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Note. Sections 1–5 are covered in the first term of the course. The remaining sections
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1 An axiomatic framework for set theory

1.1 Axioms of set theory

An excellent and detailed account can be found in [1].1 We just review the basic points.
We define here the Zermelo-Fraenkel set theory (ZF), a first-order predicate theory in

the language {=,∈}.

Remark 1.1 We may ask the following question, in this more concrete context: “Why
an axiomatic set theory, i.e. why a theory in this formal sense?”. Consider the following
Russell’s paradox. Assume that every property gives rise to a set (this sounds reasonable
enough). Consider the property P (x) ≡df x 6∈ x. Then existence of a set y = {x |P (x)}
leads to a contradiction: if y ∈ y, then y must satisfy the property P (y), and so y 6∈ y; if
y 6∈ y, then P (y) holds, and so y qualifies to be an element of y: y ∈ y. In both cases we
reached a contradiction, and so such a set y cannot exist.

We interpret this paradox in the following way: we must be more restrictive in what a
set is (for instance y will not be a set – it is “too big”). We describe sets in the “algebraic”
fashion, listing operations which when applied to sets yield sets again. In other words,
we will build our sets from bottom up: from simple sets to more complicated sets.

In the axiomatisation we attempt to list all properties which we think hold (without
least doubt) about sets.

Now we formulate the principles in our chosen formal system of first order predicate
logic and prove some basic properties of sets.

[ZF1] Existence of a set.
(∃x)x = x.

This is just to make sure that there is at least one set (note that because we have not
constants in our language, this is necessary).

[ZF2] Extensionality.

(∀x, y)[x = y ↔ (∀q)(q ∈ x↔ q ∈ y)].

Note that one half of ZF1 is provable from the axioms of predicate calculus (Exercise):

(1.1) ` (∀x, y)[x = y → (∀q)(q ∈ x↔ q ∈ y)].

We define a new binary relational symbol ⊆ (a subset):

(1.2) x ⊆ y ↔ (∀q)(q ∈ x→ q ∈ y).

Exercise. Realize that

ZF1 ` (∀x, y)(x = y ↔ x ⊆ y & y ⊆ x).

[ZF2] Pairing.

(∀x, y)(∃z)(∀q)(q ∈ z ↔ q = x ∨ q = y).

1Relevant parts of the book are available as PDF copies on my webpage; you need to know the password
to access them.
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Let (∃!x)ϕ(x) be a shorthand for (∃x)ϕ(x) & [(∀x, y)(ϕ(x) & ϕ(x/y) → x = y)], where
x/y denotes the substitution of y for x. We read the quantifier ∃!x as “there is exactly
one x”.

Exercise. Show

ZF1,ZF2 ` (∀x, y)(∃!z)(∀q)(q ∈ z ↔ q = x ∨ q = y).

[Hint. ZF2 implies that there is at least one such z. ZF1 implies that there is at most
one such z: if z1 and z2 satisfy ZF2, then they have the same elements, and by ZF1, this
means that z1 = z2.]

As such z is unique we can add a new binary functional symbol which we denote as
{·, ·} and write {x, y} for the z in ZF2.

We define a new binary operation: 〈x, y〉 (or sometimes written as (x, y)) – an ordered
pair. The definition is as follows:

(1.3) 〈x, y〉 = {{x}, {x, y}}.

ZF2 implies that 〈x, y〉 exists. We show that this definition satisfies the property which
we require of an ordered pair.

Lemma 1.2 The following holds

ZF1,ZF2 ` (∀x, y, v, w)[〈x, y〉 = 〈v, w〉 ↔ x = v & y = w)].

Proof. The direction from right to left follows from the axioms of identity. We will show
the converse:

(1.4) (∀x, y, v, w)[〈x, y〉 = 〈v, w〉 → x = v & y = w).

Fix arbitrary sets x, y, v, w. We will show the following equivalent reformulation of
(1.4): if x 6= v or y 6= w, then it holds that 〈x, y〉 6= 〈v, w〉. We need to show that:

(i) x 6= v implies 〈x, y〉 6= 〈v, w〉, and
(ii) y 6= w implies 〈x, y〉 6= 〈v, w〉.

Realize that if 〈x, y〉 = 〈v, w〉, then it holds:

(1.5)
[
{x} = {v} ∨ {x} = {v, w}

]
&
[
{x, y} = {v} ∨ {x, y} = {v, w}

]
.

Let us shorten the expression in (1.5) as A & B, where A := {x} = {v} ∨ {x} = {v, w},
and B := {x, y} = {v} ∨ {x, y} = {v, w}.

Proof of (i). Assume x 6= v and assume for contradiction that 〈x, y〉 = 〈v, w〉. Then
one of the two identities in A must hold: if {x} = {v}, then x = v, and if {x} = {v, w},
then x = v = w. In both cases, this contradicts the assumption x 6= v. It follows A does
not hold, and so 〈x, y〉 6= 〈v, w〉 is true.

Proof of (ii). Assume y 6= w and assume for contradiction that 〈x, y〉 = 〈v, w〉. Then
A must be true, and so x = v. B must also be true: assume that the first part of B is true:
{x, y} = {v}: then x = y = v. x = y = v together with the assumption 〈x, y〉 = 〈v, w〉
implies that x = y = v = w (because x = y implies {x} = {x, y}, and so {v} = {v, w}),
which contradicts y 6= w. So assume that the second part of B is true: {x, y} = {v, w}:
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because x = v is true, this can only be true if y = w, which again contradicts y 6= w. It
follows that 〈x, y〉 = 〈v, w〉 cannot be true, and so 〈x, y〉 6= 〈v, w〉 holds.

Note. This proof is a rather long verification of something in a sense very trivial. The
apparent complexity of the proof is caused by the necessity to distinguish many cases and
rule them out one by one. �

By induction2 we can define an ordered n-tuple as follows: 〈a0〉 = a0, and then
〈a0, a1, . . . , ak〉 = 〈〈a0, a1, . . . , ak−1〉, ak〉. The analogue of Lemma 1.2 is shown by induc-
tion.

Fact 1.3

(1.6) ZF1,ZF2 ` (∀x0, . . . , y0, . . .)

[〈x0, . . . , xk〉 = 〈y0, . . . , yk〉 ↔ x0 = y0 & . . . & xk = yk].

Note. From now on we will not specifically say which axioms are needed to show a
given claim. We just say “it is provable that”; the meaning is “it is provable from the
axioms introduced so far that”.

[ZF3*] Separation scheme or Comprehension scheme. Let ϕ(q, p) be a formula
with two free variables q and p. Then (1.7) is an axiom of ZF (hence there are infinitely
many axioms in (1.7) – one for each ϕ(p, q)).

(1.7) (∀x, p)(∃z)(∀q)[q ∈ z ↔ q ∈ x & ϕ(q, p)].

We view p as the parameter of the definition.
By axiom of extensionality for each x and ϕ the set in ZF3* is determined uniquely and

we may add a new operation the value of which is written as {· | . . . ϕ . . .}; for illustration,
for given x and p we write

(1.8) z = {q | q ∈ x & ϕ(q, p)}

for z in (1.7).

Remark 1.4 Realize that for every formula ϕ(x, p) we add one axiom. [ZF3*] is thus
a collection of infinitely many axioms. Notice that by the syntactical rules of the first-
order predicate calculus we are not allowed to quantify formulas, so there is no hope of
“replacing” the infinite number of axioms in [ZF3*] by a single axiom of the type

this is wrong: ∀x, p∀ϕ(x, p)(∃z)(∀q)[q ∈ z ↔ q ∈ x & ϕ(q, p)].

There are good reasons to forbid the quantification over formulas: consider the Berry’s
paradox : Since there are infinitely many natural numbers, there are certainly natural
numbers which cannot be defined by any combination of 100 letters or less, and we can
take the least such. If n is the “least number which cannot be defined by any combination
of 100 letters or less”, then n is defined by less than 100 letters after all (the definition
appears between “...” above), contradiction! Notice that if we allowed quantification such
as ∀ϕ . . ., then we would be in a similar situation which is paradoxical in Berry’s paradox.

2We mean an induction in the metatheory, using the natural numbers we intuitively have.
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From the formulation of the schema with a single parameter p, it already follows that
we can have more parameters (this is proved by using the ordered n-tuples: 〈p0, . . . , pn〉
is just a single set):

Fact 1.5 Let ψ(q, p0, . . . , pn) be a formula with the free variables shown. Then it is
provable

(1.9) (∀x, p0, . . . , pn)(∃z)(∀q)[q ∈ z ↔ q ∈ x & ψ(q, p0, . . . , pn)].

We now show that the formula q 6= q from the Russell’s paradox does not lead to
contradiction when applied in the “safe” context of ZF3*:

Lemma 1.6 Fix x and let
z = {q | q ∈ x & q 6∈ q}.

This set exists by ZF3*. Then z 6∈ z and z 6∈ x.

Proof. The assumption of z ∈ z leads to contradiction, and so z 6∈ z must be true. To
show that z 6∈ x, assume for contradiction that z ∈ x. Then we can show both z 6∈ z
and z ∈ z which is a contradiction, and hence z 6∈ x. (Note that in the original Russell’s
paradox, we did not have the extra assumption that z ∈ x, and so all we could say was
that the whole system was contradictory, not just the assumption that z ∈ x.)

Note that assuming Axiom of Foundation (see below), we actually have z = x. �

Corollary 1.7 There is no set containing all sets.

Proof. Assume V is the set containing all sets, i.e. V = {x |x = x}. Then we do obtain
contradiction from the existence of set z = {q | q ∈ V & q 6∈ q} because z ∈ V is true in
this case. �

The Separation scheme enables us to define a lot of other operations common in set
theory (we can do that since by Axiom of extensionality these operations are correctly
defined). Let x, y, z be sets.

– Intersection x∩y = {q | q ∈ x & q ∈ y}, difference of two sets x\y = {q | q ∈ x & q 6∈ y}.3

– Emptyset: ∅ = {q | q ∈ x & q 6= q}, where x is an arbitrary set.

Exercise. More precisely, consider the property ϕ(y) given by “(∀q)q 6∈ y.” It can be
shown: (i) that there is at least one set which satisfies ϕ(y) – to show that such a
set exists we use ZF3*: for instance the set z = {q | q ∈ x & q 6= q} above satisfies
ϕ(z); (ii) it can be shown that there can be at most one set with no element: if there
were two such sets, they would need to differ by an element (because of the Axiom of
extensionality), but this is impossible. We can therefore add to our language a new
symbol, ∅, to denote this set.

– Definition: x and y are disjoint if x ∩ y = ∅.
3Some authors write just x− y for x \ y.
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– Intersection (generalisation of intersection):

(1.10)
⋂
x = {q | (∀q′)(q′ ∈ x→ q ∈ q′)}.

If x is nonempty, then
⋂
x is a set because if y ∈ x is some set, then

(1.11)
⋂
x = {q | q ∈ y & (∀q′)(q′ ∈ x→ q ∈ q′)}.

If x = ∅, then
⋂
∅ is not a set; in fact every set at all is the element of

⋂
∅ (that is

⋂
∅

is the whole universe of sets, denoted as V ).

[ZF4] Axiom of union.

(1.12) (∀x)(∃z)(∀q)[q ∈ z ↔ (∃y)(y ∈ x & q ∈ y)].

We introduce the following abbreviations:

(∃y ∈ x)ϕ for (∃y)(y ∈ x & ϕ)

and
(∀y ∈ x)ϕ for (∀y)(y ∈ x→ ϕ).

By Axiom of extensionality, we can define a new operation⋃
x = {q | (∃y ∈ x)q ∈ y}.

Define
⋃
{x, y} = x ∪ y. (

⋃
is an infinite version of ∪).

Exercise. Note that {x} ∪ {y} = {x, y} but ZF4 does not imply ZF2. [Hint. To show
that {x} is a set still requires ZF2.]

[ZF5] Power set.

(1.13) (∀x)(∃z)(∀q)(q ∈ z ↔ q ⊆ x).

Definition. We say that q is a proper subset of x if q ⊆ x but q 6= x.
We can form a new unary operation:

P(x) = {q | q ⊆ x}.

Lemma 1.8 There is no set x such that P(x) ⊆ x. As a corollary, this again shows that
V (the universe of all sets) is not a set (because if V were a set, then P(V ) ⊆ V must
be true).

Proof. Assume for contradiction that there is x such that

(1.14) P(x) ⊆ x

Fix such an x. Consider the set z defined in Lemma 1.6. z is clearly a subset of x. By
our assumption (1.14) it must hold that z ∈ x. But this is contradictory by Lemma 1.6.

�

The powerset axiom allows us to define the following operations:
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• Product x× y, where:

(1.15) x× y = {q | q ∈P(P(x ∪ y)) & (∃q0, q1)(q = 〈q0, q1〉 & q0 ∈ x & q1 ∈ y)}.

The product is a set because P(P(x∪y)) is a set and x×y ⊆ z, then apply Schema
of Comprehension.

By induction on n ∈ N we define (x1 × . . . xn × xn+1) = (x1 × . . .× xn)× xn+1. We
write xn to denote the set x× x . . ., where x occurs n-times.

• An n-ary relation on sets x1, . . . , xn is a subset of x1× . . .×xn. An n-ary relation
r is a relation on x if r ⊆ xn.

For a binary relation r ⊆ x× y we define domain of r as

(1.16) dom(r) = {q | (∃q′ ∈ y)〈q, q′〉 ∈ r}.

and similarly we define range of r as

(1.17) rng(r) = {q | (∃q′ ∈ x)〈q′, q〉 ∈ r}.

Exercise. Verify that dom(r) and rng(r) are sets. [Hint. Both are subsets of
⋃⋃

r.]

We also define the inverse of r as

(1.18) r−1 = {〈q, q′〉 | 〈q′, q〉 ∈ r}.

and if a ⊆ x we define the image of r over a:

(1.19) r′′a = {q | (∃q′ ∈ a)〈q′, q〉 ∈ r}.

If a ⊆ x then we say that r �a is the restriction of r to a, where

(1.20) r �a = {〈q, q′〉 | 〈q, q′〉 ∈ r & q ∈ a}.

Verify that r−1, r′′a and r �a are sets.

Exercise.

1. Consider the relation≤ defined on natural numbers (we write x ≤ y for 〈x, y〉 ∈≤).
In set theory, the set of all natural numbers N is customarily denoted as ω (and
by convention includes 0).4 It follows that ≤⊆ ω × ω, and ≤−1=≥. What is
≤′′ {2}?

2. ∈ is a binary relation with domain the universe of all sets: by Pairing axiom, x
is an element of {x} for every set x. What is the range of ∈? Let x be a set;
what is dom(∈�x)?

3. Check the following for a binary relations x, x′ and sets y, z:

(a) x ∪ x′, x ∩ x′, x \ x′ are binary relations,
(b) x′′(y ∪ z) = x′′y ∪ x′′z,

4We have not yet shown how to construct ω in set theory, but we will do it later.
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(c)

(1.21) x′′(y ∩ z) ⊆ x′′y ∩ x′′z and x′′y \ x′′z ⊆ x′′(y \ z).

Give an example where the converse inclusion ⊇ does not hold in (1.21). Compare
with (1.25).

• Composition of relations. If r, s are binary relations then the composition r ◦ s
is defined as

(1.22) r ◦ s = {〈x, z〉 | (∃y)〈x, y〉 ∈ r & 〈y, z〉 ∈ s}.

Exercise. Check the following for all binary relations r, s, t:

1. dom(r−1) = rng(r), rng(r−1) = dom(r), (r−1)−1 = r, dom(r ◦ s) ⊆ dom(r),
rng(r ◦ s) ⊆ rng(s). When the identity holds in the last two formulas?

2. (r ◦ s)−1 = s−1 ◦ r−1.
3. r ◦ (s ◦ t) = (r ◦ s) ◦ t.
4. Let Id be the identity relation (it is a class, see below for some notes on classes),

Id = {〈x, x〉 |x ∈ V }. Then r ◦ Id = Id ◦ r = r.

• A binary relation r is called a function if it satisfies the following:

(1.23) (∀x, y, ȳ)(〈x, y〉 ∈ r & 〈x, ȳ〉 ∈ r → y = ȳ).

Since every function f is a relation, we can use for f the notation defined above for
relations: Let f be a function.

– If x ∈ dom(f) we write f(x) for y such that 〈x, y〉 ∈ f .

– If a ⊆ dom(f) we write f [a] for {y | (∃x ∈ a)〈x, y〉 ∈ f}.
Note that as f is a relation, it holds that f [a] = f ′′a by the notation for relations;
when dealing with functions however, we often (not always) prefer to use the
notation f [a].

– If b ⊆ rng(f) we write f−1[b] for {x | (∃y ∈ b)〈x, y〉 ∈ f}. Note again that this
can be written as f−1′′b. Which notation is used depends on the context.

– Notation. Let f : x → y and g : y → z be two functions. This notation means
that dom(f) = x, dom(g) = y and rng(f) ⊆ y and rng(g) ⊆ z. We denote by
f ◦ g the composition of the functions f and g viewed as relations. It follows that
f ◦ g is a function f ◦ g : x→ z such that for each q ∈ x, f ◦ g (q) = g(f(q)).

– f is called 1-1 (injective) if it satisfies:

(∀x0, x1 ∈ dom(f)) x0 6= x1 → f(x0) 6= f(x1).

Exercise. Verify that f is 1-1 iff f−1 is a function.

– f : x→ y is onto y if rng(f) = y (if f is onto, we also call it surjective).

Exercises.

1. Let f : x→ y and g : y → z be 1-1 functions, then:
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(a) f ◦ g is 1-1.
(b) (f ◦ g)−1 = g−1 ◦ f−1.

2. Let x, y be any sets and f a function (and so f−1 is a relation):

(1.24) (f−1)′′(x ∩ y) = (f−1)′′x ∩ (f−1)′′y

and (f−1)′′(x \ y) = (f−1)′′x \ (f−1)′′y.

If f is moreover 1-1, then it also holds:

(1.25) f ′′(x ∩ y) = f ′′x ∩ f ′′x and f ′′(x \ y) = f ′′x \ f ′′y.

[Notice that this is a strengthening of the results in (1.21); you can use the results
in (1.21) here.]

