abelian groups (G,+) and
(Z, ·) such that Z ≤ Z(Q) and (Q/Z, ·) ∼= (G,+). The operation in Q is thus
written multiplicatively, while in Q/Z additively. The situation that is of main
interest is that of Z = Z(Q). However, for formal reasons it is better to assume
that Z ≤ Z(Q) and Q/Z is abelian.

Associators and commutators as mappings between two abelian groups.
Let (G,+) and (Z, ·) be abelian groups such that Q/Z = G and Z ≤ Z(Q), where
Q is a loop. Then there exist mappings C : G × G → Z and A : G × G × G → Z
such that for all u, v, w ∈ Q:

[u, v] = z ⇔ C(uZ, vZ) = z and [u, v, w] = z ⇔ A(uZ, vZ,wZ) = z.

Proof. Consider u, v, w ∈ Q and put z = [u, v, w]. Thus (u · vw)z = uv · w. If
a, b, c ∈ Z(Q), then clearly (ua(vb ·wc))z = (ua ·vb)wc. The case of the commutator
is similar. �

Associators, commutators and inner mappings. Let Q, G, Z, C and A be
as above. If u, v, w ∈ Q, then C(uZ, vZ) · C(vZ, uZ) = 1,

R−1u Lu(v) = v · C(uZ, vZ),

L−1uvLuLv(w) = w ·A(uZ, vZ,wZ)−1,

R−1vuRuRv(w) = w ·A(wZ, vZ, uZ),

[Lu, Rv](w) = w ·A(uZ,wZ, vZ)−1 and

[Rv, Lu](w) = w ·A(uZ,wZ, vZ).

Proof. Suppose first that vu · z = uv. Then uv · z−1 = vu, z = C(uZ, vZ) and
z−1 = C(vZ, uZ).

Suppose now that z ∈ Q is such that R−1u Lu(v) = vz. Then z ∈ Z and (uv)/u =
vz yields uv = vu · z.
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The case of L−1uvLuLv(w) follows from a result above. If z ∈ Q is such that
R−1vuRuRv(w) = wz, then z ∈ Z and wv · u = wz · vu = (w · vu)z. Hence z =
(w · vu)\(wv · u) = [w, v, u].

If [Lu, Rv](w) = wz, then u ·wv = (u ·wz)v = (uw · v)z and z−1 = [u,w, v]. �

Associators and automorphic inner mappings. Let Q, G, Z and A be as
above.

(1) If L−1xy LxLy ∈ Aut(Q) for all x, y ∈ Q, then A(a, b, c + d) = A(a, b, c) ·
A(a, b, d) for all a, b, c, d ∈ G.

(2) If R−1yxRxRy ∈ Aut(Q) for all x, y ∈ Q, then A(a + b, c, d) = A(a, c, d) ·
A(b, c, d) for all a, b, c, d ∈ G.

(3) If [Lx, Ry] ∈ Aut(Q) for all x, y ∈ Q, then A(a, b + c, d) = A(a, b, d) ·
A(a, c, d) for all a, b, c, d ∈ G.

Proof. Let x, y ∈ Q be such that L−1xy LxLy ∈ Aut(Q). If w1, w2 ∈ Q, then

L−1xy LxLy(w1w2) = L−1xy LxLy(w1)L−1xy LxLy(w2). Therefore

w1w2 · [x, y, w1w2]−1 = (w1 · [x, y, w1]−1)(w2 · [x, y, w2]−1).

The rest follows from the centrality of associators.
The other cases are similar. �

Moufang loops of nilpotency class two. Let Q be a loop with a central subloop
Z such that (Q/Z, ·) = (G,+), where G is an abelian group. Then there exists a
mapping A : G×G×G→ Z such that A(xZ, yZ, zZ) = [x, y, z] for all x, y, z ∈ Q.
The loop is Moufang if and only if

A(a, b, c) = A(b, c, a) = A(c, a, b) = A(b, a, c)−1 = A(a, c, b)−1 = A(c, b, a)−1,

A(a, a, b) = 1 and A(a, b, c+ d) = A(a, b, c) ·A(a, b, d)

holds for any choice of a, b, c, d ∈ Q.
An equivalent condition is that

A(a, a, b) = A(b, a, a) = 1, A(a+ b, c, d) = A(a, c, d) ·A(b, c, d),

A(a, b+ c, d) = A(a, b, d) ·A(a, c, d) and A(a, b, c+ d) = A(a, b, c) ·A(a, b, d),

for all a, b, c, d ∈ Q.

