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Panel Bootstrap Standard Errors

The bootstrap method provides an alternative way to obtain panel-robust standard
errors. The key assumption is that observations are independent over i , so one does
a bootstrap pairs procedure that resamples with replacement over i and uses all ob-
served time periods for a given individual. For data {(yi ,Xi ), i = 1, . . . , N } this yields
B pseudo-samples and for each pseudo-sample one performs OLS regression of ỹi t

on w̃i t , yielding B estimates θ̂b, b = 1, . . . , B.
The panel bootstrap estimate of the variance matrix is then

V̂Boot[̂θ] = 1

B − 1

B∑
b=1

(
θ̂b − θ̂

) (
θ̂b − θ̂

)′
, (21.14)

where θ̂ = B−1∑
b θ̂b. This bootstrap provides no asymptotic refinement (see Sec-

tion 11.2.2). Given independence over i the estimate is consistent as N → ∞. It is
asymptotically equivalent to the estimate (21.13), just as in the cross-section case
bootstrap pairs are asymptotically equivalent to White’s heteroskedastic consistent es-
timate. This bootstrap does not offer an asymptotic refinement though bootstrap with
asymptotic refinement is possible (see Section 11.6.2).

This bootstrap method can be applied to any panel estimator that relies on
independence over i and N → ∞, including the pooled feasible GLS estimators of
Section 21.5.2 for short panels. The key is to resample over i only, and not over both
i and t .

Discussion

The importance of correcting standard errors for serial correlation in errors at the indi-
vidual level cannot be overemphasized. Computer packages currently do not automat-
ically do this. Bertrand, Duflo, and Mullainathan (2004) illustrate the resulting down-
ward bias in standard error computation, in the context of difference-in-differences es-
timation (see Section 22.6). They find that the panel-robust and panel bootstrap meth-
ods work well, even though in their application with state-year data N (the number of
states) is relatively small whereas the asymptotic theory uses N → ∞.

The following example (see Table 21.2) also shows the importance of correcting
standard errors for any error serial correlation and autocorrelation.

21.3. Linear Panel Example: Hours and Wages

An important issue in labor economics is the responsiveness of labor supply to wages.
The standard textbook model of labor supply suggests that for people already working
the effect of a wage increase on labor supply is ambiguous, with an income effect
pushing in the direction of less work offsetting a substitution effect in the direction of
more work.

Cross-section analysis for adult males finds a relatively small positive response to
hours worked. However, it is possible that this association is spurious, merely reflect-
ing a greater unobserved desire to work being positively associated with higher wages.
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Panel data analysis can control for this, under the assumption that the unobserved de-
sire to work is time-invariant. For example, the within estimator does so by measuring
the extent to which an individual works above-average (or below-average) hours in
periods with above-average (or below-average) wages.

The data on 532 males for each of the 10 years from 1979 to 1988 come from Ziliak
(1997). The variable of interest is lnhrs, the natural logarithm of annual hours worked.
The single explanatory variable is lnwg, the natural logarithm of hourly wage. We
consider the regression model

lnhrsi t = αi + βlnwgi t + εi t ,

where the individual-specific effect αi is simplified to α in some models and β mea-
sures the wage elasticity of labor supply. The error term εi t is assumed to be indepen-
dent over i , but it may be correlated over t for given i . As noted we expect β, the labor
supply elasticity, to be small and positive.

Ziliak (1997) additionally included a quadratic in age, number of children, and an
indicator variable for bad health. These regressors and year dummies make relatively
small difference to the estimate of β and its standard error, and for simplicity they are
omitted here. In Chapter 22 we consider more general models that permit lnwg to be
endogenous and permit lags of lnhrs to appear as a regressor.

21.3.1. Data Summary

For the 5,320 observations, the sample means of lnhrs and lnwg are respectively 7.66
and 2.61, implying geometric means of 2,120 hours and $13.60 per hour. The sam-
ple standard deviations are respectively 0.29 and 0.43, indicating considerably greater
variability in percentage terms in wages rather than hours.