• Index sets. Let i and a be sets and ā a 1-1 function such that dom(ā) = i and
rng(ā) = a. Then

(1.26) a = {ā(j) | j ∈ i}

and we say that a is indexed by i. In practice it is customary to write I instead of
i and aj instead of ā(j) so that

(1.27) a = {ai | i ∈ I}.

Compare with (1.38).

[ZF6] Axiom of infinity.

(1.28) (∃x)[∅ ∈ x & (∀q)(q ∈ x→ q ∪ {q} ∈ x)].

Under all reasonably definitions of finiteness, a set in the axiom ZF6 is infinite.
Note that a set x in (1.28) is note determined uniquely, there are more sets satisfying

(1.28). If x satisfies (1.28), we say that x is inductive. We will define the set of natural
numbers N, also denoted as ω, as follows:

(1.29) ω = N =
⋂
{x |x is inductive}.

Remark 1.9 We are not entitled to use the operation
⋂

here according to (1.10) unless
we show first that S = {x |x is inductive} is a set. But S is not a set. We still find useful
to refer to objects such as S and we call them classes. We say that a class is any system
of sets which is defined by a formula with parameters.5 Every set is a class because if x
is a set then x = {q | q ∈ x} and so is defined by the formula q ∈ x with x as a parameter.
Some classes however are not sets, and these are called proper classes. S is a proper
class. Another example of a proper class is the universe of all sets, which we denote as
V = {x |x = x}. Classes are usually written in capital letters: A,B etc. When dealing
with (proper) classes we must remember that these are not sets so not everything we use
with sets is meaningful with classes: for instance we can write x ∈ A, but not A ∈ B,
and most importantly we must not quantify over proper classes. More about classes is in
Subsection 1.2.

5So if ϕ(x, p0, . . . pn) is a formula and p0, . . . , pn are sets then {q |ϕ(q, p0, . . . , pn)} is a class. So for
instance {x |x 6∈ x} is a class.
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However we can argue that the operation of intersection
⋂

can be generalised so that it can
be applied to classes, and moreover when applied to a class, it will yield a set. Indeed if A is
a nonempty class defined by a formula ϕA(x, p0, . . . , pn), that is q ∈ A↔ ϕA(q, p0, . . . , pn),
and y ∈ A is arbitrary then

(1.30)
⋂
A = {q | q ∈ y & (∀q′)(ϕA(q′, p0, . . . , pn)→ q ∈ q′}

and so
⋂
A is a set by the axiom of separation (because of the expression “q ∈ y” in the

definition of
⋂
A in (1.30)).

It follows that N is a set.
For the following Lemma, we define the notion of the least set in ⊆: We say that x is

the least set in the inclusion relation in a class A if for all a ∈ A, x ⊆ a.

Lemma 1.10 N is an inductive set and it is the least such in the inclusion relation.

Proof. ∅ is clearly in every inductive set, and so in N. Also, if q is in every inductive set,
so must be by definition q∪{q}. Hence N is inductive. N is the least such (in the ordering
⊆) because clearly N =

⋂
{x |x is inductive} ⊆ y for every inductive set y. �

The following is a key definition of notation for natural numbers:

Definition 1.11 We define by induction the following notation for natural numbers in
ω: ∅ = 0, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, etc.

Note that a natural number n is thus defined to be the set of all smaller natural numbers
{0, . . . , n− 1}.

[ZF7*] Replacement scheme. We say that a formula ϕ(u, v, p) determines a func-
tion (compare with (1.23)) if

(1.31) (∀p, u, v0, v1)[ϕ(u, v0, p) & ϕ(u, v1, p)→ v0 = v1].

If ϕ(u, v, p) determines a function, we view u as an argument of the function and v the
value of the function. In keeping with the notation for classes in Subsection 1.2, we can
write F to denote the class {〈u, v〉 |ϕ(u, v, p)}; since ϕ(u, v, p) determines a function, F
is a function and we can write F (u) = v instead of 〈u, v〉 ∈ F .

Let ϕ(u, v, p) be a formula determining a function, then the following statement is an
axiom of replacement for the formula ϕ(u, v, p):

(1.32) (∀p)(∀x)(∃z)(∀q)[q ∈ z ↔ (∃q′ ∈ x)ϕ(q′, q, p)].

For each formula ϕ(u, v, p) which determines a function, the formula in (1.32) is an
axiom of ZF. Since there are infinitely many of such formulas, the Replacement scheme
contains infinitely many axioms.

If we denote as F the function determined by ϕ(u, v, p), we can reformulate the axiom
as follows:

(1.33) For every set x, F [x] is a set.

Note the following properties:
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• As in the scheme of Separation, we can show that more parameters as in the formula
ϕ(u, v, p0, . . . , pn) are allowed (see Fact 1.5).

• Replacement scheme implies Separation scheme. This means that we can “cancel”
the axioms ZF3* from our system while retaining its strength. Hint: Fix x. Given
ϕ(u, p), let ψ(u, v, p) = ϕ(u, p) & u = v. We can show that Axiom of Replacement
applied to ψ(u, v, p) proves the existence of a set a = {q ∈ x |ϕ(q, p)}.

• Replacement scheme plus Powerset Axiom imply the Pairing Axiom: Assuming the
existence of ∅, Powerset axiom implies that P(P(∅)) = {∅, {∅}} is a set. Let a, b be
sets. We want to show that there is a set c = {a, b}. Apply Axiom of replacement
with the formula (u = ∅ & v = a) ∨ (u = {∅} & v = b) to {∅, {∅}}; it will yield the
set c as required.

• If ϕ is not a function, then we may not obtain a set. Consider a class relation
determined by the formula u 6= v (we can view this as some ϕ(u, v, p) with pmissing).
Then for every u, the class {v |u 6= v} is equal to V −{u} and thus is a proper class
[If V − {u} were a set, say a, then by union axiom a ∪ {u} = V is also a set, and
this is a contradiction. In general if A = V − b, where b is a set, then A is a proper
class.]

[ZF8] Axiom of foundation.

(1.34) (∀x)[x 6= ∅ → (∃q)(q ∈ x & x ∩ q = ∅)].

Little reflection shows that [ZF8] says that every non-empty x has a minimal element
with respect to the relation ∈: that is, there is some y ∈ x such that there is no z ∈ x
which satisfies z ∈ y. Note that a minimal element may not be unique – x may have more
minimal elements, for instance the set x = {a, b}, where a 6= b, a 6∈ b, and b 6∈ a, has
exactly two minimal elements: a and b.

Axiom of foundation is a structural axiom which prohibits the existence of “bad”
sets, i.e. sets which are unpleasant to deal with and which, importantly, are not required
for mathematical arguments. We show later that if our axiomatic system is consistent
without ZF8, then it stays consistent with ZF8. This means that we are not running the
risk of introducing inconsistency by using ZF8.

Axiom of foundation implies (Exercise):
– There is no set x such that x = {x}.
– There is no set y such that y ∈ y (if y ∈ y then existence of {y} violates foundation

because y ∩ {y} = {y} and is thus non-empty).
– There are no cycles y0 ∈ y1 ∈ y0 because Axiom of Foundation would fail for {y0, y1};

in general there are no finite cycles y0 ∈ y1 ∈ . . . ∈ yn ∈ y0, for the same reason.
– There can be no infinite ∈-chain: y0 3 y1 3 y2 3 . . .. (If there were such, then ZF8

would fail for x = {yi | i ∈ ω}).

Definition 1.12 Axioms [ZF0] − [ZF8] are called the Axioms of Zermelo-Fraenkel set
theory, and are denoted as ZF.
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Note that we have shown in the discussion concerning the Axioms of Replacement
ZF7* that ZF3* and ZF2 follow from the remaining axioms. So we may define ZF to
contain just the axioms ZF1,ZF4-8. However, do not forget that in any case there are
infinitely many axioms in ZF (because of ZF7*).

[ZF9] Axiom of choice (AC).

(1.35) (∀x)(∃f)[(f is a function with dom(f) = x− {∅}) &

(∀q)[(q ∈ x & q 6= ∅)→ f(q) ∈ q)]].

Such f is called a choice function (for x). ZF together with AC is written as ZFC and
is called Zermelo-Fraenkel with Choice.

1.2 Classes

Recall the brief discussion of classes in Remark 1.9. A class is a collection of sets satisfying
some formula ϕ with parameters p0, . . . , pn; if ϕ(u, p0 . . . pn) is a formula we denote the
collection of all sets q such that ϕ(q, p0 . . . pn) by a capital letter, for instance A. We then
write q ∈ A as a shorthand for ϕ(q, p0 . . . pn).

If A,B are classes then we my still reasonably define some set-theoretical operations:
– A = B if for all q, q ∈ A↔ q ∈ B.
– A ∩B, A ∪B, A−B.
– The universal class defined by the formula u = u is written as V .
–
⋃
A,
⋂
A (if A = ∅ then by definition

⋂
∅ = V ; if A 6= ∅, then

⋂
A is a set).

– If a ∈ A, then
⋂
A ⊆ a ⊆

⋃
A.

– If A is a class and a a set, then A ∩ a is always a set.
– A×B = {〈a, b〉 | a ∈ A & b ∈ B}.

Note that Scheme of Comprehension states that for every class P and a set x, the class
P ∩ x is a set. Similarly, the Scheme of Replacement states that for every class function
F and a set x, the class F [x] is a set.

Remark 1.13 It can be shown by induction that classes can be eliminated from the
language of set theory (replace them by their defining formulas).

1.3 Basic properties of sets: Boolean algebra of sets

Let x be a non-empty set. Consider the set P(x) together with the operations ∩,∪,−; i.e.
for a, b ∈P(x), a∩ b is the intersection, a∪ b the union, and −a = x \ a the complement
of a.

Lemma 1.14 The set P(x) together with operations ∪,∩,− satisfies the following for-
mulas, where a, b, c are arbitrary elements of P(x):

(i) Associativity. a ∩ (b ∩ c) = (a ∩ b) ∩ c, a ∪ (b ∪ c) = (a ∪ b) ∪ c.
(ii) Commutativity. a ∩ b = b ∩ a, a ∪ b = b ∪ a.

(iii) Absorption. a ∩ (a ∪ b) = a, a ∪ (a ∩ b) = a.
(iv) Distributivity. a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c), a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c).
(v) Complement. a ∪ −a = x, a ∩ −a = ∅.
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Note that properties (i)–(iv) hold for all sets, we do not have to restrict ourselves to
P(x). P(x) is used to define the complement of a: −a = x \ a.
Proof. By the definition of operations ∩,∪,− (they use the propositional connectives &
,∨,¬), we first show that the above formulas (i)–(v) hold for the propositional connectives
&,∨,¬, and constants 1 = truth, and 0 = falsity in place of x and ∅, respectively.

Recall the definition of connectives: they are functions with domain {0, 1} and range
{0, 1}. We write p & q for conjunction and p∨ q for disjunction. p & q is 1 only if both p
and q are 1. p ∨ q is 0 only if both p and q are 0. ¬p is 1 if p = 0, and 0 if p = 1.

Exercise. Show that &,∨,¬, 0, 1 satisfy the formulas (i)–(v) above. [Hint. These are
just propositional tautologies.]

As soon as we know that &,∨,¬, 0, 1 satisfy (i)–(v), the proof of lemma is easy. For
instance to argue that a ∩ b = b ∩ a we need to show that for every q: q ∈ a & q ∈
b is equivalent to q ∈ b & q ∈ a; however this is true because the conjunction & is
commutative. Similarly for other formulas in (i)–(v). �

Remark 1.15 A structure B of the form B = 〈B,∧,∨,−, 0, 1〉 is called a Boolean algebra
if it satisfies the formulas (i)–(v) (when ∪ is replaced by ∨, ∩ by ∧, ∅ by 0 and x by 1).
Thus we have shown above that propositional connectives are a Boolean algebra over
the domain {0, 1}, and operations ∩,∪,− are a Boolean algebra over a domain P(x) for
any x. On every Boolean algebra B = 〈B,∧,∨,−, 0, 1〉, where the operations ∧,∨,− are
arbitrary operations on B which satisfy (i)–(v), one can define the so called canonical
partial ordering ≤B on B for all x, y ∈ B:

(1.36) x ≤B y ↔ x ∧ y = x↔ x ∨ y = y.

The ordering ≤B is usually not linear. 0 is the least element and 1 the greatest element
in ≤B.

Exercise. Verify that the inclusion relation ⊆ is the canonical ordering ≤B on the
powerset algebra B = 〈P(x),∩,∪,−, ∅, x〉.

Exercise. Show that P(x) also satisfies the following formulas (where a, b, c are arbi-
trary elements of P(x)):

(1.37)

(1) −− a = a
(2) −a = −b→ a = b
(3) (de Morgan laws) −(a ∪ b) = −a ∩ −b, −(a ∩ b) = −a ∪ −b
(4) If a ⊆ b then a ∪ c ⊆ b ∪ c, a ∩ c ⊆ b ∩ c, and −b ⊆ −a
(5) a ⊆ c ∧ b ⊆ c↔ a ∪ b ⊆ c, and

a ⊆ b ∧ a ⊆ c↔ a ⊆ b ∩ c
[Hint. Again show first that propositional connectives satisfy these formulas.] Note: The
formulas above are true in any Boolean algebra.

The Boolean algebra of sets P(x) satisfies also the so called infinite versions of de
Morgan’s laws and distributivity. We introduce some notation first.

Let I is an index set of a set a, in the sense of (1.26).
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It follows we can write

(1.38) a = {q | q ∈ a} = {ai | i ∈ I}

If a = {ai | i ∈ I}, then of course⋃
{ai | i ∈ I} =

⋃
a(1.39) ⋂

{ai | i ∈ I} =
⋂
a

The lefthand side of (1.39) is sometimes written as
⋃
i∈I ai, and

⋂
i∈I ai.

Lemma 1.16 Let {ai | i ∈ I} be a family of subsets of x, i.e. for every i ∈ I, ai ∈P(x).
The Boolean algebra of sets P(x) satisfies the following infinite laws:

(i) (infinite de Morgan laws)
−
⋂
i∈I ai =

⋃
i∈I −ai, −

⋃
i∈I ai =

⋂
i∈I −ai

(ii) (infinite distributive laws)
b ∩
⋃
i∈I ai =

⋃
i∈I(b ∩ ai), b ∪

⋂
i∈I ai =

⋂
i∈I(b ∪ ai)

Proof. Exercise. [Hint. For de Morgan’s laws, use the fact that ¬(∀x)ϕ is logically
equivalent to (∃x)¬ϕ, and ¬(∃x)ϕ is equivalent to (∀x)¬ϕ, for arbitrary ϕ. The proof
of infinite distributive laws uses the fact that ψ & [(∃x)ϕ(x)] is logically equivalent to
(∃x)[ψ & ϕ(x)] providing that x is not free in ψ, and ψ∨ [(∀x)ϕ(x)] is logically equivalent
to (∀x)[ψ ∨ ϕ(x)] providing that x is not free in ψ.] �

2 Comparing sizes

2.1 Relation “to be bigger than” for infinite objects

Let R be a binary relation on a class A, i.e. R ⊆ A× A. We call R a partial ordering or
shortly an ordering (on A) if it satisfies the following properties for all x, y, z ∈ A:

(i) 〈x, x〉 ∈ R (reflexivity)
(ii) 〈x, y〉 ∈ R & 〈y, z〉 ∈ R→ 〈x, z〉 ∈ R (transitivity)

(iii) 〈x, y〉 ∈ R & 〈y, x〉 ∈ R→ x = y (weak antisymmetry)
We say that a relation R on A is linear if for all x, y ∈ A, either 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.

Exercise. A binary relation R′ on A is called a strict ordering if it is an irreflexive
transitive relation, where irreflexive means that 〈x, x〉 6∈ R′ for any x. Show that if R is
an ordering on A and we define R′ as follows:

(2.40) 〈x, y〉 ∈ R′ iff 〈x, y〉 ∈ R & x 6= y,

then R′ is a strict ordering.
It is customary to write the symbol ≤ (and its variants such as �) to denote a partial

order; we also write x ≤ y instead of 〈x, y〉 ∈≤. Similarly, a strict ordering is denoted by
<, etc. From now on we will use this convention.

The partial order ⊆ is too strong for comparing sizes of sets – if x ⊆ y is true than x
might be really considered “smaller” than y; however if a 6= b are two sets then {a} 6⊆ {b}
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and {b} 6⊆ {a} (we say that {a} and {b} are incomparable in ⊆), but as they both have
just one element, they should have the same “size”.

Goal. We want to define a partial order � on the universal class V that could be
interpreted as correctly capturing the intuitive notion of one set being smaller in size than
another. We argued above that the inclusion relation ⊆ is not suitable.

Definition 2.1 Let x, y be two sets.
(i) We say that x, y have the same size, and denote this as x ≈ y, if there is a bijection

from x onto y.
(ii) We say that x has size smaller or equal to y, and denote it as x � y, if there is a

1-1 function from x into y.
(iii) If x � y is true but there is not bijection from x onto y (i.e. x 6≈ y) then we say that

x is strictly smaller than y and denote it as x ≺ y.

Examples.
(i) If x ⊆ y then x � y [Hint. Use the identity function.]. So our definition of � includes

the inclusion relation.
(ii) {x} ≈ {y} for every x, y. So our definition corrects the drawback of ⊆ mentioned

above.
(iii) If x ⊆ y but x 6= y then x ≈ y is still possible: Let y be the set of natural numbers

and x the set of all even numbers E = {2, 4, . . .}. Then i : n 7→ 2n is a bijection
from N onto E, and so N ≈ E. This means that the property of x being a proper
subset y (i.e. x ⊆ y & x 6= y) does not imply that x has size strictly smaller than y.

(iv) The idea of comparing sizes using some 1-1 functions works correctly with finite
objects:6 if x has n elements and y has m elements then

(2.41) n < m iff x ≺ y.

2.2 Basic properties

Lemma 2.2 (i) The relation ≈ is an equivalence relation on V .
(ii) The relation � is reflexive and transitive on V , but not weakly antisymmetric.