Proof. The former condition on A clearly implies the latter condition. To get the
converse implication it suffices to prove A(a, b, c)−1 = A(b, a, c) since A(a, b, c)−1 =
A(a, c, b) may be obtained by a mirror argument. The proof follows from 1 =
A(a+ b, a+ b, c) = A(a, b, c)A(b, a, c)A(a, a, c)A(b, b, c) = A(a, b, c)A(b, a, c).

If x and y are elements of a Moufang loop Q, then L−1xy LxLy, R−1yxRxRy and
[Lx, Ry] are automorphisms since they are pseudoautomorphisms with central com-
panions. Thus A(a, b, c + d) = A(a, b, c) · A(a, b, d), and similarly in the other two
cases. The equalities A(a, a, b) = A(b, a, a) = 1 follow from the diassociativity (in
fact, all that is needed here are the alternative laws).

Let now A fulfil the conditions of the statement. Then A(−a, b, c) = A(a, b, c)−1

for all a, b, c ∈ G. Therefore A(−a, a, b) = 1, and that implies (1/x) · xy = (1/x)x ·
y = y for all x, y ∈ Q. That makes Q a LIP loop. The RIP may be be proved by a
mirror argument.

This yields [R−1x , Ly] = [Ly, Rx] since if z ∈ Q, then [R−1x , Ly](z) = z · [y, z, x−1]
and [Ly, Rx](z) = z · [y, z, x]−1. Because L−1xy LxLy(z) = z · [x, y, z]−1, the identity

[Ly, Rx] = L−1xy LxLy holds as well. Therefore

L−1xy LxLyRx = [R−1x , Ly]Rx = RxL
−1
y R−1x LyRx = Rx[Ly, Rx].
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Multiplying this equality by [Rx, Ly] upon the right yields L−1xy LxRxLy = Rx. That
may be written as LxRxLy = LxyRx. And that is the same as the Moufang identity
x(yz · x) = xy · zx. �

Example of a commutative Moufang loop. Let V be a vector space over a
field F . Suppose that char(F ) = 3 and dim(V ) = 3.

Upon V × F define a loop Q by

(u, a)(v, b) = (u+ v, a+ b+ (u3 − v3)(u1v2 − u2v1)),

where u = (u1, u2, u3) and v = (v1, v2, v3). This is obviously a commutative loop
(in any characteristic) of nilpotence class two. To show that this is a Moufang loop
it is thus enough to verify that A is a trilinear alternating form.

Consider u, v, w ∈ V . Then

(u, 0)(v, 0) · (w, 0) = (u+ v, (u3 − v3)(u1v2 − v2v1)) · (w, 0)

is equal to (u+ v + w,X), where X evaluates to

(u3 − v3)(u1v2 − v2v1) + (u3 + v3 − w3)((u1 + v1)w2 − (u2 + v2)w1)

= u1u3v2 − u1v2v3 − u2u3v1 + u2v1v3

+ u1u3w2 + u3v1w2 − u2u3w1 − u3v2w1

+ u1v3w2 + v1v3w2 − u2v3w1 − v2v3w1

− u1w2w3 − v1w2w3 + u2w1w3 + v2w1w3.

Similarly,

(u, 0) · (v, 0)(w, 0) = (u, 0)(v + w, (v3 − w3)(v1w2 − v2w1))

yields (u+ v + w, Y ), where Y is equal to

(v3 − w3)(v1w2 − v2w1)) + (u3 − v3 − w3)(u1(v2 + w2)− u2(v1 + w1))

= v1v3w2 − v1w2w3 − v2v3w1 + v2w1w3

+ u1u3v2 + u1u3w2 − u2u3v1 − u2u3w1

− u1v2v3 − u1v3w2 + u2v1v3 + u2v3w1

− u1v2w3 − u1w2w3 + u2v1w3 + u2v1w3.

Since A(u, v, w) = X − Y , the value of A(u, v, w) is equal to

u3v1w2 − u3v2w1 + 2u1v3w2 − 2u2v3w1 − u1v2w3 + u2v1w3.