For panel data it is useful to know whether variability is mostly across individuals
or across time. The total variation of a series xit around its grand mean x̄ can be
decomposed as

N∑
i=1

T∑
t=1

(xit − x̄)2 =
N∑

i=1

T∑
t=1

[(xit − x̄i ) + (x̄i − x̄)]2

=
N∑

i=1

T∑
t=1

(xit − x̄i )
2 +

N∑
i=1

T∑
t=1

(x̄i − x̄)2,

as the cross-product term sums to zero. In words, the total sum of squares equals
the within sum of squares plus the between sum of squares. This leads to within
standard deviation sW and between standard deviation sB, where

s2
W = 1

N T − N

N∑
i=1

T∑
t=1

(xit − x̄i )
2

and

s2
B = 1

N − 1

N∑
i=1

(x̄i − x̄)2.
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Table 21.2. Hours and Wages: Standard Linear Panel Model Estimatorsa

POLS Between Within First Diff RE–GLS RE–MLE

α 7.442 7.483 7.220 .001 7.346 7.346
β .083 .067 .168 .109 .119 .120
Robust seb (.030) (.024) (.085) (.084) (.051) (.052)
Boot se [.030] [.019] [.084] [.083] [.056] [.058]
Default se {.009} {.020} {.019} {.021} {.014} {.014}

R2 .015 .021 .016 .008 .014 .014
RMSE .283 .177 .233 .296 .233 .233
RSS 427.225 0.363 259.398 417.944 288.860 288.612
TSS 433.831 17.015 263.677 420.223 293.023 292.773
σα .000 .181 .161 .162
σε .283 .232 .233 .233
λ 0.000 – 1.000 – .585 .586
N 5320 532 5320 4788 5320 5320

a Shown are pooled OLS (POLS), between, within, first-differences, random effects (RE) GLS and MLE linear
panel regression of lnhrs on lnwg. Standard errors for the slope coefficients are panel robust in parentheses,
panel bootstrap in square brackets, and default estimates that assume iid errors in curly braces. The R2, root
mean square error (RMSE), residual sum of squares (RSS), total sum of squares (TSS), and sample size come
from the appropriate regression given in Section 21.2. The parameter λ is defined after (21.11).

b se, standard error.

The within and between sample standard deviations are, respectively, 0.22 and 0.18
for lnhrs and 0.19 and 0.39 for lnwg. The larger total variation in wages compared to
hours is therefore due to between individual variation being much higher for wages.
Within individuals the variation is actually somewhat smaller for wages than it is for
hours.

21.3.2. Comparison of Panel Data Estimators

Table 21.2 summarizes results from application of the standard panel estimators de-
fined in Section 21.2.2 to these data, along with three different estimates of the stan-
dard errors. As detailed in the following, statistical inference should use either the
panel-robust standard error or the panel bootstrap standard error.

Slope Parameter Estimates

The estimate of the slope parameter β differs across the different estimation methods.
The between estimate that uses only cross-section variation is less than the pooled OLS
estimate. The within or fixed effects estimate of 0.168 is much higher than the pooled
OLS estimate of 0.083 and is borderline statistically significant using a two-tailed test
at 5% and standard error estimate of 0.084 or 0.085. The first-differences estimate of
0.109 is also higher than that of pooled OLS but is considerably less than the within
estimate, which also uses only time-series variation. The RE estimates of 0.119 or
0.120 lie between the between and within estimates. This is expected, as RE estimates
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can be shown to be a weighted average of between and within estimates. The two
RE estimates are very close to each other as here the estimates of the variances σ 2

α and
σ 2
ε are similar, leading to similar values λ̂ = 0.585 and λ̂ = 0.586 in the regression

(21.10). The RE estimates are surprisingly less efficient than the pooled OLS estimates,
a sign that the RE model fails to model the error correlation well.