Proof. Ad (i). Let x, y be sets. Then x ≈ x because the identity function idx on x,
where idx = {〈a, a〉 | a ∈ x}, is a bijection between x and x. If x ≈ y via some bijection
f : x→ y, then f−1 : y → x shows y ≈ x. If x ≈ y and y ≈ z via f : x→ y and g : y → z,
then the composition g ◦ f : x→ z shows x ≈ z.

Ad (ii). Similarly as in (i). To show that � is not weakly antisymmetric note that
for two sets a 6= b, it clearly holds {a} � {b} (as witnesses by the bijection {〈a, b〉}) and
{b} � {a}, but {a} 6= {b}. �

Note that we write � but � is not an ordering by (ii). But it is “almost” an ordering:
we say that � is a pre-ordering. The important Theorem 2.7 connects the relations ≈
and � in the natural way and shows that although x � y & y � x does not imply x = y,
it does imply that x and y have the some size: x ≈ y. Using the fact that ≈ is an
equivalence, this means that x and y are in the same equivalence class.

6Here we work intuitively, not within our formal ZFC; we have not yet defined what a finite object is.
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Before we show Theorem 2.7, we first show Theorem 2.3, which we will use in the
proof of Cantor-Bernstein theorem, but which is interesting by itself.

Theorem 2.3 (Fixed point theorem) Let x be a set and let H be a monotonic map
from P(x) to P(x), i.e. for all a, b ∈ P(x), if a ⊆ b then H(a) ⊆ H(b). Then there
exists a fixed point c ⊆ x of H, i.e. a set c ⊆ x such that H(c) = c.

Proof. Consider the following set

(2.42) C = {u ⊆ x |u ⊆ H(u)}

and denote c =
⋃
C. Note that C is non-empty because it contains at least the set ∅:

∅ ⊆ H(∅). We want to show that c is a fixed point. First we prove

(2.43) c ⊆ H(c).

First notice that if u is in C then u ⊆
⋃
C = c. Now: if q is in c, there is some u ∈ C

such that q ∈ u. Because u ∈ C, it follows u ⊆ H(u), and also H(u) ⊆ H(c) because H
is monotonic and u ⊆ c. Thus u ⊆ H(u) ⊆ H(c), and so q is in H(c) as required.

We now need to show the converse, i.e.

(2.44) H(c) ⊆ c.

We will apply monotonicity of H to (2.43), obtaining H(c) ⊆ H(H(c)). This means that
H(c) is an element of C, and so in particular

(2.45) H(c) ⊆ c.

(2.43) and (2.45) together imply c = H(c) as required. �

Notice the role of the set c =
⋃
C in the above proof. c is the supremum of the set

C with respect to the ordering ⊆. This fact is important for the idea behind the proof of
the fixed point theorem. Recall the definition of the supremum and the infimum:

Definition 2.4 If 〈A,≤〉 is a partial order, and x ⊆ A is a nonempty set, then we say
that r1 ∈ A is the supremum of x (with respect to ≤) if:

(i) For all a ∈ x, a ≤ r1 (r1 is an upper bound of x),
(ii) r1 is the least upper bound, i.e. if s is in A and for all a ∈ x, a ≤ s, then r1 ≤ s.

Similarly, we say that r2 ∈ A is the infimum of x (with respect to ≤) if:
(i) For all a ∈ x, a ≥ r2 (r2 is a lower bound of x),

(ii) r2 is the greatest lower bound, i.e. if s is in A and for all a ∈ x, a ≥ s, then r2 ≥ s.

The ordering ⊆, and the operations
⋃

and
⋂

satisfy the following general lemma:

Lemma 2.5 Let a be a non-empty set. Then 〈P(a),⊆〉 is a partial order. If ∅ 6= x ⊆
P(a), then

⋃
x is the supremum of x and

⋂
x the infimum of x in 〈P(a),⊆〉.
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Proof. We need to show that
⋃
x is the lowest upper bound of x in 〈P(a),⊆〉. Clearly⋃

x is an upper bound because if c ∈ x, then c ⊆
⋃
x. If y is an upper bound of x, then⋃

x ⊆ y (because if q ∈
⋃
x, then there is some z ∈ x such that q ∈ z; since y is an upper

bound of x, z ⊆ y, and therefore q ∈ y as required).
Similarly argue for

⋂
x. �

Remark 2.6 The notion of supremum and infimum is widely used in mathematics (for
instance in analysis, we use the fact that every nonempty bounded subsets of R has the
supremum and the infimum (in the usual ordering on R): for instance { 1

n |n ∈ ω} does
not have the least element, but has the infimum which is equal to 0 in this case).

We now return to the formulation and the proof of the Cantor-Bernstein theorem.

Theorem 2.7 (Cantor, Bernstein) For every x, y:

(2.46) x ≈ y ↔ (x � y & y � x).

Proof. The direction from left to right in (2.46) is obvious, so we need to prove the
converse: (x � y & y � x)→ x ≈ y.

Let f : x→ y a 1-1 function from x to y and g : y → x a 1-1 function from y to x. If
a ⊆ x, recall the notation f [a] = {b ∈ y | (∃a′ ∈ a)f(a′) = b}; clearly, if a ⊆ b ⊆ x, then
f [a] ⊆ f [b]. We can view f [·] as a new function, determined by f ; f [·] is a function from
P(x) into P(y) which is monotonic with respect to ⊆. Since f is 1-1, the function f [·]
is also 1-1. The same applies to g. We now define a monotonic map from P(x) to P(x)
as follows:

(2.47) H(u) = x \ g[y \ f [u]], for every u ⊆ x.

Claim: H is monotonic with respect to ⊆: let a ⊆ b be subsets of x; we need to show
that H(a) ⊆ H(b). If a ⊆ b, y\f [a] ⊇ y\f [b] and also g[y\f [a]] ⊇ g[y\f [b] (the operation
\ reverses the inclusion relation; see Exercises (1.37), item (4)). Finally after applying \
again, we get x \ g[y \ f [a]] ⊆ x \ g[y \ f [g]] as required.

Let c be a fixed point of the map H ensured by Theorem 2.3:

(2.48) c = H(c) = x \ g[y \ f [c]].

It implies that

(2.49) x \ c = g[y \ f [c]].

Thus we can define a bijection h from x onto y as follows:

h(a) =

{
f(a) for a ∈ c,
g−1(a) for a ∈ x \ c.

Note that h is equal to the union of f restricted to c with g−1 restricted to x \ c; in
symbols h = f �c ∪ g−1 �(x \ c).
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Let us verify that h is really a bijection from x onto y. (2.49) implies that g−1 is
defined for all elements of x \ c and so dom(h) = x. h is clearly 1-1 on the set c because
h is the same as f on c and f is 1-1. g−1 is clearly 1-1 on x \ c; to check that h is 1-1 it
suffices to show that f [c] ∩ g−1[x \ c] = ∅, and to show that h is onto it suffice to show
that f [c] ∪ g−1[x \ c] = y. But both these identities are true because g−1[x \ c] is the
complement of f [c] in y, i.e. g−1[x \ c] = y \ f [c]. This ends the proof. �

Another basic, but important, theorem states that the powerset operation strictly
increases the size of the original set. The technique of the proof utilizes the so called
diagonalization method.

Theorem 2.8 (Cantor.) For every set x,

x ≺P(x).

Proof. Define for a ∈ x: f(a) = {a}. f is a 1-1 function from x to P(x), which shows
x �P(x).

To show x ≺ P(x) assume for contradiction that there is a bijection g : x → P(x).
Define

(2.50) a = {y ∈ x | y 6∈ g(y)}.

The set a is a subset of x, and hence an element of P(x). Since g is onto, there must be
some z ∈ x such that g(z) = a. We reach contradiction by showing that z ∈ a and also
z 6∈ a. Assume first z ∈ a; then by definition of a, z 6∈ g(z) = a. Conversely, if z 6∈ a, then
z ∈ a by the definition of a. �

Corollary 2.9 The set P(ω) is strictly larger than ω.

How big is P(ω)? This is an important question because as we will see in Theorem
2.18 below, the size of P(ω) is exactly the size of R.

But first we verify how the relation ≈ interacts with the operations we already have
in set theory:

But let us first define:

Definition 2.10 Let x, y be arbitrary sets, then we write xy to denote the following set:

(2.51) xy = {f | f : x→ y},

where we write f : x→ y to denote a function f with dom(f) = x and rng(f) ⊆ y.

Exercise. Show that if y is any set, then ∅y = {∅} and if x 6= ∅, then x∅ = ∅.

Remark 2.11 The x, y in the definition of xy can be finite. We can take Definition 2.10
as a definition of the usual exponentiation on the natural numbers: nm is defined as the
number of all functions in mn. The following Lemmas then show that this definition
satisfies all the intuitive properties: for instance that nmk = (nm)k, etc. It is also easy to
check that this definition of nm is equivalent to the definition by recursion: n0 = 1 and
nm+1 = nmn.
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In the following Lemmas we show some basic properties of the relations � and ≈
with respect to operations × and xy. The proofs below involve finding a 1-1 or 1-1 and
onto (bijection) function f from some set v to some other set w. Note the following easy
observation: Let f1 and f2 be functions from v to w, then:

(2.52) f1 6= f2 ⇔ there is some q ∈ v such that f1(q) 6= f2(q).

In words, two functions with the same domain are different iff there is an argument on
which they are different.

Notational note. If f : v → w is a function then f(q) for q ∈ v can also be a
function, for instance when w = xy for some sets x, y. If x′ ∈ x we write f(q)(x′) to
denote the value which the function f(q) takes at x′.

Lemma 2.12 For all x, y, x1, y1:
(i) x× y ≈ y × x,

(ii) x× (y × z) ≈ (x× y)× z,
(iii) (x ≈ x1 & y ≈ y1)→ (x× y) ≈ (x1 × y1),
(iv) x ≈ y →P(x) ≈P(y),
(v) P(x) ≈ x2, where 2 = {∅, {∅}}.

(vi) x2 ≈ 2x. The exponentiation yx can thus be viewed as a generalisation of the Carte-
sian product.

Proof. We will just define the relevant functions f . As an Exercise show that the functions
defined are really bijections between the respective sets.

Ad (i). Define f : x× y → y× x as the function which to a pair 〈a, b〉 assigns the pair
〈b, a〉.

Ad (ii). Define f : x× (y × z)→ (x× y)× z as the function which to a pair 〈a, 〈b, c〉〉
assigns 〈〈a, b〉, c〉.

Ad (iii). Let g1 : x→ x1 and g2 : y → y1 be bijections. Define f : (x× y)→ (x1 × y1)
as the function which to a pair 〈a, b〉 assigns the pair 〈g1(a), g2(b)〉.

Ad (iv). Let g : x→ y be a bijection. Define f : P(x)→P(y) as the function which
to a ⊆ x assigns g[a] = {b ∈ y | (∃q ∈ a)g(q) = b} ⊆ y.

Ad (v). If y ⊆ x is a subset, then we define the characteristic function of y χy : x→ 2
by defining for each q ∈ x:

χy(q) =

{
1 if q ∈ y,
0 if q 6∈ y.

Intuitively, χy says about each element of x whether it belongs to y (value 1), or does not
belong to y (value 0). We define the bijection f : P(x) → x2 as the function which to
each y ∈P(x) assigns the characteristic function χy.

Ad (vi). Recall that x2 = x × x. Define f : x2 → 2x by assigning to each 〈a, b〉 the
function {〈0, a〉, 〈1, b〉}. �

Lemma 2.13 Let x, y, u, v be sets:
(i) ∅ 6= x � y → xu � yu,

(ii) u � v → yu � yv,
(iii) (x×y)u ≈ x(yu) ≈ y(xu).
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Proof.
Ad (i). By the assumption ∅ 6= x, both x and y are non-empty. We can also assume

that u is non-empty because if u = ∅, we get xu ≈ yu. Let g : x → y be 1-1. Define
f : xu→ yu as the function which to h : x→ u assigns the function h′ : y → u defined by

h′(q) =

{
h(g−1(q)) for q ∈ g[x],
a otherwise,

where a is some fixed element of u. Show that f is 1-1.
Ad (ii). Let g : u→ v be 1-1. Define f : yu→ yv by assigning to a function h : y → u

the function h′ : y → v defined by h′(q) = g(h(q)) for each q ∈ y. Show that f is 1-1.
Ad (iii). We will define a bijection f : x×yu→ x(yu). The bijection between x(yu) and

y(xu) is left to the reader as a (simple) exercise. Given a function h : (x× y)→ u and an
element a ∈ x let us define a unary function ha : y → u, where ha(b) = h(〈a, b〉) for every
b ∈ y (view the function ha as the function h with the argument a fixed: h(a, ·) = ha(·)
where · denotes the argument of the function). Define f as the function which to a
h : (x×y)→ y assigns to the function h′ : x→ yu defined by h′(a) = ha. Show that f is a
bijection. [Hint. To show that f is 1-1 note that if h1 6= h2 are different functions in x×yu,
then there is some argument 〈a, b〉 on which they are different: h1(〈a, b〉) 6= h2(〈a, b〉). It
follows that (h1)a(b) 6= (h2)a(b) and so f(h1) 6= f(h2). f is onto because if h′ : x→ yu is
given, then h′ = f(h) for h defined by h(〈a, b〉) = h′(a)(b).] �

Corollary 2.14 For all x, y, u, v:
(i) (x ≈ y & v ≈ u)→ xu ≈ yv,

(ii) (∅ 6= x � y & u � v)→ xu � yv.

2.3 The size of R

Recall that the important property which distinguishes R from Q is its order completeness.
We review the relevant concepts in the appropriately general framework.

Let 〈X,<〉 be a linearly ordered set. Recall the definition of supremum and infimum
in Definition 2.4.

Exercise. Verify that if supremum (infimum) exists for a set A ⊆ X, then it is unique.
This is true even when < is not linear.

Exercise.* Show that if a non-empty A is finite, then it has both the supremum and
the infimum. [Hint. Use induction on the number of elements.]

We say that a non-empty set A is bounded below if it has a lower bound, and is bounded
above if it has an upper bound. We say that A is bounded if it is bounded below and
above.

Definition 2.15 We say that a linearly ordered set 〈X,<〉 is order-complete if every
non-empty bounded set A ⊆ X has the supremum and the infimum.

The order-completeness can be formulated in an apparently weaker form, which how-
ever turns out to be equivalent.

Lemma 2.16 Let 〈X,<〉 be a linearly ordered set. The following are equivalent.
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(i) 〈X,<〉 is order-complete.
(ii) Every non-empty A bounded below has the infimum.

(iii) Every non-empty A bounded above has the supremum.

Proof. (i)→(ii). Choose any x ∈ A, such that Ax = A ∩ {y ∈ A | y < x} is non-empty
(such x always exists if A has more than one element; it is has just one element, then this
element is both the supremum and the infimum of A). Then Ax is bounded and so has
the infimum, which is also the infimum of A, which can be easily verified.

(ii)→(iii). Define B to be the set of all upper bounds of A. Since A is bounded above,
B is non-empty and bounded below. By (ii), it has the infimum b. We will show that
in fact b is the supremum of A. To show that b is the supremum, we need to check two
things:
(1) b is the upper bound of A.
(2) b is the least upper bound of A.
(1). Given a ∈ A, we want to show a ≤ b: notice that a is a lower bound of B and because
b is the greatest lower bound of B, this implies a ≤ b as required.

(2). Let b′ be another upper bound of A, we want to show b ≤ b′. Since b′ is an upper
bound of A, b′ ∈ B. Since b is a lower bound of B, it satisfies b ≤ b′ as required.

Since also (iii)→(ii) by an analogous argument, we can conclude that (iii) implies (i).
�

Recall:

Fact 2.17 R is the unique (up to isomorphism) order-complete extension of Q which
contains Q as a dense subset (that is for all r < r′ real numbers there is a rational
number q such that r < q < r′).

In preparation for the proof of Theorem 2.18, we show the following lemma which con-
cerns geometrical progressions. We call a sequence (an) which is of the form a0, a0r, a0r

2, . . .
for some a0 in R and r ∈ R a geometrical progression. We will only be interested in the
case when 0 < r < 1. If (an) is a geometrical progression, we denote by sn the sum of its
first n elements:

(2.53) sn =
∑n−1

i=0 ai = a0 + a0r + a0r
2 + · · ·+ a0r

n−1.

Assuming 0 < r < 1 one can show

(2.54) sn = a0 ·
1− rn

1− r
=

a0

1− r
− a0

1− r
rn.

To see this, argue as follows: Clearly (1 − r)sn = sn − rsn = (a0 + a0r + a0r
2 + · · · +

a0r
n−1)− (a0r + a0r

2 + · · ·+ a0r
n) = a0 − a0r

n = a0(1− rn).
Recall the following fact about convergence of sequences: If (an) and (bn) are conver-

gent sequences in R and q ∈ R then (an + bn) and (qan) are convergent and

(2.55) lim(an + bn) = lim an + lim bn, and lim(qan) = q lim an.

Using this, we can see that:

(2.56) the limit of (sn) exists and lim(sn) =
a0

1− r
.
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Argue as follows: by (2.55), the limit of (sn), if it exists, is using the expression in (2.53),
equal to a0

1−r −
a0

1−r lim(rn). It is not difficult to check that for 0 < r < 1 the lim(rn) exists
and is equal to 0. Thus lim(sn) = a0

1−r .

Theorem 2.18 The size of real numbers is the same as the size of the powerset of ω, i.e.

R ≈P(ω).

Proof. First recall that P(ω) ≈ ω2, and so it suffices to show that R ≈ ω2.
Furthermore, using Cantor-Bernstein theorem 2.7, it suffices to find a 1-1 function

f : R→ ω2 and a 1-1 g : ω2→ R.
Construction of f . Let {qn | i ∈ ω} be some enumeration of all rational numbers Q

(recall that Q is countable: there is some bijection h : ω → Q; if we set qn = h(n), we get
one such enumeration). Define f so that it assigns to x ∈ R a function f(x) ∈ ω2 defined
for each n ∈ ω:

(2.57) f(x)(n) = 1 if qn < x, or f(x)(n) = 0 if x ≤ qn.

We need to show that f is 1-1: if x 6= y are two real numbers then either x < y or y < x.
Assume without loss of generality that x < y. Then by density of Q in R there is some
n ∈ ω such that x < qn < y. This implies that f(x)(n) = 1 while f(y)(n) = 0; this
implies that f(x) 6= f(y) as required.