In characteristic 3 this coincides with det(u, v, w). The determinant is, of course, a
trilinear alternating form.

Note that (u, a)(u, a) = (−u,−a) and that (u, a)(−u,−a) = (0, 0) for all (u, a) ∈
V ×F . The neutral element of the loop Q is equal to (0, 0). Note that if the neutral
element is also denoted by 1, then x3 = 1 for each x ∈ Q.

When referring to a commutative Moufang loop it is quite common to use an
abbreviation CML. A CML Q in which x3 = 1 holds for each x ∈ Q is said to be a
CML of exponent three.

A central endomorphism. Let Q be a CML. The mapping x 7→ x3 is an endo-
morphism of Q. Put Z = {x3; x ∈ Q}. Then Z ≤ Z(Q). The loop Q/Z is of
exponent three.

Proof. Since Q is diassociative, 〈x, y〉 is a commutative group for any choice of
x, y ∈ Q. Therefore (xy)n = xnyn for any n ≥ 1. The only fact to prove thus is
that x3 ∈ Z(Q). Because Q is commutative it suffices to show that x3 ∈ N(Q).
Since Q is Moufang, Tx is an automorphism with (the right) companion x3. This
implies that x3 ∈ N(Q) if and only if R−1x Lx ∈ Aut(Q). If Q is commutative, then
R−1x Lx is equal to idQ, which certainly is an automorphism of Q. �
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Structure of CML. A CML Q has a torsion part, which is the subloop of all
elements of finite order. A CML that is equal to its torsion part is said to be a
torsion CML. A torsion CML that contains no element of order three has to be an
abelian group since each element of such a CML can be expressed as a cube. From
this it is not difficult to prove that each torsion CML Q may be uniquely expressed
as G× S, where G is an abelian group that contains no element of order three and
S is the subloop of all elements that are of order 3k for some k ≥ 0.

A more difficult proof shows that each finitely generated CML is nilpotent.

CML of exponent three and HTS. The abbreviation HTS refers to a Hall
Triple System. This is an STS with the property that each three elements that do
not form a block are contained in an affine subsystem of order 9.

Let V be a vector space over F3. The operation ∗ of the affine STS upon V is
given by x ∗ y = −x− y. This implies

x ∗ (y ∗ z) = x ∗ (−y − z) = −x+ y + z = (−x− y) ∗ (−x− z) = (x ∗ y) ∗ (x ∗ z).

The operation of HTS is thus (self)distributive.
To prove the converse, consider elements x, y and z of a distributive STS quasi-

group (Q, ∗). Denote z by [0, 0], y by [1, 0] and x by [0, 1]. Set

[2, 0] = [0, 0] ∗ [1, 0], [0, 2] = [0, 0] ∗ [0, 1], [1, 1] = [0, 2] ∗ [2, 0],
[2, 2] = [0, 0] ∗ [1, 1], [1, 2] = [1, 0] ∗ [1, 1], [2, 1] = [0, 1] ∗ [1, 1].

Ensuing additions are performed modulo 3. If [a, b] ∗ [c, d] = [e, f ] and e = −a− c
and f = −b − d, then [a, b] ∗ [e, f ] = [c, d] and c = −a − e and d = −b − f .
For a, b, c, d ∈ F3 the equation [a, b] ∗ [c, d] = [−a − c, b − d] thus holds for the
six affine lines of V = F × F . The six missing lines are those that pass through
(2, 2), with the exception of {(0, 0), (1, 1), (2, 2)}, and the lines {(0, 0), (2, 1), (1, 2)},
{(0, 2), (1, 0), (2, 1)} and {(2, 0), (0, 1), (1, 2)}. The distributivity implies

[0, 0] ∗ [1, 1] = [0, 0] ∗ ([2, 0] ∗ [0, 2]]) = ([0, 0] ∗ [2, 0]) ∗ ([0, 0] ∗ [0, 2]),

[1, 0] ∗ [0, 1] = ([0, 0] ∗ [2, 0]) ∗ ([0, 0] ∗ [0, 2]) = [0, 0] ∗ [1, 1] = [2, 2],

[2, 1] ∗ [1, 2] = [1, 1] ∗ ([0, 1] ∗ [1, 0]) = [1, 1] ∗ [2, 2] = [0, 0],

[1, 0] ∗ [2, 1] = [1, 0] ∗ ([0, 0] ∗ [1, 2]) = [2, 0] ∗ [1, 1] = [0, 2], and

[2, 0] ∗ [2, 1] = [0, 0] ∗ ([1, 0] ∗ [1, 2]) = [0, 0] ∗ [1, 1] = [2, 2].