Which estimates are preferred? The within and first-difference estimators are con-
sistent under all models (pooled, RE, and FE) whereas the other estimators are in-
consistent under the fixed effects model. The most robust estimates are therefore the
within or first-differences estimates of 0.168 or 0.109.

There is, however, an efficiency loss in using these more robust estimators, with
standard errors of 0.83 to 0.85 that are much larger than those from pooled OLS and
RE estimates. A formal Hausman test (see Section 21.4.3 for details and discussion)
can be used to test whether or not the individual effects are fixed. Given the relative
imprecision of estimation in this example, the Hausman test does not reject the null
hypothesis of random effects, despite the large difference between FE and RE esti-
mates. So the more efficient random effects estimates could be used here. Another
advantage of random effects estimation is that it permits estimation of the coefficients
of time-invariant estimators.

Standard Error Estimation

We now turn to comparison of the standard error estimates. From Section 21.2.3, in-
ference should be based on panel-robust standard errors that permit errors to be corre-
lated over time for a given individual and to have variances and covariances that differ
across individuals. Also, as detailed in later sections, the standard errors for estimators
based on deviations from means, such as (21.8) and (21.10), need to account for loss
of N + K rather than K degrees of freedom.

The first standard error estimate is computed by the panel-robust method given in
(21.13), and the second is computed by the panel bootstrap given in (21.14) with 500
replications. For brevity these estimates are called panel robust, though they are addi-
tionally robust to heteroskedasticity. The two estimates are very close, aside from the
random effects models where the panel-robust standard errors are underestimated be-
cause they are computed for the regression (21.10), which ignores estimation error in λ̂.

The third standard error estimate is the standard default computer output that is
based on the assumption of iid errors. In this example the correctly estimated standard
errors are a remarkable three to four times as large as the default standard errors. The
one exception is the between estimator, an estimator with standard errors that need
only correction for heteroskedasticity since it uses only cross-section variation.

For example, for the pooled OLS estimator of β the default standard error is 0.09,
leading to incorrect t-statistic of 9.07. The panel-robust standard error is a much
larger 0.30, leading to correct t-statistic of a much smaller 2.83. Default standard er-
rors assume independence of model errors over t for given i when in practice they
are likely to be positively correlated. This erroneous assumption overestimates the
benefit of additional time periods, leading to downward bias in standard errors (see
Section 21.5.4). Additionally, ignoring heteroskedasticity in errors also leads to bias,
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though this bias could be in either direction. For these data a failure to control for
heteroskedasticity also imparts a large downward bias: The standard error of β̂POLS

controlling for heteroskedasticity, but not for correlation over t for given i , is 0.020.
For other data, correction for heteroskedasticity is usually much less important than
the correction for panel correlation.

For the within and between estimators inclusion of the term αi should control for
some of the correlation in the error across time for a given individual. For these data,
however, the differences between panel-robust and nonrobust standard errors remain
large, in part because of failure to additionally control for heteroskedasticity.

Clearly panel-robust standard errors should be used.

21.3.3. Graphical Analysis

It is insightful to perform a graphical comparison of overall, between, and fixed effects
(within or first-differences) regressions. Such plots are rarely performed in panel data
regression, but they are easily applied here as there is only one regressor.

All plots include a nonparametric regression curve using the Lowess smoother (see
Section 9.6.2) and a linear regression curve that corresponds to the estimates given in
Table 21.2.

Figure 21.1 plots lnhrs against lnwg for all firms in all years (5,320 observations).
The plot suggests a positive relationship, roughly linear except at the extreme ends,
and from Table 21.2 the line has slope 0.083 with a low R2 = 0.015.

The between estimator (21.7) regresses ȳi on x̄i . The corresponding plot for the
lnhrs–lnwg data is given in Figure 21.2 and again shows a positive relationship.