Construction of g. Let us define an auxiliary function F which to each finite sequence
σ of the 0’s and 1’s assigns the value F (σ) =

∑
{1/3i |σ(i) = 1}. Clearly, every F (σ) is

a rational number. Given a function x ∈ ω2, the set {F (x�n) |n ∈ ω} is increasing, that
is F (x �n) ≤ F (x � (n + 1)) for every n ∈ ω. We now claim that for any x ∈ ω2, the set
{F (x �n) |n ∈ ω} of rational numbers is bounded above and has therefore a supremum.
This follows from the claim in (2.56): the sum of the geometric progression 1

30
+ 1

31
+ 1

32
+

exists and is equal to 3
2 when we substitute a0 = 1 and r = 1

3 in (2.56). For any x ∈ ω2
it is clearly true that

F (x�n) <
∑
{1/3i | i ∈ ω}, for every n ∈ ω

and so {F (x � n) |n ∈ ω} is bounded above and by order-completeness of R it has a
supremum. We can now define our function g, for every x ∈ ω2:

(2.58) g(x) = sup{F (x�n) |n ∈ ω}.

It remain to check that g is 1-1. It is here that we make use of the fact that we have
defined the value of g(x) by using a geometrical progression with the factor 1

3 (one might
ask why we have not used factor 1

2 ; it will be apparent that it would not work). So
assume x 6= y are two sequences in ω2. Let n be least such that x(n) 6= y(n); then either
0 = x(n) < y(n) = 1 or 0 = y(n) < x(n) = 1. Without loss of generality let the first case
be true. Because n is the least where x(n) 6= y(n), F (x�n) = F (y �n). Let us denote this
number as a, so that a = F (x�n) = F (y �n). Since y(n) = 1, the value of g(y) is at least
as big as a+ 1

3n . To argue that g(x) < g(y), and so g(x) 6= g(y), it suffices to show that
g(x) < a+ 1

3n . Clearly, g(x) ≤ a+
∑
{1/3i+1 |n ≤ i, i ∈ ω}, so it remains to see that

(2.59)
∑
{1/3i+1 |n ≤ i, i ∈ ω} < 1

3n
.
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Applying again (2.56) with a0 = 1
3n+1 and r = 1

3 , the sum∑
{1/3i+1 |n ≤ i, i ∈ ω}

is equal to a0
1−r = 3

2
1

3n+1 = 1
2

1
3n . Hence g(x) ≤ a+ 1

2
1

3n < a+ 1
3n , and the proof is finished.

�

Exercise. Argue that the argument for g being 1-1 would work for any factor r = 1/n,
where n is a natural number ≥ 3. Argue that the argument would not work with r = 1/2.
[Hint. Study the validity of the inequality in (2.59) for different factors.]

Exercise*. Notice that g : ω2→ R has its range included in the closed interval [0, 3
2 ].

Let n be any natural number. Modify the definition of F (σ) slightly so that the function
g is still 1-1 and has its range included in [0, 1

n ]. [Hint. Start the geometrical progression
in the construction of F (σ) not at 1 = 1

30
, but at some 1

3m for a suitable m.]
Exercise* Note that for any r ∈ R, the function hr : R → R which maps x 7→ x + r

is 1-1. Use the previous exercise and the existence of such hr to argue that if r1 < r2 are
two real numbers, then

(r1, r2) ≈ [r1, r2) ≈ (r1, r2] ≈ [r1, r2] ≈ R.

In words, a non-trivial interval (i.e. an interval determined by some r1 6= r2) on the real
line has the same size as the whole real line.

2.4 The definition of size

We end this introductory section on comparing sizes with the following two apparently
simple questions:

Question 2.19 Is the preordering � linear? That is, given two sets x, y, is it the case
that x � y or y � x?

Question 2.20 Can we assign to each set x another set |x| which will measure its size
in the following sense: For every x, y

(i) x ≈ y ↔ |x| = |y|;
(ii) |x| ≈ x.

We will show that under AC, the Axiom of Choice, the answer to these questions is
YES. See the following Section 3.

3 Axiom of Choice and its equivalents

3.1 Axiom of Choice, AC

Given set x we call f a choice function on x if the domain of f is the set of all non-empty
elements of x, i.e. dom(f) = x−{∅} and f(y) ∈ y for every y ∈ dom(f), i.e. f will choose
exactly one element from every non-empty element of x.

Recall that Axiom of Choice (AC) is the following statement:

On every set x there exists a choice function.
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AC has many equivalent formulations. To state some of these formulations, we first
define new notions.

Let r be a binary relation on a set x× y. We say that a function f ⊆ r uniformizes r
if dom(f) = dom(r).

Given a finite number of sets x0, . . . , xn, recall that x0× . . .×xn is called the Cartesian
product of x0, . . . , xn. x0× . . .× xn contains all n+ 1-tuples (q0, . . . , qn) such that qi ∈ xi
for every 0 ≤ i ≤ n. We will generalize this notion to infinite families. Let f : I → a
be a function from I onto a. It is a matter of convention that f can also be written as
〈ai | i ∈ I〉 to indicate the fact that the elements in a are “enumerated” by the elements
in I (the letter “I” is for “index set”). This is the indexing already mentioned in (1.26).
Notice that {ai | i ∈ I} is not the same as 〈ai | i ∈ I〉: {ai | i ∈ I} = rng(f) = a, while
〈ai | i ∈ I〉 = f . Assume now that I 6= ∅ and 〈ai | i ∈ I〉 is a function such that ai
is non-empty for every i ∈ I. We define the Cartesian product of 〈ai | i ∈ I〉, denoted∏
〈ai | i ∈ I〉 (or

∏
i∈I ai), by

(3.60)
∏
〈ai | i ∈ I〉 = {f | f : I →

⋃
{ai | i ∈ I}, (∀i ∈ I)f(i) ∈ ai}.

Lemma 3.1 The following statements are equivalent:
(i) Axiom of choice.

(ii) Every binary relation can be uniformized.
(iii) The product

∏
〈ai | i ∈ I〉 is non-empty for every sequence 〈ai | i ∈ I〉 such that I is

non-empty and every ai is non-empty.

Proof. (i)→(ii). Let a relation r ⊆ x × y be given. Clearly, the family s = {r′′{q} | q ∈
dom(r)} contains just non-empty sets. Let f be a choice function for s; then f̄ with
domain dom(r) defined by

(3.61) f̄(q) = f(r′′{q}), for every q ∈ dom(r)

uniformizes r.
(ii)→(iii). Let 〈ai | i ∈ I〉 with I non-empty and every ai non-empty be given. Let r

be a binary relation on I ×
⋃
{ai | i ∈ I} defined by

(3.62) 〈i, q〉 ∈ r iff i ∈ I & q ∈ ai, for every 〈i, q〉 ∈ I ×
⋃
{ai | i ∈ I}.

It is immediate that every f which uniformizes r is an element of
∏
〈ai | i ∈ I〉. (ii) thus

guarantees that the product
∏
〈ai | i ∈ I〉 is non-empty.

(iii)→(i). Let x be a set. Let y = x − {∅}, and assume y is non-empty. Form the
product

(3.63)
∏
〈z | z ∈ y〉 = {f | f : y →

⋃
y, (∀z ∈ y) f(z) ∈ z}.

By our assumption,
∏
〈z | z ∈ y〉 is non-empty. It is easy to see that any function in∏

〈z | z ∈ y〉 is a choice function on x. �
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3.2 Well-ordering principle, WO

Remark 3.2 In this subsection, we will consider not only sets, but also (proper) classes.
However, if A is a proper class and ≤ is an ordering on A, we will often require that for
every a ∈ A, the class of the predecessors of a is a set :

∀a ∈ A {b ∈ A | b ≤ a} is a set.

If 〈A,≤〉 satisfies this condition, we say that the ordering ≤ on A is set-like.

Definition 3.3 We say that a partially ordered class 〈M,≤〉 is well-ordered if every
non-empty set x ⊆M has the least element in ≤.

Example. The set 〈ω,≤〉 is well-ordered. The set 〈Z,≤〉 is not well-ordered.

Lemma 3.4 Every well-ordered class 〈M,≤〉 is also linearly ordered.

Proof. Let x, y ∈M be given. {x, y} is a subset of M and so must have the least element.
Assume x is the least element, then x ≤ y. If y is the least element, then y ≤ x. �

Well-ordered classes are useful because they can be easily compared.

Definition 3.5 Let 〈A,≤〉 and 〈B,E〉 be two partially ordered classes. We say that they
are isomorphic and write it as 〈A,≤〉 ∼= 〈B,E〉, or just A ∼= B if the orderings ≤ and E
are obvious from the context, if there is a bijection7 f : A→ B such that for all a0, a1 in
A

(3.64) a0 ≤ a1 ↔ f(a0) E f(a1).

Definition 3.6 With 〈A,≤〉 and 〈B,E〉 as in the previous definition, we say that f :
A→ B is an embedding if f is 1-1 and for all a0, a1 in A

(3.65) a0 ≤ a1 ↔ f(a0) E f(a1).

Notice that f being an embedding is almost as strong as f being an isomorphism: the
only (important) difference is that if f is an embedding, it does not have to be onto.

Exercise. Verify that if f : A→ B is an isomorphism between 〈A,≤〉 and 〈B,E〉, then
f−1 : B → A is an isomorphism between 〈B,E〉 and 〈A,≤〉.

We say that a ⊆ A is a initial segment (with respect to ≤) if for every b ∈ a and every
c ∈ A:

(3.66) c ≤ b→ c ∈ a.

We say that f : A → B is an initial embedding if dom(f) ⊆ A is the initial segment
in A and rng(f) ⊆ B is an initial segment in B, and f is an isomorphism between
〈dom(f),≤〉 and 〈rng(f),E〉.

7A careful reader might correctly ask whether we can quantify over proper classes (if A and B are
proper classes, so is f). Strictly speaking, we cannot quantify over classes, and the definition should be
formulated only for sets; however, often the bijection f may itself be definable in which case the definition
makes sense even for proper classes.
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Lemma 3.7 Let 〈A,≤〉 and 〈B,E〉 be well-ordered classes with set-like ordering. And let
f and g be initial embeddings from A to B. Then f ⊆ g or g ⊆ f .

Proof. Since f and g are initial embeddings, it must be true that dom(f) ⊆ dom(g), or
conversely. W.l.o.g. assume that dom(f) ⊆ dom(g) is the case. We will argue that f ⊆ g.
Assume for contradiction that f 6⊆ g, i.e. that there is x ∈ dom(f) such that f(x) 6= g(x).
Since 〈A,≤〉 is well-ordering, we can take the least x such that f(x) 6= g(x); so fix this
x for the rest of the argument. Since 〈B,E〉 is well-ordered, it is in particular linearly
ordered, and so f(x) C g(x) or g(x) C f(x). W.l.o.g. assume that f(x) C g(x) is the
case. Because f and g are initial embeddings, f(x) is in the range of g; let y ∈ A be such
that g(y) = f(x). Because g is an isomorphism on its domain and g(y) C g(x), it must
be the case that y < x. However, because y < x it must hold that f(y) < f(x), and so
f(y) 6= g(y). This contradicts the assumption that x is the least element where f and g
are different. �

The following theorem shows that well-ordered set-like classes can be easily compared.

Theorem 3.8 Let 〈A,≤〉 and 〈B,E〉 be well-ordered classes with set-like ordering. Then
there exists a unique isomorphism F such that F is an isomorphism either between 〈A,≤〉
and an initial segment of 〈B,E〉 or between an initial segment of 〈A,≤〉 and 〈B,E〉.

Proof. Let S be the following set:

(3.67) S = {f | f is an initial embedding from 〈A,≤〉 to 〈B,E〉}.

We will argue that
⋃

S = F is the desired isomorphism.
Clearly F ⊆ A×B, and so F is a relation. Also, dom(F ) is an initial segment because

dom(F ) =
⋃
{dom(f) | f ∈ S }, and the union of initial segments is always an initial

segment. The same argument applies to rng(F ) =
⋃
{rng(f) | f ∈ S }.

We claim that F is a function. Assume for contradiction that F is not a function;
then there must be functions f, g ∈ S such that f(x) 6= g(x) for some x. However, by
Lemma 3.7, if f, g are in S , then either f ⊆ g or g ⊆ f . In either case it follows that
f(x) = g(x).

We now show that f is 1-1. If x, y are in the domain of F , then x, y must be in
the domain of some f ∈ S (either x ≤ y or y ≤ x; if x ≤ y and y ∈ dom(f), then
x ∈ dom(f) because dom(f) is an initial segment; similarly for y ≤ x). This is used to
show that F is 1-1: assume x, y ∈ dom(F ) and F (x) = F (y), then for some f ∈ S ,
F (x) = f(x) = f(y) = F (y). Because f is 1-1, x = y. In fact, since f is an initial
embedding, it follows that x ≤ y ↔ f(x) E f(y) and so x ≤ y ↔ F (x) E F (y). This
shows that F is an initial embedding.

We now show that either dom(F ) = A, or rng(F ) = B. Assume for contradiction
that dom(F ) 6= A and rng(F ) 6= B. We will argue that F can be extended into a strictly
larger initial F ′ embedding from A to B. However, this F ′ must already be in S and this
will be a contradiction. Let x be the least element of A−dom(F ) and y the least element
of B − rng(F ). It is immediate that F ′ = F ∪ {〈x, y〉} is in S and is strictly bigger than
F .

It remains to show that such F is unique. Assume for contradiction there is some
F ′ 6= F which also satisfies the conditions of the Theorem. By Lemma 3.7, it must be
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the case that F ⊆ F ′ or F ′ ⊆ F because both F and F ′ are initial embeddings. However
F ′ cannot be strictly smaller than F because this would imply that dom(F ′) 6= A and
rng(F ′) 6= B. If F ′ were strictly bigger than F , then dom(F ′) would need to be bigger
than A, or rng(F ′) would need to be bigger than B. However, this would mean that F ′

does not satisfy the conditions of the Theorem. �

Corollary 3.9 If x and y are sets which can be well-ordered (i.e. there is some ≤ such
that 〈x,≤〉 is a well-ordered set, and some ≤′ such that 〈y,≤′〉 is a well-ordered set), then
x are y are comparable in the relation � comparing sizes:

(3.68) x � y or y � x.

In other words, the relation � is linear on the class of all well-orderable sets.

Proof. By Theorem 3.8, there is a bijection F between x and an initial segment of y or
between an initial segment of x and y. In the first case F : x → y shows that x � y; in
the second case F−1 : y → x shows that y � x. �

Because we have shown that the concept of a well-ordered set is very useful, we will
formulate it as a new axiom.

Definition 3.10 Well-ordering Principle, WO is the following statement

Every set can be well-ordered.

It is easy to show that this principle implies the Axiom of Choice.

Theorem 3.11 WO implies AC. That is

(3.69) ZF `WO→ AC.

Proof. Let x be given. We want to find a choice function f on x. By WO, fix a well-
ordering ≤ of the set

⋃
x. Note that if a ∈ x then a ⊆

⋃
x. We define for each non-empty

a ∈ x:

(3.70) f(a) = the ≤ -least element of a.

It is immediate that f is a choice function. �

We will later show that AC and WO are in fact equivalent. However the proof we will
use will require the notion of an ordinal number, and so it will be given in Section 6.2.

Corollary 3.12 WO implies that the relation � for comparing sizes is linear on the
universe V .

Proof. Immediate by Corollary 3.9. �

Exercise. Show that if a set x can be well-ordered, and x ≈ y, then also y can be
well-ordered. [Hint. Let f : x→ y be a bijection. If <x well-orders x, then <y defined by
q <y q

′ ↔ f−1(q) <x f
−1(q′) for q, q′ ∈ y well-orderes y. In fact, 〈x,<x〉 and 〈y,<y〉 are

isomorphic.]
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3.2.1 A bit of history

Definition of a well-ordered set: Burali-Forti. The notion of a well-ordered set was formu-
lated by Cantor. Due to its second-order character, it was first not understood very well.
In particular, Burali (another mathematician) tried to reformulate it: Burali thought
that his definition of a perfectly ordered set is stronger than Cantor’s, while it was in fact
weaker. (Note that Burali in a short time realised his error.) It is instructive to try to
find out where Burali made a mistake. For more details see [FG], p.105.

We say that (P,<) is perfectly ordered if
(i) P is linearly ordered.

(ii) P has the least element.
(iii) Every p ∈ P which has a successor has an immediate successor.
(iv) Every p satisfies the following: if p has an immediate predecessor, then there exists

q < p which has no immediate predecessor and the number of z such that q < z < p
is finite.

Exercises.
(1) Argue that every finite (P,<) is perfectly ordered.
(2) Argue that every well-ordered set is perfectly ordered. [Hint. by contradiction: given

α, go down finding immediate predecessors; this process must end after finitely many
steps, otherwise we find a subset which has no least element]

(3) Find an example of (P,<) which is perfectly ordered, yet not
well-ordered. It follows that the notion of a perfectly ordered set is strictly weaker
than the notion of a well-ordered set. [Hint. Take (Z, <) and replace each number
with a copy of (ω,<).]

3.3 Principle of Maximality, PM

In this section we formulate yet another form of “choice principle”. Its origins are more
algebraical.

Let 〈A,≤〉 be a partially ordered set. We say that X ⊆ A is a chain if the ordering ≤
is linear on X, i.e. for all x, y ∈ X, x ≤ y or y ≤ x.

Definition 3.13 Principle of Maximality, PM is the following statement. Let 〈A,≤〉 be
a partially ordered set. Assume further that every non-empty chain X ⊆ A has an upper
bound in the ordering ≤. Then the following holds: For every x ∈ A, there is a maximal
element in 〈A,≤〉 above x.

Example. The condition that every chain must have an upper bound is essential.
Consider the set of natural numbers with the usual ordering, 〈ω,≤〉. Then ω itself is
a chain which however does not have an upper bound in ω. It follows that we cannot
conclude that there a maximal element above every n ∈ ω (and indeed there is no maximal
element above n).

PM is sometimes called Zorn’s lemma in honour of the American mathematician (al-
gebraist and group theorist) Max A. Zorn who first used this principle in 1935.