Equalities [0, 1] ∗ [1, 2] = [2, 0] and [0, 2] ∗ [1, 2] = [2, 2] may be obtained by a mirror
argument. The mapping (a, b) 7→ [a, b] thus yields a surjective homomorphism of
(V, ∗) upon the subsystem of Q generated by x, y and z. If the homomorphism
is not injective, then either {x, y, z} is a block, or x = y = z. This proves that
distributive STS systems are exactly the HTS systems.

To get the connection to CMLs fix an element a of an STS quasigroup Q. Then
xy = x/a∗a\y = (x∗a)∗(a∗y) is a commutative loop operation with a = a∗a being
the unit. Note that xx = x ∗ a and that x · xx = xx · x = x3 = a. If the operation
star is distributive, then xy = a ∗ (x ∗ y). In such a case xy · x = (a ∗ (x ∗ y)) · x =
(x∗y)∗(x∗a) = x∗(a∗y). Therefore (x·yz)x = x∗(a∗(yz)) = x∗(y∗z). Furthermore,
xy·zx = (a∗(x∗y))·(a∗(x∗z)) = (x∗y)∗(x∗z) = x∗(y∗z). This verifies that (Q, ·) is a
CML of exponent three. Note that (xy)−1 = (xy)2 = a∗(xy) = a∗(a∗(x∗y)) = x∗y.
This can be used to get a converse construction.

Indeed, if Q is a CML of exponent three, then x ∗ y = (xy)2 is an idempotent
commutative quasigroup that is semisymmetric since x ∗ (y ∗ x) = x ∗ (xy)2 =
x2(xy) = y. Hence (Q, ∗) is an STS quasigroup. To prove the distributivity note
that x∗(y∗z) = x∗(yz)2 = x2(yz) = x(yz)x = xy·zx = (xy)2∗(xz)2 = (x∗y)∗(x∗z).
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Let us mention in passing that it is easy to verify that the identity x2 ·yz = xy ·xz
in fact describes the variety of CML loops.

We may thus conclude by the following.

Characterization of HTS with CML involved. An STS system given by an
idempotent operation ∗ is an HTS if and only if the operation ∗ is distributive. In
such a case for any a ∈ Q the operation xy = a ∗ (x ∗ y) is a CML of exponent
three, and x ∗ y = (xy)2 for all x, y ∈ Q. If (Q, ·) is a CML of exponent three, then
x ∗ y = (xy)2 provides Q with a structure of HTS.

Code loops. Their associators and commutators. A Moufang loop Q is said
to be a code loop if it contains a two-element central subloop Z such that Q/Z is a
finite elementary abelian 2-group.

The connection of code loops to error correcting codes (more precisely to double
even binary codes) will be explained later. Let us now record several facts that may
be derived from results obtained earlier. The factor loop Q/Z may be identified
with a vector space V over F = {0, 1}.

The loop Q is of nilpotence class two. An isomorphic copy of Q may be thus
constructed upon V × F , with an operation (u, a)(v, b) = (u + v, ϑ(u, v) + a + b),
where ϑ : V × V → F fulfils ϑ(u, 0) = ϑ(0, u) = 0, for every u ∈ V .

There exist mappings C : V × V → F and A : V × V × V → F such that the
isomorphic copy of Q fulfils

[(u, a), (v, b)] = (0, C(u, v)) and [(u, a), (v, b), (w, c)] = (0, A(u, v, w)).

Note that since the element 1 ∈ F fulfils −1 = 1, the signs (or inverses) relating
to A(u, v, w) bear no effect. This means that A may be regarded as a trilinear
alternating (and thus symmetric) form V → F .