The within or fixed effects estimator (21.8) regresses (yit − ȳi ) on (xit − x̄i ).
Figure 21.3 gives the related plot of (yit − ȳi + ȳ) on (xit − x̄i + x̄), where ȳ =
N−1∑

i ȳi and x̄ = N−1∑
i x̄i are the grand means of y and x . Comparison with Fig-

ure 21.1 shows that differencing the individual mean leads to a considerable decrease
in the range of variability in lnwg, with less of a decrease in the variability of lnhrs.
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Figure 21.1: Hours and wages: pooled (overall) regression. Natural logarithm of annual
hours worked plotted against natural logarithm of hourly wage. Data for 532 U.S. males for
each of the ten years 1979–88.
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Figure 21.2: Hours and wages: between regression. Ten-year average of log hours plotted
against ten-year average of log wage for 532 men. Same sample as Figure 21.1.

The slope does appear steeper than that for pooled OLS, and from Table 21.2 the slope
increased from 0.083 to 0.168.

The first-differences estimator (21.9) regresses (yit − yi,t−1) on (xit − xi,t−1). The
corresponding plot for the lnhrs – lnwg data is given in Figure 21.4. The figure is
qualitatively similar to Figure 21.3.

The conclusion of the preceding analysis is that there is greater response to wage
changes using time-series variation than using cross-section variation.

21.3.4. Residual Analysis

It is instructive to consider the autocorrelation patterns of the data and of residuals. For
example, for residuals ûi t = yit − ŷi t the autocorrelation between period s and period
t is calculated as ρ̂st = cst/

√
cssctt , s, t = 1, . . . , T , where the covariance estimate

cst = (N − 1)−1∑
i (̂uit − ût )(̂uis − ûs) and ût = N−1∑

i ûi t .
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Figure 21.3: Hours and wages: within (fixed effects) regression. Deviation of log hours
from ten-year average plotted against deviation of log wage from ten-year average using
ten years of data for 532 men. Same sample as Figure 21.1.
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Figure 21.4: Hours and wages: first differences regression. First difference of log hours
plotted against first difference of log wage using ten years of data for 532 men. Same
sample as Figure 21.1.

Table 21.3 gives the residual autocorrelations after pooled OLS regression of lnhrs
on lnwg. The autocorrelations generally lie between 0.2 and 0.4 for data two to nine
periods apart. The decay rate is very slow, and the autocorrelations appear closer to a
random effects model that assumes that Cor[uit , uis] is constant for t �= s than to an
AR(1) model that has exponential decay.

The autocorrelations for lnhrs before regression are very similar to those given in
Table 21.3, since ûi t � yit as evident from the poor explanatory power of pooled OLS
with R2 = 0.015. The autocorrelations for the regressor lnwg, not tabulated here, are
much higher, ranging from approximately 0.9 at one lag, to 0.7 at nine lags.

The correlations of the residuals from the within regression are given in Table 21.4.
If the original errors εi t in (21.3) are iid then it can be shown that the transformed
errors εi t − ε̄i have autocorrelations at all lags equal to −1/(T − 1) = −0.11. There
is some departure from this here, particularly for the first lag, which is always positive.

Table 21.3. Hours and Wages: Autocorrelations of Pooled OLS Residualsa

u79 u80 u81 u82 u83 u84 u85 u86 u87 u88

upols79 1.00
upols80 .33 1.00
upols81 .44 .40 1.00
upols82 .30 .31 .57 1.00
upols83 .21 .23 .37 .47 1.00
upols84 .20 .23 .32 .34 .64 1.00
upols85 .24 .32 .41 .35 .39 .58 1.00
upols86 .20 .19 .28 .25 .31 .35 .40 1.00
upols87 .20 .32 .33 .29 .31 .34 .39 .35 1.00
upols88 .16 .25 .30 .26 .21 .25 .34 .55 .53 1.00

a Note: Autocorrelations of residuals are from pooled OLS regression of lnhrs on lnwg for 532 men in 10 years.
The autocorrelations die slowly.
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