PM implies WO (see Theorem 3.14), although the proof is a bit less straightforward
than the proof that WO implies AC. As with AC and WO, we will later show that WO and
PM are in fact equivalent. See Section 6.2. The equivalence of all these independently
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discovered notions is for practical considerations a powerful reason for believing that these
notions are intuitively valid (true).

Theorem 3.14 PM implies WO. That is

(3.71) ZF ` PM→WO.

The proof is included in Section 3.3.3

3.3.1 An application of PM – ultrafilters

We show another application of PM (or equivalently of AC) in the construction of very
useful and important objects, the so called ultrafilters.

Definition 3.15 Let A be a set. A system F ⊆P(A) is called a filter iff:
(i) A ∈ F ,

(ii) If X ∈ F and X ⊆ Y then Y ∈ F ,
(iii) If X ∈ F and Y ∈ F then X ∩ Y ∈ F .

A filter F is called a proper filter iff ∅ 6∈ F .
Exercise. Let F be a filter, then: F is not proper iff ∅ ∈ F iff F = P(A).

Lemma 3.16 F ⊆P(A) is a filter iff:
(i) A ∈ F.

(ii) For all X,Y ⊆ A,

(3.72) X ∩ Y ∈ F ↔ X ∈ F & Y ∈ F.

Proof. If F is a filter according to Definition 3.15, then we need to show that X ∩ Y ∈ F
implies that X ∈ F and Y ∈ F . But clearly, X ∩ Y ⊆ X and X ∩ Y ⊆ Y , and so by (iii)
of Definition 3.15, X ∈ F and Y ∈ F .

Conversely, if F satisfies conditions (i) and (ii) of the Lemma, we need to show that
if X ∈ F and X ⊆ Y then Y ∈ F . But clearly, X = X ∩ Y ∈ F and so by (ii), both X
and Y must be in F . �

Example. The following set F ⊆ P(ω) is an important filter, the so called Fréchet
filter:

(3.73) F = {X ⊆ ω |ω \X is finite}.

Exercise. Verify that F is indeed a proper filter.

Definition 3.17 We say that a system E ⊆ P(A) has the finite intersection property,
FIP if for every n ∈ ω and all sequences e0, . . . , en of elements in E it holds that

(3.74) e0 ∩ . . . ∩ en 6= ∅.

Lemma 3.18 Every E ⊆P(A) with FIP can be extended into a proper filter.
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Proof. Define F as follows:

(3.75) F = {X ⊆ A | (∃n ∈ ω)(∃e0, . . . , en) e0 ∩ . . . ∩ en ⊆ X}.

It is immediate that F contains E and F is a proper filter (Exercise). [Hint. To verify
that F is closed under intersection, i.e. that for X,Y ∈ F we have that X ∩Y ∈ F , argue
that if X ⊇ e0 ∩ . . .∩ en and Y ⊇ e′0 ∩ . . .∩ e′m then X ∩ Y ⊇ e0 ∩ . . .∩ en ∩ e′0 ∩ . . .∩ e′m.]

�

Definition 3.19 A proper filter F ⊆ P(A) is called an ultrafilter if F is a filter and
moreover:

(3.76) For all X ⊆ A, either X or A \X is in F.

Example. The Fréchet filter F on ω is not an ultrafilter. [Hint. Consider the set of
all even numbers.]

We say that a proper filter F is maximal if it is a maximal proper filter with respect
to the relation ⊆: i.e. there is no proper filter F ′ such that F ′ ⊇ F and F ′ 6= F .

Lemma 3.20 Let F ⊆P(A) be a proper filter. Then the following are equivalent:
(i) F is maximal.

(ii) For every X ⊆ A with X 6∈ F there is some Y ∈ F such that X ∩ Y = ∅.

Proof. (i)→(ii). So let X be a subset of A which is not in F . For contradiction assume
that for all Y ∈ F , the intersection X ∩ Y is non-empty. Then the set F ∪ {X} has FIP
because if X1, . . . , Xn are elements from F , then also X1 ∩ . . . ∩Xn is in F (because F
is a filter), and by our assumption (X1 ∩ . . . ∩Xn) ∩X 6= ∅. By Lemma 3.20, there is a
proper filter F ′ which contains F ∪ {X}. Since F ′ ⊇ F and F ′ 6= F , F ′ contradicts the
initial assumption that F is maximal. There it follows that there must exists some Y ∈ F
such that X ∩ Y = ∅.

(ii)→(i). Assume F is a filter and F ′ ⊇ F , F ′ 6= F , is also a filter. We will show that
F ′ is non-proper, and hence F is maximal. If X ∈ F ′ \ F , then by our assumption there
is some Y ∈ F such that X ∩ Y = ∅. Because F ′ is a filter, ∅ = X ∩ Y ∈ F ′. This means
that F ′ is not a proper filter, and so F is a maximal proper filter. �

Lemma 3.21 For every F ⊆P(A) the following are equivalent:
(i) F is an ultrafilter.

(ii) F is maximal.

Proof. (i)→(ii). Let F be an ultrafilter. We want to show that F is maximal. Let X not
in F be given. By above Lemma 3.20, it suffices to find Y ∈ F such that X ∩ Y = ∅.
Since F is an ultrafilter, it follows that −X = A \X is in F , and X ∩ −X = ∅.

(ii)→(i). Let F be maximal. Assume that X is not in F . We want to show that
−X = A\X must be in F . By Lemma 3.20, there is some YX ∈ F such that YX ∩X = ∅,
which is equivalent to YX ⊆ −X. This immediately implies that −X is in F (by the
definition of filter). �
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Theorem 3.22 Every E ⊆P(A) with FIP can be extended into an ultrafilter.

Proof. Let us denote

(3.77) F = {F |F is a proper filter on A}.

We first show that (F,⊆) satisfies the condition that every ⊆-chain has an upper bound.
Let C ⊆ F be a chain, i.e. a linearly ordered subfamily of F. We will argue that

(3.78) F =
⋃

C

is a proper filter which is the upper bound (in fact a supremum) of C . Clearly: A ∈ F ,
∅ /∈ F , and if X ∈ F and X ⊆ Y , then Y ∈ F for every X,Y . It remains to show the
intersection property. Let X,Y be in F and fix FX and FY in C such that X ∈ FX
and Y ∈ FY ; since C is a chain, we have either FX ⊆ FY or FY ⊆ FX . Without loss of
generality, assume that FX ⊆ FY is true. Then X,Y are in FY , and since FY is a filter
X ∩ Y is in FY and then also in F .

Let E ⊆ P(A) be a system with FIP. By Lemma 3.18, E can be extended into a
proper filter F . By Principle of Maximality (PM), there is a maximal element above F
in the ordering (F,⊆) of all proper filters on A. Let U ⊇ F be a maximal element (there
may be more of them). By Lemma 3.21, this U is the desired ultrafilter extending E. �

Exercise* Show that a proper filter F on A is an ultrafilter iff it satisfies for all
X,Y ⊆ A:

(3.79) X ∪ Y ∈ F ↔ X ∈ F ∨ Y ∈ F.

3.3.2 Ramsey theorem and ultrafilters

As an illustration of the use of ultrafilters, we will prove the following theorem.8

Theorem 3.23 (Ramsey) For every partion Q of [ω]r, r ≥ 1, to finitely many pieces
k, k ≥ 1, there exists an infinite set A such that [A]r ⊆ q for some q in Q.

Proof. (For more details, see Balcar and Stepanek, p. 277.) The proof will be by induction
on r. For r = 1 and arbitrary 1 ≤ k < ω, this is just Dirichlet’s principle: if ω is written
as a finite union of subsets of ω, then at least one such subset must be infinite.

So assume the theorem holds r ≥ 1, we show it for r+ 1. Fix a uniform ultrafilter9 U
on ω. Let f : [ω]r+1 → k determine the partition.

(i) For any u ∈ [ω]r and i < k, set

X(u, i) = {x ∈ ω − u | f(u ∪ {x}) = i}.

Let g(u) be the unique i < k such that X(u, g(u)) ∈ U .

8The theorem can be proved also without the ultrafilters, but the ultrafilter construction provides more
control, and can be generalised.

9An ultrafilter on ω is uniform if all its elements are infinite.
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(ii) Hence g : [ω]r → k determines a partition.

(iii) Using g, we construct Y ⊆ ω which will contain a homogenous set A for f . Choose
first r elements of Y arbitrarily. Suppose for n ≥ r, we have Yn = {yj | j < n}
already constructed. For every u ∈ [Yn]r, X(u, g(u)) ∈ U , and therefore

Xn =
⋂
{X(u, g(u)) |u ∈ [Yn]r}

is in U and is therefore infinite. Therefore Xn−{p | p ≤ yn−1} is non-empty. Let yn
be the least element of this set. Y is the union of Yn’s, n < ω.

(iv) Consider g : [Y ]r → k. By induction assumption, there is A ⊆ Y homogeneous for
g.10

(v) Suppose g(x) = 0 for all x ∈ [A]r. We show that g(x) = 0 for all [A]r+1, proving the
theorem (if g(x) is not 0 but other number, the proof is the same). Let v ∈ [A]r+1 be
arbitrary. We know that A ⊆ Y . Let y be the greatest element of v and v = u∪{y}.
Then g(u) = 0 since u ∈ [A]r, and y ∈ X(u, 0), and therefore f(v) = f(u∪{y}) = 0.

The proof is finished. �

3.3.3 PM implies WO

Theorem 3.24 PM implies WO. That is

(3.80) ZF ` PM→WO.

Proof. Let A be a set. We want to find an ordering ≤ with dom(≤) = A such that ≤ is
a well-ordering.

Define

(3.81) S = {R ⊆ A×A |R is a well-ordering on dom(R)}

and the ordering E on S by: R E R′ iff R ⊆ R′ and R′ end-extends R, i.e. all elements
in dom(R′)− dom(R) come after all elements of dom(R) in the ordering R′. This means
that whenever x ∈ dom(R) and y ∈ dom(R′)− dom(R), we have 〈x, y〉 ∈ R′.

S is non-empty because it contains at least ∅ (∅, being empty, is trivially a well-
ordering on its domain ∅). We want to apply PM to 〈S ,E〉.

To apply PM we need to check that every (non-empty) chain in 〈S ,E〉 has an upper
bound. Let a chain X ⊆ S be given. We argue that

⋃
X is in S and is an upper bound

of X in the ordering E.
First notice that

⋃
X is a binary relation on A since it is a union of binary relations;

and also dom(
⋃
X) is the union

(3.82)
⋃
{dom(R) |R ∈ X}.

By reflexivity of R’s, we also have that dom(R) = rng(R) and so dom(
⋃
X) = rng(

⋃
X).

To show that
⋃
X is in S and an upper bound of X in the ordering E we need to

verify:

10If h : Y → ω is a bijection, then h can be used to define a partition g′ on [ω]r such that if A is
homogeneous for g′, h−1[A] is homogeneous for g.
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(a) Exercise. Verify that
⋃
X is indeed a partial order on dom(

⋃
X).

(b) We need to show that
⋃
X is a well-ordering on dom(

⋃
X). Let a non-empty Y ⊆

dom(
⋃
X) be given. Choose arbitrary R in X such that dom(R) ∩ Y is non-empty.

Because R is a well-ordering on its domain, dom(R) ∩ Y has the least element in the
ordering R; denote this element r:

(3.83) r = the R-least element in dom(R) ∩ Y.

We argue that r is in fact the least element in Y in the ordering
⋃
X. Let y ∈ Y

be arbitrary, we want to show that 〈r, y〉 is in
⋃
X. Let R′ be a relation such that

y ∈ dom(R′). If R′ ⊆ R, then y ∈ dom(R) and so by (3.83), 〈r, y〉 ∈ R and hence
〈r, y〉 ∈

⋃
X. If R ⊆ R′, and y /∈ dom(R), then we use the fact that R′ end-extends

R to conclude that 〈r, y〉 ∈ R′ and so 〈r, y〉 ∈
⋃
X.

(c) Lastly, we need to check that
⋃
X is an upper bound of X in the relation E. If

R ∈ X, then R ⊆
⋃
X. It is also easy to check that

⋃
X end-extends the relation R,

and so R E
⋃
X.

By PM there is a maximal element above ∅ ∈ S . Let R ∈ S be one such element. We
will argue that dom(R) = A, and this will prove the theorem. Assume for contradiction
that there is some a ∈ A not in dom(R). Define R′ by

(3.84) R′ = {〈x, y〉 | 〈x, y〉 ∈ R ∨ (x ∈ dom(R) & y = a) ∨ (x = a & y = a)},

or equivalently, where we denote B = dom(R) ∪ {a}:

(3.85) R′ = R ∪ (B × {a}).

It is easy to check that R′ ∈ S and that R′ is strictly bigger than R in the ordering E.
This is a contradiction with R being a maximal element in S . �

4 Introduction to ordinal numbers

4.1 Basic properties

The notion of well-ordering is very important because it allows us to define new objects
by a recursive construction – for instance one can define the function n 7→ 2n by recursion
on ω as follows: 20 = 1 and 2n+1 = 2 · 2n.11 If we wish (and we do wish it) to use
recursion to construct new objects in an infinite number of steps, we need something
“longer” than ω, yet with the same nice structure – in other words, we wish generalize ω
to a well-ordered class which contains ω as its initial segment. This leads to the definition
of ordinal numbers. In this section, we will focus mostly on the definitions and will not
give the proofs.

We wish to define ordinals so that they satisfy the following properties:

11The words “induction” and “recursion” are often used with the same meaning. However, there is
tendency to prefer “recursion” for constructions of various objects and “induction” for proofs (as in a
“proof by induction”).
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(1) An ordinal will be a set of the form 〈α,<〉, where < is a strict well-ordering on α.
(2) We will also require that

α = {β < α |β is an ordinal}.

(3) We will want that the class {α |α is an ordinal} is itself well-ordered by the strict
ordering <. And moreover the ordering < on the class of all ordinals will be universal
in the sense that for every ordinal 〈α,<〉, the ordering on α is just the restriction of
the ordering on the class of all ordinal numbers.
It turns out that the simplest way how to do this is to use the relation ∈ as the

well-ordering.
Before giving the definition of the ordinal number in Definition 4.5, we review briefly

the notion of restriction of a relation to a set (Definition 4.1) and of a transitive set
(Definition 4.3). These notions are important for other areas of set theory as well; we
therefore give some simple properties as well (Lemma 4.2, and 4.4).

Definition 4.1 Let R be a binary relation. The restriction of the relation R to a class
X, in symbols RX , is a relation on X defined by

RX = {(x, y) |x ∈ X & y ∈ X & (x, y) ∈ R} = R ∩X2.

To get familiar with the definition, let us prove the following:

Lemma 4.2 Let < be a strict well-ordering on a class A. Then for every B ⊆ A, the
restriction <B of < to B is a strict well-ordering on B.

Proof. Recall that < is a strict well-ordering on A if it is a irreflexive (a 6< a for every
a ∈ A) and transitive relation, and moreover every non-empty subset x ⊆ A has the least
element in the ordering <.

Clearly b 6<B b for every b ∈ B because b is also in A and b 6< b. If a, b, c are in B and
a <B b and b <B c, then also a < b and b < c and hence a < c. Since both a and c are in
B, a <B c.

If x ⊆ B is a non-empty subset of B, then it is also a subset of A, and hence has the
least element a ∈ x in the ordering <. This a is the least element of x in <B, which is
easy to verify. �

Definition 4.3 We say that a class X is transitive if

(4.86) (∀x) [x ∈ X → x ⊆ X].

Examples. ∅, {∅}, {∅, {∅}} and V are transitive classes. In general, if x and y are
transitive, so are x ∩ y and x ∪ y. Is {{∅}} transitive?

There is another, equivalent, way of saying when x is transitive:

Lemma 4.4 X is transitive iff
⋃
X ⊆ X.
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Proof. (→). If x ∈
⋃
X, then there is y ∈ X such that x ∈ y, this by transitivity of X

implies x ∈ X.
(←). We wish to show that x ∈ y ∈ X implies x ∈ X. If x ∈ y ∈ X, then x ∈

⋃
X,

and hence by the assumption
⋃
X ⊆ X, x must be in X. �

Now we come to the important definition of an ordinal number.

Definition 4.5 A set x is called an ordinal, or ordinal number if x is a transitive set
and the restriction

∈x =∈ ∩x2

is a strict well-ordering on x.

The class of all ordinals will be denoted ORD:

ORD = {x |x is an ordinal number}.

From now on, we will denote ordinal numbers by small case Greek letters from the
beginning of the alphabet: α, β, γ, . . .. We shall often write < instead of ∈ for the ordering
on the ordinal numbers (mostly because there is the convention to denote orderings by
<; however do not forget that the ordering is in fact ∈).

Here are some important facts about ordinal numbers:12

Fact 4.6 Let α, β, γ be ordinal numbers.
(i) α 6∈ α.

(ii) α ∈ β & β ∈ γ → α ∈ γ.
(iii) α ∪ {α} =df α+ 1 is an ordinal number, and α+ 1 is the immediate successor of α

in the ordering ∈ on ORD.
(iv) If A ⊆ ORD is a non-empty class, then there exists α ∈ A which is the least element

of A in ORD.
(v) If a is a subset of ORD, then

⋃
a is the supremum of a in ORD.

(vi) ORD is a proper class.

Fact (4.6) says that ∈ is a strict ordering (i,ii) on the ordinal numbers which satisfies
that for every α there is an immediate successor α+ 1 (iii), and moreover ∈ well-orderes
ORD in a very strong sense: not only every non-empty set has the least element, it also
holds that every non-empty class has the least element (iv). (v) says that the ordering
on ORD has suprema for all sets of ordinal numbers.

Let us state the following Corollary:

Corollary 4.7 ∈ is a set-like well-ordering in ORD.

Here are some more facts:

Fact 4.8 (i) All natural numbers n ∈ ω are ordinal numbers, and ω itself is an ordinal
number. ω is the supremum of ω ⊆ ORD. ω is the initial segment of ordinal
numbers.

12We will not give proofs for the Facts concerning ordinal numbers. However, an interested student
should read the proofs in [1].
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(ii) For every α in ORD, α is an initial segment of ordinal numbers and 〈α,∈〉 is a
well-ordered set.