The loop Q satisfies the law x(y · zx) = (xy · z)x since Q is an extra loop. Thus

x(y · zx) =
(
(y · zx)x

)
[x, y · zx] =

(
(y · xz)x

)
[x, z][x, y · zx]

=
(
(yx · z)x

)
[y, x, z][x, z][x, y · zx]

=
(
(xy · z)x

)
[y, x][y, x, z][x, z][x, y · zx].

Hence [y, x][y, x, z][x, z][x, y · zx] = 1 = [x, y, z][x, y][x, z][x, y · zx]. Therefore

A(u, v, w) = C(u, v) + C(u,w) + C(u, u+ v + w)

for all u, v, w ∈ V . This may be further simplified after recalling that [x, y] =
x2y2(xy)2 for all x, y ∈ Q. The latter equality holds because of the diassociativity
and because x2 is central and x3 = x−1. It follows by [x, y] = x3y3xy = x2(xyxy)y2.

If z ∈ Z, then (xz)2 = x2. Hence there exists a mapping P : V → Z such that
P (xZ) = 0 if x ∈ Q is of order 1 or 2, and P (xZ) = 1 if x is of order 4. The identity
[x, y] = x2y2(xy)2 means that

C(u, v) = P (u) + P (v) + P (u+ v) for all u, v ∈ V .

This implies that

C(u, u+ v) = P (u) + P (u+ v) + P (v) = C(u, v).

Therefore C(u, u+ v + w) = C(u, v + w) and

A(u, v, w) = C(u, v) + C(u,w) + C(u, v + w)

= P (u) + P (v) + P (w) + P (u+v) + P (u+w) + P (v+w) + P (u+v+w),

for all u, v, w ∈ V . The commutator and associator of Q are thus fully determined
by the mapping P .
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Combinatorial degree. Let V be a vector space over the 2-element field F =
{0, 1}, and let P : V → F be such that P (0) = 0. The mapping P is said to be of
combinatorial degree 0 if P (v) = 0 for all v ∈ V . The mapping P is said to be of
combinatorial degree k ≥ 1 if

(u1, . . . , uk) 7→
∑

1≤j≤k

∑
1≤i1<···<ij≤k

P (ui1) + · · ·+ P (uik)

is a k-linear map, and P is not of combinatorial degree k − 1. Note that P is
of combinatorial degree 1 if and only if it it is a nontrivial linear form, and of
combinatorial degree 2 if and only if it is a quadratic form that is not a linear form.

We have seen that squares of a code loop yield a mapping of a combinatorial
degree 3. For the converse direction consider a mapping P : V → F = {0, 1},
P (0) = 0, that is of combinatorial degree at most 3. Set C(u, v) = P (u) + P (v) +
P (u+ v) and A(u, v, w) = C(u, v) +C(u,w) +C(u, v+w), for all u, v, w ∈ V . The
mapping A is a symmmetric trilinear form V → F . It is alternating since, e.g.,
A(u, v, v) = 2C(u, v) + C(u, 2v) = 0. Our aim now is to prove that each P that is
of combinatorial degree at most three, P (0) = 0, induces a code loop the structure
of which is determined by P uniquely, up to isomorphism.

Code loops from square mappings of combinatorial degree three. Let
P : V → {0, 1}, P (0) = 0, be of combinatorial degree at most 3. Define C and A
as above.

Our aim is to show that there exists a code loop Q such that Q/Z may be
identified with V, and P is induced by the square mapping x 7→ x2. We shall
proceed by assuming that Q exists and derive from that a formula for the operation.
To prove the existence of Q it will then suffice to verify that the obtained formula
really gives a code loop. For that a construction established earlier may be used.
That is the construction of a Moufang loop with operation (u, a)(v, b) = (u +
v, q(u, v) + a + b), where q : V × V → F is linear in the second coordinate and
quadratic in the first coordinate, with q(u+ v, v) = q(u, v) + q(v, v) for all u, v ∈ V .

Let b1, . . . , bn be a basis of V , and let e1, . . . , en ∈ Q be such that bi = eiZ for
each i ∈ {1, . . . , n}. Each element of Q may be uniquely expressed in a normal
form as

(ei1(ei2(· · · (eik−1
eik))))z, where 1 ≤ i1 < · · · < ik ≤ n and z ∈ Z.

This follows from the fact that ei1(ei2(· · · eik)) projects upon
∑
λjbj , where λj = 1

if j occurs in the sequence i1, . . . , ik, while otherwise λj = 0. We shall identify Q
with V × F in such a way that

(ei1(ei2(· · · eik)))z 7→

{
(
∑
λjbj , 0) if z = 1,

(
∑
λjbj , 1) if z 6= 1.

Assume k ≥ 1, put j = i1 and y = ei2(· · · (eik−1
eik)). If i ∈ {1, . . . , k}, then

ei(ejy) =


ei(ei1(ei2(· · · (eik−1

eik)))) if i < j,

(ei2(· · · (eik−1
eik))) e2j if i = j, and

(eiej)y [ei, ej , y] = (ejei)y [ei, ej ][ei, ej , y] = ej(eiy) [ei, ej ] if i > j.

The last equality follows from (ejei)y = ej(eiy) [ej , ei, y] and [ej , ei, y] = [ei, ej , y].
To multiply x = ei1(ei2(· · · (eik−1

eik))) by ei from the left thus means to shift
ei to the right until it reaches ei` , where i ≤ i`. During its travel to the right ei
produces all [ei, eij ] where ij < i, and also e2i if i = i`. In the latter case ei = ei` is



9

removed from the list. Writing this in the language of V × F gives

(bi, 0)

∑
j

λjbj , 0

 =

∑
j

(λj + δij)bj , λiP (ei) +
∑
i>j

λjC(ei, ej)

,
where δij ∈ {0, 1} is equal to 1 if and only if i = j.

For the case of a general product note that e`x · y = (e` ·xy)[e`, x, y]. If e`x is in
a normal form, y is in a normal form, and the transformation of xy into a normal
form has been already performed, the final step of transformation of e`x · y into a
normal form rests in putting [e`, x, y] together with all [e`, ej ] such that ej occurs
in the normal form of y and j < `. If e` occurs in the normal form of y, then e`
is removed from the normal form, while e2` contributes to the element of Z that
appears as the rightmost element of the normal form. To see that the latter is true
note that while e` interacts with the normal form of xy, the interaction is restricted
to the part on the left in which there occur indices ≤ `. This part of the normal
form of xy coincides with the corresponding left part of y since ` is the smallest
index occuring in x.

This gives a recursive procedure for a transformation into a normal norm of any
two products. Let the projection of e`x be u =

∑
λibi and suppose that y projects

to v =
∑
νibi. The mapping A is trilinear. The contribution of associators thus

amounts to the sum of all A(λibi, λjbj , νkbk), where i < j. The product of (u, 0)
and (v, 0) is thus equal to (u+ v, q(u, v)), where

q(u, v) =
∑
k

νk

λkP (bk) +
∑
i>k

λiC(bi, bk) +
∑
i<j

λiλjA(bi, bj , bk)

 .

The mapping q clearly is linear in the second variable. Sums of quadratic forms are
quadratic forms. Hence to prove that q is quadratic in the first variable it suffices
to verify that the mapping

qk(u) = λkP (bk) +
∑
i>k

λiC(bi, bk) +
∑
i<j

λiλjA(bi, bj , bk)

is quadratic for each k ∈ {1, . . . , n}. Let u =
∑
λibi and v =

∑
νibi. The contri-

butions of P and C in qk(u) + qk(v) + qk(u+ v) amount to

(λk + νk + (λk + νk))P (bk) +
∑
i>k

((λi + νi + (λi + νi))C(bi, bk).

This vanishes. Since λiλj + νiνj + (λi + νi)(λj + νj) yields λiνj + λjνi we see that

qk(u) + qk(v) + qk(u+ v) =
∑
i,j

λiνjA(bi, bj , bk)

is bilinear. It remains to verify that q(u + v, v) = q(u, v) + q(v, v). To see this
observe first that q(u, v) may be also expressed as∑
k

νk

(
λkP (bk) +

∑
i>k

λiC(bi, bk)

)
+
∑
{i,j,k}

(λiλjνk +λiνjλk + νiλjλk)A(bi, bj , bk).