Ordinals can be divided into three types:

Fact 4.9 (Three types of ordinals) Every ordinal α falls into exactly one of the fol-
lowing three types:

(i) α = ∅; in this case α is the least element of ORD and is often denoted simply as 0.
(ii) α is of the form β + 1 for some β < α.

(iii) If α is not 0, nor equal to β + 1, then we call α a limit ordinal. For instance ω is a
limit ordinal.

Exercise. Show that α is a limit ordinal iff for every β < α, β + 1 < α.
All elements of ORD smaller than ω are called finite ordinals. Finite ordinals can be

identified with natural numbers 0, 1, 2, 3, . . .. We say that a set x is finite if there is a
bijection between x and some finite ordinal.

The following fact captures one of the most important properties of ORD which are
used in practice.

Fact 4.10 (Representation of well-ordered sets)
For every well-ordered set 〈x,<〉 there exists one and only one ordinal α such that

(4.87) 〈x,<〉 and 〈α,∈〉 are isomorphic.

Remark 4.11 All the properties of ordinal numbers can be shown just in ZF without
the Axiom of Foundation and the Axiom of Choice. This is not important for us right
now, but will have some significance in more advanced lectures. This contrasts with the
properties of cardinal numbers (introduced below) which heavily rely on AC.

4.2 Addition and multiplication of ordinal numbers

We can define the usual operations on ordinal numbers, such as α+β, α ·β, and αβ. The
definitions of + and · have a “geometric” motivation. To explain this motivation, we first
define a well-ordering of pairs of ordinal numbers:

(4.88) (α0, β0) <l (α1, β1)↔ α0 < α1 ∨ (α0 = α1 & β0 < β1).

We call <l the lexicographical ordering of ORD2.

Lemma 4.12 The ordering <l is a strict well-ordering on ORD2.

Proof. It is clearly antireflexive and transitive (exercise). We will show that it is a well-
ordering. So let A ⊆ ORD2 be a non-empty set, we wish to show that there is some pair
(α0, β0) such that (α0, β0) is the <l-least element in A. Let us define:

α0 = the < -least element of {α | (∃β) (α, β) ∈ A},

and
β0 = the < -least element of {β | (α0, β) ∈ A}.



4 Introduction to ordinal numbers 39

This definition is correct because both sets are non-empty if A was non-empty; it is also
obvious that (α0, β0) ∈ A. If (α, β) 6= (α0, β0) and (α, β) ∈ A, then by the construction
of α0, β0, we have that either α0 < α, in which case (α0, β0) <l (α, β), or α0 = α but
β0 < β, and hence again (α0, β0) <l (α, β). It follows that (α0, β0) is the <l-least element
of A. �

We define:
Addition.

(4.89) α+ β = the unique ordinal isomorphic to 〈({0} × α) ∪ ({1} × β), <l〉.

Multiplication.

(4.90) α · β = the unique ordinal isomorphic to 〈β × α,<l〉.

Note that these operations are not commutative:
Exercise:

1. Verify the following:

(i) 1 + ω = ω,
(ii) 1 + ω < ω + 1,
(iii) 2 · ω = ω,
(iv) ω + ω = ω · 2

2. Show that in the definition (4.90), it does matter whether we write β × α or α× β.

The definition of exponentiation αβ has no immediate geometric intuition; it is defined
using a transfinite recursion; see Section 6.3.

4.3 Transfinite induction

Ordinal numbers are a generalisation of natural numbers, and therefore make it possible
to formulate a more general version of the induction-based arguments available for natural
numbers. Since the induction on ORD goes beyond all n < ω into infinite stages, we call
it a transfinite induction.

The following theorem generalizes the induction theorem for natural numbers which
states that if A ⊆ ω contains ∅ and is closed under the successor operation, then A = ω:

Theorem 4.13 Let A be a subclass of ORD such that for every ordinal α holds:

α ⊆ A→ α ∈ A,

then A = ORD.

Proof. For contradiction assume that α is the least ordinal which is not in A. Then
α ⊆ A (because every β smaller than α is in A, and “smaller” in ORD means ∈), and by
assumption α ∈ A. Contradiction. �

This can be reformulated for successor and limit ordinals:
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Theorem 4.14 Let A be a subclass of ORD such that for every ordinal α holds:
(i) 0 ∈ A,

(ii) α ∈ A→ α+ 1 ∈ A,
(iii) For a limit ordinal α: [(∀β < α)β ∈ A]→ α ∈ A,
then A = ORD.

Recall the inductive construction of 2n for n < ω: we define 20 = 1, and 2n+1 = 2 · 2n.
The correctness of this definition follows from the following theorem on construction by
induction on ω: if G : ω → ω is a function and a ∈ ω, then there is a unique F : ω → ω
such that F (0) = a, and F (n+1) = G(F (n)). In our example, setting a = 1, and G = 2n,
we get the function 2n. This theorem generalizes as follows:

Theorem 4.15 Let G be a class function from V to V . Then there is a unique function
F from ORD to V such that for every α ∈ ORD:

F (α) = G(F �α).

The following simpler form of Theorem 6.1 is often used:

Theorem 4.16 Let G be a class function from V to V and a an arbitrary set. Then
there is a unique function F from ORD to V such that

(i) F (0) = a,
(ii) For every α, F (α+ 1) = G(F (α)),

(iii) For every limit α, F (α) = G(F �α).

For the proof and applications, see Sections 6 and 6.2.

5 Introduction to cardinal numbers

Cardinal numbers are sets which we assign to other sets to measure their size. This works
similarly as for the finite sets: to a set containing say three elements a, b, c we assign
number 3, etc.

It turns out that with the Axiom of Choice, the best way to measure the size of
sets is to use ordinal numbers introduced above. In particular, Theorem 4.10 seems to be
helpful in measuring sets: if we can well-order a set x, we can “measure” it with an ordinal
number. But there is a slight problem with measuring size according to Theorem 4.10:
the ordinal which measures the set is determined by the well-order. Thus it is possible
that x is well-ordered by two orderings <1 and <2, 〈x,<1〉 and 〈x,<2〉, but the unique
ordinals are different:

(5.91) 〈x,<1〉 ∼= 〈α1,∈〉 and 〈x,<2〉 ∼= 〈α2,∈〉 and α1 6= α2.

Exercise. Consider for instance ω, which can be ordered by an ordering isomorphic to
ω + 1 but also to ω (more options are possible).

Exercise If x is finite, then the ordinal α is unique (i.e. does not depend on the well-
ordering) and is equal to some n < ω.

The undesirability of the non-uniqueness of the ordinal in (5.91) is solved by taking
the least ordinal which can measure x in the sense of (5.91); see Definition 5.1.
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5.1 The definition

Our intuition (extrapolated from the finite sets) says that the cardinal numbers should
have the following basic properties:

(i) For each set x there exists a unique element of CARD denoted |x|,
(ii) |x| ≈ x,
(iii) x ≈ y, then |x| = |y|.

As we mentioned above, it is not convenient to measure size of set by an ordinal given
by Theorem 4.10 because the ordinal is not unique. To ensure properties (i)–(iii) above,
we make the following definition:

Definition 5.1 (Cardinals.) We say that an ordinal α is a cardinal if there is no β < α
such that β ≈ α. The class of cardinals is denoted CARD.

If x is a set, then we define the size of |x| as follows:

(5.92) |x| = the least ordinal α such that α ≈ x.

5.2 Basic properties

The Axiom of Choice is very important in dealing with cardinals. Some of the results
below are provable without AC, but we will not keep track of this. From this time on we
assume AC and often use it without mentioning.

Lemma 5.2 (i) |x| is defined for every x and is unique.
(ii) For every set x, the size |x| is an element of CARD.

(iii) For every set x, |x| ≈ x.
(iv) For all sets x, y, x ≈ y → |x| = |y|.

Proof. Ad (i,ii). Let (x,<) be any well-ordering of x (there is one by AC which implies
WO). By Theorem 3.8 there is a unique ordinal α such that (x,<) ∼= (α,∈), which implies
x ≈ α. Since ORD is well-ordered, there is the least ordinal β ≤ α such that β ≈ α (by
transitivity of ≈, β is the least ordinal such that β ≈ x). It follows that β is a cardinal
number and |α| = |x| = β.

Ad (iii). By definition of |x|.
Ad (iv). If x ≈ y and β = |x|, then by transitivity of ≈ we obtain y ≈ x ≈ β → y ≈ β,

and so |y| = β. �

Natural numbers are all cardinals, and are called finite cardinals. We say that x is
finite if there is n ∈ ω such that |x| = n. If there is no n < ω such that |x| = n, then x is
called infinite.

Cardinals (usually infinite) are denoted by Greek letters κ, λ, µ . . ..

Lemma 5.3 The following hold about cardinals:
(i) ω is the least infinite cardinal.

(ii) Every infinite cardinal is a limit ordinal.
(iii) For every cardinal κ there is a cardinal λ such that λ > κ.
(iv) If 〈κξ | ξ < α〉 is an increasing sequence of cardinals for α a limit ordinal, then the

supremum κ̄ = sup({κξ | ξ < α}) is a cardinal.
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Proof. Ad (i). Every natural number n < ω is a cardinal because one can show – by
induction – that there can be no bijection between m,n for m 6= n. ω is the supremum
of natural numbers, and it is a cardinal because there can be no bijection between ω and
a natural number.

Ad (ii). For every infinite ordinal α ≥ ω, one can easily construct a bijection between
α+1 and α: for instance set i(α) = 0, i(n) = n+1 for n ∈ ω, and i(β) = β for ω ≤ β < α.
It is easy to check that i : α + 1 → α is a bijection. It follows that no cardinal greater
than ω can be of the form α+ 1 for some ordinal α.

Ad (iii). If κ is a cardinal, then by Cantor’s theorem κ ≺P(κ). By AC, |P(κ)| exists
and must be bigger than κ.

Ad (iv). By contradiction. Assume that there is a bijection b : κ̄ → α for some
α < κ̄. Since κ̄ is the supremum of κξ’s, there is some κξ such that α < κξ. We reach
contradiction by arguing that there is a bijection between α and κξ, contradicting the
fact that κξ is a cardinal. By Cantor-Bernstein’s theorem, it suffices to show α � κξ
and κξ � α. The first inequality is obvious, because α < κξ. We will show the second
inequality. It suffices to find a 1-1 function from κξ into α. However, this is easy: clearly
b restricted to κξ is such a function.

Note that (iii) and (iv) together imply that cardinal numbers are unbounded in the
ordinal numbers, i.e. for every α ∈ ORD, there is a cardinal κ such that α ≤ κ. �

If κ is a cardinal, then the least cardinal above κ is denoted as κ+.

5.3 Definition of addition, multiplication, and exponentiation on cardi-
nals

We define the following basic operations for cardinal numbers:

Definition 5.4 (Addition.) Let κ and λ be cardinals. We define

(5.93) κ+ λ = |κ+ λ|,

where the sign + on the righthand side denotes the addition on ordinal numbers.

Caution: This means that + for CARD and ORD is not the same operation. For
instance ω + ω = ω · 2 > ω if we sum ordinal numbers, but ω + ω = ω if we sum cardinal
numbers (we will show this later, see Corollary 7.3).

Definition 5.4 can be rephrased as follows. The sum κ+ λ is the size of disjoint union
X ∪Y , where X and Y are disjoint and |X| = κ and |Y | = λ (if X,Y are disjoint, we call
X ∪ Y the disjoint union of X and Y ). Note that this definition does not depend on the
particular sets X,Y which we choose: if |X ′| = |X| and |Y ′| = |Y |, and X ′ and Y ′ are
disjoint, then the size of the union of X,Y is the same as the size of the union of X ′, Y ′

(Exercise).

Definition 5.5 (Multiplication.) Let κ and λ be cardinals. We define

(5.94) κ · λ = |κ · λ|,

where the sign · on the righthand side denotes the multiplication on ordinal numbers.
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Caution: This means that · for CARD and ORD is not the same operation. For
instance ω · ω = ω2 > ω if we multiply ordinal numbers, but ω · ω = ω if we multiply
cardinal numbers (we will show this later, see Corollary 7.3).

Similarly as for the addition, we can view κ·λ is the size of a Cartesian product X×Y ,
where |X| = κ and |Y | = λ. Note that this time X and Y are not required to be disjoint.

Lemma 5.6 For all cardinal numbers κ, λ such that 1 < κ, λ:

(5.95) κ+ λ ≤ κ · λ

Proof. Given X and Y such that |X| > 1 and |Y | > 1, we need construct a 1-1 function
from the disjoint union of X and Y to the product X × Y . This is easy, Exercise. �

Definition 5.7 (Exponentiation.) Let κ and λ be cardinals. We define

(5.96) κλ = |{f | f : λ→ κ}|,

where f : λ→ κ denotes a function with domain λ and range included in κ.

It is customary to write λκ to denote the set {f | f : λ→ κ}, and so

(5.97) κλ = |λκ|.

Caution. The ordinal exponentiation and the cardinal exponentiation are defined differ-
ently. Cardinal exponentiation is a complicated notion which is not completely determined
by the axioms of ZFC. See Section 7.7.

Special case of cardinal exponentiation is 2κ for a cardinal κ. This cardinal measures
the size of the powerset of sets of size κ:

Lemma 5.8 If A is a set and |A| = κ, then |P(A)| = 2κ.

Proof. Let b be a bijection from A onto κ.
We define a bijection g from P(A) onto κ2 as follows:

(5.98) g(x) = χx, where χx(ξ) = 1 if b−1(ξ) ∈ x, and χx(ξ) = 0 otherwise,

for every x ⊆ A. It is easy to check that g is indeed a bijection and so P(A) ≈ κ2 and so
|P(A)| = 2κ. The function χx is called the characteristic function of x. �

5.4 Alephs

We have learned above that the class of all cardinal numbers is unbounded and contin-
uous13 in the class of all ordinal numbers. Since ordinal numbers are well-ordered, we
can enumerate all cardinal numbers, one by one, giving them ordinal numbers as indices.
This enumeration is called the function aleph, and denoted ℵ. For α in the domain of

13By continuity we mean that if κ0 < κ1 < . . . is an increasing sequence of cardinals, then their limit
(in the ordinal numbers), is a cardinal; see Lemma 5.3(iv).



5 Introduction to cardinal numbers 44

ℵ, we write ℵα instead of ℵ(α). For practical reasons, we start the enumeration at ω,
ignoring the finite ordinals. Thus ℵ0 = ω (the first infinite cardinal), ℵ1 = the second
infinite cardinal, ℵ2 = the third infinite cardinal, . . ., ℵω = the ω-th infinite cardinal, etc.

How do we define ℵα formally for all ordinals α? We can use for instance transfinite
recursion, see Theorem 4.16: By recursion define function ℵ : ORD→ CARD:

(5.99)

ℵ0 = ω,

ℵα+1 = the least cardinal strictly greater than ℵα,
ℵλ = the supremum of the cardinals {ℵβ |β < λ}, for λ limit.

Notice that the definition of the limit is correct because the supremum of cardinals is
a cardinal (continuity of cardinals) by Lemma 5.3(iv).

5.5 Cardinal addition and multiplication

The following theorem will be proved in Section 7.1. It says that addition and multipli-
cation of infinite cardinals is very simple. This contrasts with the situation for exponen-
tiation, see Section 5.6.

Theorem 5.9 For all cardinals κ and λ, at least one of them infinite:

(5.100) κ+ λ = κ · λ = max(κ, λ).

5.6 Exponentiation and the Continuum Hypothesis

There is very little one can prove about exponentiation κλ in ZFC. Some more results
above those in Lemma 5.10 can be proved, see Section 7.6, but in general the cardinal
exponentiation is a very complex subject.

Lemma 5.10 Let κ, λ be infinite cardinals. Then the following hold:
(i) κ < 2κ.

(ii) κ < λ→ 2κ ≤ 2λ.

Proof. Ad (i). By Cantor’s theorem κ < |P(κ)|. By Lemma 5.8, |P(κ)| = 2κ.
Ad (ii). This follows from the fact that from the assumption κ < λ, one can find a

1-1 function from P(κ) to P(λ). Note that in general, we can only show 2κ ≤ 2λ, but
not 2κ < 2λ. �

Recall that there is a bijection between R and P(ω). This size of real numbers
therefore equals to the size of P(ω), which is 2ℵ0 . By Lemma 5.10(i), ℵ1 ≤ 2ℵ0 . Can we
say more about 2ℵ0?14

David Hilbert formulated in 1900 the following conjecture, called the Continuum Hy-
pothesis, CH:

(5.101) 2ℵ0 = ℵ1.

14Since 2ℵ0 is a cardinal, there must be some ordinal α such that 2ℵ0 = ℵα. The question is, can we
find out which α it is?
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It took 62 years to find out (Göedel, Cohen) that CH is not provable nor disprovable from
ZFC if ZFC is consistent. CH is thus the most famous independent sentence over ZFC.15

In other words, ZFC does not provide enough information to decide which α is such that
2ℵ0 = ℵα.

The Continuum Hypothesis can be generalised to the so called General Continuum
Hypothesis, GCH:

(5.102) (∀α ∈ ORD) 2ℵα = ℵα+1.

GCH is also independent over ZFC.

6 More on ordinal numbers and transfinite recursion

6.1 Transfinite recursion theorem

Above, we have stated a theorem about transfinite recursion without giving a proof, see
Theorems 4.15 and 4.16. We now give the proof:

Theorem 6.1 Let G be a class function from V to V . Then there is a unique function
F from ORD to V such that for every α ∈ ORD:

F (α) = G(F �α).

Proof. We will construct the required F as a union of partial approximations. Set

X = {f | (∃α ∈ ORD) dom(f) = α & (∀β < α)f(β) = G(f �β)}.

The system X has the following properties:

(i) For every f ∈ X and β ∈ dom(f), the restriction f �β is also in X,
(ii) If f, f ′ are in X and α ∈ dom(f) ∩ dom(f ′) then f(α) = f ′(α),
(iii) Every α ∈ ORD is the domain of some f ∈ X.