The sum upon the right runs over all 3-element subsets of {1, . . . , n}. The formula
is independent of the ordering of the subset. To see the connection to the original
expression of q(u, v), assume i < j < k and note that the original formula carries

νkλiλjA(bi, bj , bk) + νjλiλkA(bi, bk, bj) + νiλjλkA(bj , bk, bi)

and that these are all occurences of A(bσ(i), bσ(j), bσ(k)) in the formula, where σ is
a permutation of {i, j, k}.
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Since (λk + νk)P (bk) = λkP (bk) + νkP (bk) and (λi + νi)C(bi, bk) = λiC(bi, bk) +
νiC(bi, bk) the proof of q(u + v, v) = q(u, v) + q(v, v) requires verification only for
the coefficients of A(bi, bj , bk). However,

(λi + νi)(λj + νj)νk + (λi + νi)νj(λk + νk) + νi(λj + νj)(λk + νk)

evaluates to
λiλjνk + λiνjλk + νiλjλk + 3νiνjνk

which is exactly the aggregated contribution of q(u, v) + q(v, v).
This verifies that the procedure yields a code loop. If at the beginning there

had been a code loop Q the squares of which induce P , the constructed loop is
isomorphic to Q since q(u, v) expresses products of elements in a normal form. A
normal form depends upon the choice of basis. The formula for q(u, v) thus provides
loops isomorphic to Q for any choice of basis b1, . . . , bn.

Consider now a situation when at the beginning there was only a mapping P
of combinatorial degree at most three, P (0) = 0. By means of q(u, v) we have

constructed a code loop in which squaring is given by P̃ (u) = q(u, u). The question

is whether P̃ = P . If this is true, then by the argument above the formula for
q(u, v) provides a code loop the isomorphism type of which does not dependent
upon the choice of basis.

The proof of P̃ = P is divided into two steps. Assume 1 ≤ i < j < k ≤ n. We
have

(bk, 0)(bk, 0) = (0, P (bk)),

(bi + bk, 0)2 = (0, P (bi) + P (bj) + C(bk, bi)) = (0, P (bi + bk)), and

(bi + bj + bk, 0)2 = (0, P (bi) + P (bj) + P (bk)

+ C(bj , bi) + C(bk, bj) + C(bk, bi) +A(bi, bj , bk))

= (0, P (bi) + P (bj) + P (bk) + P (bi + bj) + P (bj + bk)

+ P (bi + bk) +A(bi, bj , bk))

= (0, P (bi + bj + bk)).

This shows that P̃ and P agree at all values bi, bi + bj and bi + bj + bk. Hence they
agree everywhere, as will be proved now.

Values that determine the square mapping completely. Let P : V → {0, 1},
P (0) = 0, be a mapping of combinatorial degree at most three. Let b1, . . . , bn be a
basis of V . Then P is completely determined by all of the values P (bi), P (bi + bj)
and P (bi + bj + bk), where i, j, k ∈ {1, . . . , n}.

Proof. For each u =
∑
λiui ∈ V denote by |u| the number of i ∈ {1, . . . , n} such

that λi = 1. Call |u| the weight of u. The value of P (u) is known if |u| ≤ 3. We
shall show by induction that each P (u) may be expressed as a sum of P (w), where
|w| ≤ 3. To do so express u as v + ei + ej + ek, where |u| − 3 = |v| ≥ 1. Then
A(v + ei, ej , ek) = A(v, ej , ek) + A(ei, ej , ek). The expression of A(v + ei, ej , ek)
by means of P is a sum of P (u) and of P -values for vectors of weight < |u|. The
expressions of A(v, ej , ek) and A(ei, ej , ek) also consists of sums of P (w), where
|w| < |u|. Hence P (u) may be expressed as such a sum too, and that makes the
induction applicable. �

Existence and uniqueness of code loops. Let V be a vector space over F =
{0, 1} with a basis b1, . . . , bn. For each mapping P : V → F , P (0) = 0, that is of
combinatorial degree at most three there exists, up to isomorphism, a unique code
loop (Q, ·, 1) with a central subloop Z, |Z| = 2, where V is identified with Q/Z in
such a way that P (xZ) = 0 if x2 = 1 and P (xZ) = 1 otherwise. Such a loop is
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always isomorphic to a loop V [P ] that is defined upon V × F in such a way that if
u =

∑
λibi, v =

∑
νibi and a, b ∈ F , then (u, a) · (v, b) = (u+ v, a+ b+ c), where

c is equal to∑
k

νk

(
λkP (bk) +

∑
i>k

λiC(bi, bk)

)
+
∑
{i,j,k}

(λiλjνk +λiνjλk + νiλjλk)A(bi, bj , bk),

with C(x, y) = P (x)+P (y)+P (x+y) and A(x, y, z) = C(x, z)+C(y, z)+C(x+y, z)
for all x, y, z ∈ V .