We argue that these conditions are true.
(i) is obvious (if γ < β then f(γ) = f �β(γ) = G(f �γ)).
(ii) Let functions f, f ′ in X be given. Clearly, the intersection dom(f) ∩ dom(f ′) is

some ordinal, let us denote it as γ. We want to show that for every α < γ, f(α) = f ′(α).
That is we want to show that

A = {α < γ | f(α) = f ′(α)}

is equal to γ. Using Induction theorem 4.13 (localised to γ), it suffices to show that if
α < γ is such that α ⊆ A, then α ∈ A. The fact α ⊆ A means that f � α = f ′ � α; by
definition of X, f(α) = G(f �α) = G(f ′ �α) = f ′(α). It follows that A = γ.

(iii) Again we use the Induction theorem, this time Theorem 4.14 to make things more
clear. Let

A = {α | (∃f ∈ X)α = dom(f)}.
15There are many more independent sentences over ZFC; by the way, AC itself is independent over ZF.
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(Successor step) If α ∈ A given and f is such that dom(f) = α, then the function f ′

defined by
f ′ = f ∪ {(α,G(f))}

is a function in X with domain α+ 1 ∈ A.
(Limit step) If α is a limit ordinal such that α ⊆ A, then for every β < α there is some

fβ ∈ X such that β = dom(fβ). By (ii), the union
⋃
β<α fβ is a function with domain α,

which we will denote as g. If γ ∈ dom(g), then by definition of g there is some fβ such
that γ ∈ dom(fβ); it follows that g ∈ X because

g(γ) = fβ(γ) = G(fβ �γ) = G(g �γ).

It follows that α ∈ A, and by Theorem 4.14, A = ORD as desired.
Properties (i)–(iii) suffice to finish the proof of the theorem. By (ii), F =

⋃
X is a

function, and by (iii) the domain of F is ORD. We show that for every α, F (α) = G(F �α).
If α is an ordinal, then by (ii) there is some f ∈ X such that α ∈ dom(f) and

f(α) = F (α), f �α = F �α.

It follows that
F (α) = f(α) = G(f �α) = G(F �α),

as desired.
By transfinite induction 4.13 one can also easily show that if F ′ is a function satisfying

the definition of F , then F = F ′. It follows that F is unique. Exercise. �

Recall that if f is a function and x ⊆ dom(f), then f [x] = f ′′x denotes the set
{b | (∃a ∈ x)f(a) = b}.

The above theorem has several variants.

Theorem 6.2 Let G be a function from V to V . Then there is a unique F : ORD→ V
such that for every α:

F (α) = G(F [α]).

Proof. Define a function G′ by setting: G′(x) = G(rng(x)) if x is a binary relation, or ∅ if
x is not a binary relation. Then apply Theorem 6.1 to G′: there is a unique F such that

F (α) = G′(F �α) = G(F [α]).

�

Another variant (compare with Theorem 4.13 and 4.14):

Theorem 6.3 Let G1 and G2 be two functions from V to V and a a set. Then there is
a unique F : ORD→ V such that:

(i) F (0) = a,
(ii) F (α+ 1) = G1(F (α)),

(iii) F (λ) = G2(F [λ]), where λ is a limit ordinal.
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Proof. Exercise*. Hint: define G by:

G(x) = G1(x(α)), if x is a function and dom(x) = α+ 1,

= G2(rng(x)), if x is a function and dom(x) = λ, for λ a limit ordinal

= a, otherwise.

Apply Theorem 6.1 to this G. �

6.2 AC, WO, and PM are all equivalent

Recall that Theorem 3.11 shows that WO implies AC, and Theorem 3.14 shows that PM
implies WO. To complete the equivalence between these principles, we will show now that
AC implies PM.

Theorem 6.4 Axiom of Choice implies Principle of Maximality:

(6.103) ZF ` AC→ PM.

Corollary 6.5 AC, PM, WO are all equivalent, i.e.

(6.104) ZF ` AC↔WO↔ PM.

Proof. (of Theorem 6.4) Let (P,≤) be a partially ordered set which satisfies the condition
that every chain in P has an upper bound (see Definition 3.13 for the formulation of PM
and for the meaning of chain). Using AC, we want to show that above every element
p ∈ P there is a maximal element a in the ordering ≤, i.e. p ≤ a and there is no b ∈ P
such that a < b.

By AC, we can fix a choice function C on P(P ). Let p ∈ P be given. We will find a
maximal element above p using transfinite recursion.

Define by transfinite recursion function F : ORD→ P :

F (0) = p,

F (α+ 1) = C({q ∈ P |F (α) < q}), if {q ∈ P |F (α) < q} is non-empty,

= p, otherwise,

λ limit, F (λ) = C({q ∈ P | (∀β < λ)F (β) < q}),
if {F (β) |β < λ} is a strictly increasing chain,

= p, otherwise.

The following claims hold, proving the theorem:

• There is unique α ∈ ORD such that F (α+1) is equal to p, and for all β, 0 < β ≤ α,
F (β) 6= p, and {F (β) | 0 ≤ β ≤ α} is a strictly increasing chain of elements in P .
Denote this α by α0.

• The maximal element in P above p is equal to F (α0).

The proof of these claims is left as an exercise for the reader. �

Remark 6.6 A simple modification of the proof shows directly that AC implies WO.
(Exercise.)
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6.3 Ordinal arithmetics – definition of operations

We have seen above in Section 4.2 that addition and multiplications have geometrical
motivations. In this section we define addition and multiplication also by recursion;
recursion has the advantage that it can be used to define the ordinal exponentiation αβ

as well.

Definition 6.7 (Addition.) For all ordinal numbers α we define by induction on β in
α+ β the addition as follows:

(i) α+ 0 = α,
(ii) α+ (β + 1) = (α+ β) + 1,
(iii) α+ β = sup{α+ ξ | ξ < β}, for limit β.

Definition 6.8 (Multiplication.) For all ordinal numbers α we define by induction on
β in α · β the multiplication as follows:

(i) α · 0 = 0,
(ii) α · (β + 1) = (α · β) + α,
(iii) α · β = sup{α · ξ | ξ < β}, for limit β.

Exercises.
1. * Verify by transfinite induction on β that the geometric definitions of addition and

multiplication are equivalent to the definition by transfinite induction.
Transfinite induction allows us to define also the exponentiation of ordinal numbers:

Definition 6.9 (Exponentiation.) For all ordinal numbers α we define by induction
on β in αβ the exponentiation as follows:

(i) α0 = 1,
(ii) α(β+1) = (αβ) · α,
(iii) αβ = sup{αξ | ξ < β}, for limit β.

Exercises.
1. * Try to visualize the following ordinal numbers: ω < ω · 2 < ω · 3 < ω · ω = ω2 <

(ω2) + ω < ω3 < ωω < ωω
ω

= ω(ωω) < ε0 = sup{g(n) |n < ω}, where g(n) is defined
by recursion as follows: g(0) = ω, and g(n + 1) = ωg(n). [All these numbers still
have the size ω.]

We will state the following important normal form theorem without proof:

Theorem 6.10 (Cantor’s Normal Form Theorem.) Every ordinal α > 0 can be rep-
resented uniquely in the form:

(6.105) α = ωβ1 · k1 + . . .+ ωβn · kn,

where n is a natural number ≥ 1, α ≥ β1 > . . . > βn, and k1, . . . , kn are non-zero natural
numbers.

Remark 6.11 Notice that the normal form for ordinals is reminiscent of the decadic
“normal form” for numbers: any number l ∈ ω can be uniquely written as l = 10n1 · k1 +
. . . + 100 · kn. In Cantor’s normal form theorem, the base is ω (instead of 10 as in the
decadic representation).
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6.4 Normal functions and fixed points

Definition 6.12 We say that a function f : ORD → ORD is normal if the following
hold:

(i) f is increasing: (∀α, β)α < β → f(α) < f(β).
(ii) f is continuous: for every limit ordinal γ,

(6.106) f(γ) = sup{f(β) |β < γ}.

Addition and multiplication are normal functions in the second variable (see Exercises
below); but not in the first variable. Exponentiation is continuous in the exponent (see
Exercises below).

Definition 6.13 Let f : ORD→ ORD be given. We say that α is a fixed point of f if

(6.107) f(α) = α.

Remark 6.14 Fixed points are easy to find for normal functions (see Lemma 6.16 below).
Note that fixed points for addition and multiplication are possible only because we deal
with infinite numbers (limit ordinals). If we add finite numbers, there are of course no n
and k greater than 0 such that n+ k = k.

The following is a simple lemma concerning normal functions:

Lemma 6.15 Let f be a normal function on ORD, then

(6.108) for every α, α ≤ f(α).

Proof. We proceed by induction: assume for contradiction that α0 is the least ordinal
such that

(6.109) f(α0) < α0

Using the fact that f is increasing, we obtain from (6.109):

(6.110) f(f(α0)) < f(α0) < α0,

which contradicts that α0 was the least such that (6.109) holds. �

We now show that the notion of normality ensures that normal function have un-
boundedly many fixed points:

Lemma 6.16 (Fixed-point lemma) If f is a normal function from ORD to ORD,
then it has arbitrarily large fixed points, i.e. for every γ there is α ≥ γ such that f(α) = α.

Proof. Let γ be given. Define the following function g by induction on ω:

g(0) = γ,

g(n+ 1) = f(g(n)), for every n ∈ ω.
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We know by Lemma 6.15 that f(β) ≥ β for every β, and so f(γ) ≥ γ. Now there are two
possibilities.

Either f(γ) = γ, and γ itself is a fixed point f (and the proof is finished because we
can set α = γ).

Or f(γ) > γ. In this case one can use the fact that f is increasing to show by induction
on n < ω that g(n+1) > g(n) for every n. In other words, we have the following situation:

(6.111) g(0) = γ < g(1) = f(γ) < g(2) = f(f(γ)) < . . . .

Set α = sup{g(n) |n < ω}. We will show that f(α) = α, and this will finish the proof.
First note that α is a limit ordinal (this means that for every δ < α, δ + 1 < α; this

is obvious because δ < g(n) for some n and therefore δ + 1 ≤ g(n) < g(n + 1) < α). By
continuity of f (because f is normal), we know

(6.112) f(α) = sup{f(β) |β < α}.

Denote A = {f(β) |β < α} (A is thus a subset of ordinals). It suffices to show that
α = supA because then α = f(α). To argue that α is the supremum of A, we need to
show two things:
(a) α is the upper bound of A, i.e. for every β < α, f(β) ≤ α, and
(b) α is the least upper bound, i.e. for every δ which is an upper bound of A, we have

α ≤ δ.
We argue for (a) as follows: Let β < α, and f(β) be given. By the definition of α, there is
some n such that β < g(n) < α. It follows f(β) < f(g(n)) = g(n+ 1) < α, and therefore
α is indeed an upper bound of A.

To argue for (b), first notice that because the ordering on ORD is linear, the following
are equivalent: (b) and (b’), where
(b’) For every δ < α, there is some δ′ ∈ A, δ < δ′.
The items (b) and (b’) are equivalent because with linearity the fact that δ is not an
upper bound, i.e. (∃δ′ ∈ A) δ′ 6≤ δ, translates to the fact that δ′ > δ.

Now (b’) follows because if δ < α, then for some g(n) ∈ A, δ < g(n). �

Exercises.

1. * Verify that for a fixed α, the functions fα and gα defined on ORD are normal,
where: fα(β) = α + β and gα(β) = α · β. We say that addition and multiplication
is a normal function in the second variable β.

2. * Verify that for a fixed α, the function rα defined on ORD is normal, where:
rα(β) = αβ. We say that exponentiation is a normal function in the second variable
β.

3. * Using Lemma 6.16 argue that there are β, γ, δ such that:

(i) ω + β = β; argue using the construction in Lemma 6.16, that the least such
β ≥ ω is the ordinal ω · ω.

(ii) ω · γ = γ; argue using the construction in Lemma 6.16, that the least such
β ≥ ω is the ordinal ωω.
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(iii) ωδ = δ. The least δ above ω such that ωδ = δ (constructed using Lemma 6.16)
is denoted as ε0 (see above).

4. * Using Lemma 6.16, argue that if δ = ωδ, then:

(i) ω + δ = δ,
(ii) ω · δ = δ,
(iii) ωδ = δ.

[Hint: δ ≤ ω + δ ≤ ω · δ ≤ ωδ = δ.]

6.5 ω as a domain of a model for PA

We will show that we can define in ZFC basic arithmetical operations such as +, · and
relations such as ≤ on ω in such a way that the resulting structure satisfies all axioms of
arithmetics.

Recall that Peano Arithmetics, PA is a theory in the language {+, ·, 0, S,≤, <} with
the following axioms:

1. (∀x, y)(S(x) = S(y)→ x = y),
2. (∀x)(S(x) 6= 0),
3. (∀x)(x 6= 0→ (∃y)x = S(y)),
4. (∀x)(x+ 0 = x),
5. (∀x, y)(x+ S(y) = S(x+ y)),
6. (∀x)(x · 0 = 0),
7. (∀x, y)(x · S(y) = x · y + x),
8. (∀x, y)(x ≤ y ↔ (∃v)v + x = y),
9. (∀x, y)(x < y ↔ (∃v)(S(v) + x = y),

10. (Schema of Induction) For every formula ϕ(x, x̄) with free variables x and x̄ =
x0, . . . , xn−1, we add the following axiom:

(∀x̄)(ϕ(0, x̄) & [(∀x)(ϕ(x, x̄)→ ϕ(S(x), x̄))]→ (∀x)ϕ(x, x̄)).

From these axioms one can show all the usual properties of the operations, for instance
commutativity of + and ·.

We will show that we can define operations S,+, · and relation ≤, < in ZFC, so that
ω together with these operations satisfies all axioms of PA. We call this structure the
arithmetics as built in ZFC.

Recall that in Section 4.2 we have defined + and · on ordinal numbers using the
lexicographical ordering <l on ORD. Since ω is an initial segment of ORD, we can
straightforwardly apply these results.

Definition of zero, 0. We set 0 = ∅.
Definition of the successor, S. For n ∈ ω we define S(n) = n ∪ {n}.
Definition of addition, +. For n,m ∈ ω define n+m as the natural numbers which

is isomorphic with the set
({0} × n) ∪ ({1} ×m)

ordered by <l.
Definition of multiplication, ·. For n,m ∈ ω define n ·m as the natural numbers

which is isomorphic with the set

n×m, or equivalently m× n
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ordered by <l.

Remark 6.17 One might wonder how we know that the ordinal isomorphic with ({0}×
n) ∪ ({1} ×m) is a finite ordinal. This is shown by induction on m in n + m, using the
fact that ω is an inductive set. Similarly for n ·m.

Definition of ordering ≤ and strict ordering <. We define for n,m ∈ ω,

n < m↔ n ∈ m, and n ≤ m↔ n < m ∨ n = m.

Theorem 6.18 ω with the operations above satisfies all the axioms of PA.

The proof is in a sense obvious, but also long, and we will therefore omit it.

Corollary 6.19 ZF proves the consistency of PA (where PA is formulated within ZF).
This is denoted as:

ZF ` Con(pPAq),

where pPAq denotes the formalisation of the usual axioms of PA within ZF.

6.6 The well-founded universe

Using Theorem 6.3, let us define a class function V and a class WF, where WF is abbre-
viation for “well-founded”:

V0 = ∅(6.113)

Vα+1 = P(Vα)

Vλ =
⋃
α<λ Vα, if λ is a limit ordinal

WF =
⋃
α∈ORD Vα

Note that we write (as is customary) Vα instead of V (α). We will show below, see
Theorem 6.25, that the class WF contains all sets if we assume the Axiom of Foundation.
It follows that under the Axiom of Foundation, the universe of all sets has a very simple
and elegant description (6.113).

We first show some simple properties of WF:

Lemma 6.20 (i) For each α, Vα is a transitive set.
(ii) For each α, and every β < α, Vβ ⊆ Vα.

(iii) For each α, α ⊆ Vα, and ORD ⊆WF.

Proof. Claims (i) and (ii) will by shown together by induction following Theorem 4.14.
Let us denote

(6.114) A = {α ∈ ORD |Vα is transitive and (∀β < α)Vβ ⊆ Vα}.

We show that A = ORD. We need to show:
(a) ∅ ∈ A,
(b) If α ∈ A, then α+ 1 ∈ A,
(c) If all β < λ are in A, then λ ∈ A (for λ limit).
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Ad (a). Clearly, ∅ ∈ A.
Ad (c). First note that if λ is a limit ordinal, then for every β < λ, Vβ ⊆ Vλ because

Vλ =
⋃
β<λ Vβ.

If λ is a limit ordinal, and x ∈ Vλ, there is some β < λ such that x ∈ Vβ. Since Vβ
is by the induction assumption transitive, we obtain x ⊆ Vβ ⊆ Vλ. It follows that Vλ is
transitive. This shows that λ ∈ A.

Ad (b). Let us assume that α ∈ A, we will show that α+1 ∈ A. Since Vα is transitive,
we obtain that Vα ⊆ Vα+1: if x ∈ Vα, then x ⊆ Vα, and hence x ∈ Vα+1 = P(Vα). This
suffices to show that Vα+1 is transitive: if x ∈ Vα+1, then x ⊆ Vα ⊆ Vα+1, and hence
x ⊆ Vα+1, which shows that Vα+1 is transitive.

If β < α, then Vβ ⊆ Vα ⊆ Vα+1 by the induction assumption. If β = α < α+ 1, then
this means Vα ⊆ Vα+1, which we have already shown. This implies that α+ 1 ∈ A.

Combining (i)–(iii), we conclude that A = ORD as desired.
Ad (iii). This is again shown by induction: It holds for ∅ and λ limit (to show that

λ ⊆ Vλ use the fact that α ∈ λ implies by induction assumption that α ⊆ Vα, and so
α ∈ Vα+1 ⊆ Vλ). To argue that α + 1 = α ∪ {α} ⊆ Vα+1, note that α ⊆ Vα implies
α ∈ Vα+1, and so α+ 1 ⊆ Vα+1. �

Corollary 6.21 WF is a transitive class.

Proof. If x ∈WF, then there is some α such that x ∈ Vα. By transitivity of Vα we obtain
x ⊆ Vα and because Vα ⊆WF, we conclude x ⊆WF. �

We make the following useful definition.

Definition 6.22 The rank of a set x ∈ WF, in symbols rank(x), is the least α ∈ ORD
such that x ∈ Vα+1. Equivalently, rank(x) is the least α ∈ ORD such that x ⊆ Vα.