If Pi : V → F , Pi(0) = 0, i ∈ {1, 2} are two mappings of combinatorial degree
three, then V [P1] ∼= V [P2] if and only if there exists a linear automorphism α ∈
Aut(V ) such that P2(v) = P1(α(v)) for each v ∈ V .

Proof. Only the part about the isomorphism of V [P1] and V [P2] requires a proof.
Assume first the existence of α and extend it to a permutation ᾱ of V × F ,
ᾱ(u, a) = (α(u), a). The mapping ᾱ induces a loop Q upon V ×F such that ᾱ : Q ∼=
V [P1]. The square of (u, a) in Q is equal to ᾱ−1((ᾱ(u, a))2) = ᾱ−1((α(u), a)2) =
ᾱ−1(0, P1(α(u))) = ᾱ−1(0, P2(u)) = (0, P2(u)). Therefore Q ∼= P2[V ]. Since Q is
defined in such a way that Q ∼= V [P1], there must be V [P1] ∼= V [P2].

For the converse direction suppose that ψ : V [P2] ∼= V [P1]. Since both P1 and
P2 are of combinatorial degree three, the central associator elements of both V [P1]
and V [P2] are equal to (0, 0) and (0, 1). Therefore ψ induces a linear automorphism
α such that for each (u, a) ∈ V ×F there exists b ∈ F such that ψ(u, a) = (α(u), b).
Hence (0, P2(u)) = ψ((u, a)(u, a)) = (α(u), b)(α(u), b) = (0, P1α(u)). �

Connection to error correcting codes. A binary linear code D is any vector
subspace of Fn, F = {0, 1}, n ≥ 1. The term code is being used when min{|u|;
u ∈ D, u 6= 0} is relatively large if compared to dim(D) and n. A binary linear
code D is called doubly even if 4 divides |u| for each u ∈ D. An example of doubly
even code is the extended binary Golay code of length n = 24.

Let D be a doubly even code. For u ∈ D set P (u) = 0 if 8 divides |u|, and
P (u) = 1 if |u| ≡ 4 mod 8. If u, v ∈ D, set C(u, v) = 0 if |u ∩ v| is divisible by
4. Otherwise set C(u, v) = 1. (If u = (u1, . . . , un) and v = (v1, . . . , vn), then
u ∩ v = (u1v1, . . . , unvn).)

Since |u + v| = |u| + |v| − 2|u ∩ v| we have 4P (u + v) ≡ 4P (u) + 4P (v) −
4|u ∩ v|/2 mod 8. Hence P (u + v) ≡ P (u) + P (v) + |u ∩ v|/2 mod 2. Therefore
C(u, v) = P (u) + P (v) + P (u+ v).

Since |(u+ v) ∩ w| = |(u ∩ w)|+ |(v ∩ w)| − 2|u ∩ v ∩ w| there has to be

2C(u+ v, w) ≡ 2C(u,w) + 2C(v, w)− 2|u ∩ v ∩ w| mod 4.

Put A(u, v, w) = 0 if |u ∩ v ∩ w| is even. Otherwise set A(u, v, w) = 1. The
congruence above shows that

A(u, v, w) ≡ C(u+ v, w) + C(u,w) + C(v, w) mod 2

for all u, v, w ∈ V . It is clear that A(u, u, v) = 0. The equality A(u + v, w, z) =
A(u,w, z) + A(v, w, z) follows from (u + v) ∩ w ∩ z = u ∩ w ∩ z + v ∩ w ∩ z since
A(u, v, w) gives the parity of |u ∩ v ∩ w|.

The mapping P therefore is of combinatorial degree at most 3. As such it induces
a code loop upon D × F . It may be proved that for each code loop Q there exists
a code D that induces a loop isomorphic to Q.

The loop induced by the extended binary Golay code is known as Parker loop.
The Parker loop may be used as a departing point of the construction of the Monster
(or Friendly Giant), the largest sporadic finite simple group.