It follows that if α = rank(x), then x ⊆ Vα, x 6∈ Vα, and x ∈ Vβ for every β > α. Note
that rank(x) can be a limit ordinal.

We sum up the basic properties of the rank function:

Lemma 6.23 Basic properties of the rank function:
(i) For any α, Vα = {x ∈WF | rank(x) < α}.

(ii) If y ∈WF, then
(a) ∀x ∈ y(x ∈WF & rank(x) < rank(y)),
(b) rank(y) = sup{rank(x) + 1 |x ∈ y}.

Proof. Ad (i). If x ∈ Vα, then by definition of the rank, rank(x) < α. Conversely, if
rank(x) < α, then x ∈ Vβ for some β ≤ α, and so x ∈ Vα.

Ad (ii)(a). If x ∈ y ∈WF, then by transitivity of WF, x ∈WF. As y ⊆ Vrank(y) and
rank(y) is the least such, x ∈ y implies x ∈ Vrank(y), and so rank(x) < rank(y).

Ad (ii)(b). Denote ᾱ = sup{rank(x) + 1 |x ∈ y}. First we show that rank(y) ≤ ᾱ.
Clearly, y ⊆ Vᾱ, because rank(x) < ᾱ for each x ∈ y and so x ∈ Vᾱ by (i) of the present
lemma. This implies that rank(y) ≤ ᾱ. Conversely we want to show that ᾱ ≤ rank(y).
For each x ∈ y, rank(x) < rank(y) and so rank(x) + 1 ≤ rank(y). It follows that rank(y)
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is the upper bound of the set {rank(x) + 1 |x ∈ y}, and so the supremum ᾱ is less or
equal to rank(y). �

We can thus view WF is as the universe constructed by recursion from simpler sets:
for instance it cannot happen that there is set x in WF such that x ∈ x because this
would imply rank(x) < rank(x).

We first state the following simple lemma:

Lemma 6.24 Let x be a set and x ⊆WF, then there is α ∈ ORD such that x ∈ Vα, and
hence x ∈WF.

Proof. Consider the following class:

(6.115) x̄ = {rank(y) | y ∈ x} ⊆ ORD.

By Schema of Replacement x̄ must be a set (because it is a range of a function assigning
ranks with domain restricted to x). Since the class ORD is a proper class, x̄ (being a
set) cannot be unbounded in ORD, so there must be some α ∈ ORD such that x̄ ⊆ α. It
follows that x ⊆ Vα and consequently x ∈ Vα+1. �

The following theorem claims that with the Axiom of Foundation, WF is the universe
of all sets V . We denote this fact by the expression WF = V , which is a shorthand for
the formula (∀x)(∃α ∈ ORD)x ∈ Vα.

Theorem 6.25 Let F denote the Axiom of Foundation and ZF−F the theory ZF without
F. Then

(6.116) ZF− F ` F↔ (V = WF).

Proof. (V = WF→ F). We need to show that every x which is non-empty has a minimal
element in the relation ∈. Let x be a non-empty set. Consider the following set of ordinals

(6.117) x̄ = {rank(y) | y ∈ x}.

Let α be the least element of x̄ and y some element of x such that rank(y) = α. We
argue that y is a ∈-minimal element of x: if z ∈ y, then rank(z) < rank(y) by Lemma
6.23 (ii)(a). This contradicts the fact that α is the least element of x̄.

(F → V = WF). Assume for contradiction that X = V −WF 6= ∅. If X is a set,
then we can argue straightforwardly: by F, there is some y ∈ X which is ∈-minimal, i.e.
y ⊆WF (no element z ∈ y can be in X, which implies that z must be in WF). However,
by Lemma 6.24, this means that y ∈WF, contradiction.

The general case (when X is a proper class) will follow from the following claim:

(6.118) F implies that every non-empty class has an ∈ -minimal element.

We make the following false start: let X be a non-empty class. Pick any x ∈ X: if x is not
minimal, consider the set x ∩X (which is non-empty if x is not minimal). x ∩X is a set
and hence must have a minimal element, say z. Is z minimal in X? Well, it does not have
to be: if z′ ∈ z ∈ x ∩X, then z′ 6∈ x ∩X, but z′ ∈ X is still possible. However if z′ ∈ x,
then it must hold z′ 6∈ X (otherwise z′ ∈ x ∩X, which contradicts the minimality of z).
This leads us to the idea to include x in a transitive set x∗ to ensure that z′ ∈ z ∈ x∗ ∩X
implies z′ ∈ x∗.

We define the transitive closure of a set.
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Definition 6.26 Let x be set, we define the transitive closure of x, trcl(x), by recursion

trcl0(x) = x,(6.119)

trcln+1(x) =
⋃

trcln(x),

trcl(x) =
⋃
n∈ω trcln(x).

Intuitively, trcl(x) = x ∪ (
⋃
x) ∪ (

⋃⋃
x) ∪ . . .. In particular x ⊆ trcl(x).

Exercise. Show that for every x, the set trcl(x) is transitive. Also show that if x is
transitive, then trcl(x) = x, and that x ⊆ y implies trcl(x) ⊆ trcl(y). Notice that this
implies that trcl(x) behaves as a closure operator: x ⊆ trcl(x), trcl(trcl(x)) = trcl(x) and
x ⊆ y → trcl(x) ⊆ trcl(y) for every x, y.

We now finish the proof of (6.118). Let x ∈ X be arbitrary. If x is not minimal, then
trcl(x) ∩X is a non-empty set. By F, there is a minimal element z ∈ trcl(x) ∩X. If z′

is arbitrary and z′ ∈ z ∈ trcl(x) ∩X, then z′ ∈ trcl(x) by transitivity of trcl(x), and so
z′ 6∈ X. It follows that z is minimal in X. �

Note that we can use the technique of Theorem 6.25 to argue that CON(ZF − F) ⇒
CON(ZF), i.e. that by adding Axiom of Foundation to our system, we will not add con-
tradiction.

Remark 6.27 All mathematics can be defined in WF: ω = N ⊆ Vω, and so ω ∈ Vω+1.
ω × ω ⊆ Vω, and because Q is a partition of ω × ω, Q ⊆ P(Vω) = Vω+1, and so
Q ∈ Vω+2. Real numbers R are identified with certain subsets of Q (Dedekind cuts), and
so R ⊆P(Q) ⊆ Vω+2, which makes R an element of Vω+3, etc. In fact, it is safe to regard
all “classical mathematics” to take place in Vω+ω.

7 More on cardinal numbers

We assume AC in this section. Recall the definitions of addition and multiplications for
cardinal numbers and the basic properties stated in Section 5 above. Here we provide
more details.

7.1 Basic cardinal arithmetics – addition and multiplication

We define another ordering on ORD2, which is called the maximum-lexicographical order-
ing, or the canonical well-ordering of ORD2, and denoted <ml.

We define <ml on ORD2 as follows:

(7.120) (α0, β0) <ml (α1, β1)↔ max(α0, β0) < max(α1, β1)∨
(max(α0, β0) = max(α1, β1) & (α0, β0) <l (α1, β1)),

where <l is defined in (4.88).
Unlike <l defined before, it has the advantage that for every (α, β) ∈ ORD2, the class

of predecessors {(γ, δ) | (γ, δ) <ml (α, β)} is a set, and so

(7.121) (ORD,∈) is isomorphic with (ORD2, <ml)

Exercises.
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1. Verify that <ml is a well-ordering, and that the class of all <ml-predecessors is a set
for any (α, β) ∈ ORD2.

2. *Prove (7.121). Hint: use Theorem 3.8 (formulate it for clases).

Lemma 7.1 The set ω × ω is countable, or equivalently:

ℵ0 · ℵ0 = ℵ0.

Proof. It is easy to see that (ω×ω,<ml) is a well-ordering such that each (n,m) in ω×ω
has finitely many predecessors. It is now easy to see that (ω × ω,<ml) and (ω,<) are
isomorphic, by application of Theorem 3.8. In particular there is a bijection between
ω × ω and ω. In other words ℵ0 · ℵ0 = ℵ0. �

Let us denote by Γ the isomorphism from ORD2 onto ORD, guaranteed by (7.121).
In particular,

(7.122) Γ(α, β) = the order type of the set {(γ, δ) | (γ, δ) <ml (α, β)}

We use the Γ function to prove Theorem 7.2. The proof proceeds by induction, and
as the basic step uses the result proved above that ℵ0 · ℵ0 = ℵ0.

To simplify notation, let us denote for every ordinal α ∈ ORD,

(7.123) γ(α) = Γ(0, α).

Note that for every (δ0, δ1),

(7.124) (δ0, δ1) <ml (0, α) iff δ0 < α and δ1 < α.

It follows that γ(α) is the order-type of the set α× α in the ordering <ml.

Theorem 7.2 For every α ∈ ORD,

(7.125) ℵα · ℵα = ℵα.

Proof. We will show by induction that

(7.126) γ(ℵα) = ℵα

for every α. Since Γ is a 1-1 function, (7.126) together with (7.124) imply that there is a
bijection between ℵα × ℵα and ℵα.

First note that γ is a normal function. It follows γ(ℵα) ≥ ℵα by Lemma 6.15.
We will argue that it leads to contradiction if we assume that there is some α such

that

(7.127) γ(ℵα) > ℵα.

Let α be the least ordinal where (7.127) occurs. α cannot be 0 because by Lemma 7.1,
γ(ℵ0) = ℵ0.

So α > 0 and by the induction assumption for all β < α, γ(ℵβ) = ℵβ. The assumption
(7.127) implies that there are some δ0, δ1 < ℵα such that Γ(δ0, δ1) = ℵα. Define δ =



7 More on cardinal numbers 57

max(δ0, δ1) + 1. Since ℵα is a limit ordinal by Lemma 5.3(ii), we get δ < ℵα, and
so in particular |δ| < ℵα. Also, (δ0, δ1) ∈ δ × δ. Since (δ0, δ1) ≤ml (δ, δ), we obtain
ℵα = Γ(δ0, δ1) ≤ γ(δ), which implies |δ × δ| = |δ| · |δ| ≥ ℵα.

However, by the induction assumption we also have that |δ| = |δ| · |δ| < ℵα, which is
a contradiction. �

Corollary 7.3 For every α, β ∈ ORD,

(7.128) ℵα + ℵβ = ℵα · ℵβ = max(ℵα,ℵβ).

Proof. Consider the following inequalities:

(7.129) max(ℵα,ℵβ) ≤ ℵα + ℵβ ≤ ℵα · ℵβ ≤
(max(ℵα,ℵβ) ·max(ℵα,ℵβ)) = max(ℵα,ℵβ).

�

7.2 Regular and singular cardinals

Definition 7.4 Let (X,≤) be a partially ordered set. Then Y ⊆ X is called cofinal if

(∀x ∈ X)(∃y ∈ Y ) x ≤ y.

Examples. If (X,≤) has the greatest element x, then {x} is the least cofinal subset
of X. In general, if A ⊆ X is the set of all maximal elements of (X,≤), then A is the
least cofinal subset of X (Exercise: Show that any cofinal subset of X must contain A).
If (X,≤) does not have the greatest element, or the maximal elements, the notion of
cofinality of (X,≤) tends to be quite complicated.

We apply the notion of cofinal subset to ordinals (α,<). If α is a successor ordinal,
i.e. α = β + 1 for some β, {β} is cofinal in α because β is the greatest element in α. To
avoid such trivial cases, we will focus on limit ordinals α.

Definition 7.5 We say that an ordinal β is the cofinality of α, and write this as cf(α) =
β, if β is the least ordinal γ such that there is a cofinal subset of α of order type γ.

Clearly, for each limit α:

(7.130) ω ≤ cf(α) ≤ α.

Also: for every X ⊆ α:

X is cofinal in α↔ supX =
⋃
X = α.

Example. cf(ω + ω) = cf(ωω) = cf(ℵω) = ω.
Example. Let α be a countable ordinal, then cf(α) = ω. Why? Let f : ω → α be a

bijection. Define g(0) = 0, and g(n + 1) = max{g(n), f(n)} + 1. Then by induction g is
increasing, and

sup{f(n) |n < ω} = sup{g(n) |n < ω} = α,

and so {g(n) |n < ω} is cofinal of order type ω.
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Definition 7.6 Let α ≤ β be two limit ordinals. We say that f : α → β is cofinal if its
range is cofinal in β.

Note that if the cofinality of α is γ, then we can find an increasing cofinal function
f : γ → α (simply enumerate in the increasing order the elements of a cofinal subset
X ⊆ α of order type γ). Conversely, if f : γ → α is increasing and cofinal, then cf(α) ≤ γ
(because the range of f is a cofinal subset of α of order type γ).

Here are some basic properties of the notion of cofinality.

Lemma 7.7 Let α be limit, then
(i) cf(cf(α)) = cf(α),

(ii) cf(α) is an infinite cardinal.

Proof. Ad (i). Denote β = cf(α), γ = cf(β). By (7.130), γ ≤ β. To verify β ≤ γ, argue
as follows. By our assumption, there exist f : β → α increasing cofinal and g : γ → β
increasing cofinal. Then g ◦ f : γ → α is increasing cofinal (let α′ < α, then there is
β′ < β such that f(β′) ≥ α′, and γ′ < γ such that g(γ′) ≥ β′. So f(g(γ′)) ≥ f(β′) ≥ α.)
Thus β ≤ γ as required.

Ad (ii). Suppose for contradiction there is a bijection f : κ→ cf(α) for some κ < cf(α).
Using f , define g : κ→ cf(α) by g(ξ) = supf [ξ]. Then g is non-decreasing, and therefore
we have that the order-type of rng(g) is at most κ and rng(g) is cofinal in cf(α). Let
h : cf(α) → α be increasing cofinal, then h[rng(g)] is a cofinal subset of α of order type
≤ κ, contradiction. �

The notion of cofinality is used to divide all cardinals into two disjoint groups:

Definition 7.8 We say that a cardinal κ is regular if cf(κ) = κ. If cf(κ) < κ, we say
that κ is singular.

Example. For every α, cf(ℵα) is a regular cardinal. This follows from the Lemma 7.7
(i), (ii).

Example. For every α, ℵα+ω is singular because its cofinality is ω and ω < ℵα+ω.
Example. What is the cofinality of ℵ1, or in particular of ℵα+1? We will now show

that all these cardinals are regular.
We will first prove a theorem which is useful in its own right.

Theorem 7.9 Let α ≥ 0. Any union of ≤ ℵα sets each of size ≤ ℵα has size ≤ ℵα.

Proof. We know that |ℵα × ℵα| = ℵα. See Theorem 7.2.
Let {Xβ |β < ℵα} be sets such that |Xβ| ≤ ℵα for each β < ℵα. We will argue that

|
⋃
{Xβ |β < ℵα}| ≤ |

⋃
{{β} ×Xβ |β < ℵα}| ≤ |ℵα × ℵα| = ℵα.

All inequalities above are obvious except perhaps |
⋃
{{β} × Xβ |β < ℵα}| ≤ |ℵα × ℵα|.

By AC, we can choose 1-1 functions fβ : Xβ → ℵα for each β < ℵα (these functions exists
by the assumption that each Xβ has size at most ℵα). Define g as follows

g(〈β, x〉) = 〈β, fβ(x)〉.

It is easy to verify that g is 1-1, which finishes the proof. �
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Corollary 7.10 ℵα+1 is regular for every α.

Proof. Assume that 〈ξi | i < η〉 is a sequence of ordinals in ℵα+1 and η < ℵα+1. We
will show that the sequence cannot be cofinal in ℵα+1. Since the sequence is arbitrary, it
follows that ℵα+1 is regular.

We can view {ξi | i < η} as a collection of at most ℵα sets each of size at most ℵα, and
so by Theorem 7.9, the union (supremum)

⋃
{ξi | i < η} must have size at most ℵα, and

so is strictly smaller than ℵα+1. �

We have shown above that every ℵα+1 is regular, and there are many singular cardinals
as well (for instance ℵα+ω for every α). Is true that every ℵγ is singular if γ is limit?

Perhaps surprisingly, this question has probably no answer in ZFC. See the next
Section 7.3.

7.3 Weakly inaccessible cardinals

Assume γ is a limit ordinal. Then one can easily show that

(7.131) cf(ℵγ) = cf(γ).

Does it imply that cf(ℵγ) < ℵγ , namely that ℵγ is singular? Not really: all we can
conclude is that if ℵγ is regular, then ℵγ = γ. From Lemma 6.16 we know that there are
many γ’s such that

(7.132) ℵγ = γ.

The question is is there a regular γ which satisfies (7.132)?

Definition 7.11 κ is called weakly inaccessible if it is uncountable and simultaneously a
limit and regular cardinal.

The following lemma shows that weakly inaccessible cardinals are exactly the regular
fixed points of the function ℵ.

Lemma 7.12 For every γ > 0: ℵγ is weakly inaccessible iff (ℵγ = γ and γ is a regular
limit cardinal).

Proof. From left to right: if ℵγ is weakly inaccessible and in particular a limit cardinal,
then γ must be a limit ordinal. By regularity of ℵγ , ℵγ = cf(ℵγ) = cf(γ) = γ.

The converse direction is obvious from the definitions. �

Why should we consider such cardinals? There are many reasons, ranging from the-
oretical to practical, but one of the most important is that we do have one example if
we allow ω: ω is simultaneously a limit and regular cardinal. The motivation behind
the definition of a weakly inaccessible cardinal is that the universe of sets should be rich
enough to allow another cardinals such as ω; a weakly inaccessible cardinal κ > ω can
thus be viewed as another, “higher” infinity.
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Fact 7.13 It is consistent relative to ZFC that there are no weakly inaccessible cardi-
nals. However, no one has shown that ZFC + “there is a weakly inaccessible cardinal” is
inconsistent. In practice weakly inaccessible cardinals are widely used.

One can define also a strongly inaccessible cardinal: κ is strongly inaccessible if for
every cardinal λ < κ, 2λ < κ (so in particular κ is a limit cardinal), and κ is regular. The
property of being strongly inaccessibile is generally stronger than weakly inaccessible, but
they are consistently the same (under GCH, the two notions define the same cardinals).

Remark 7.14 If GCH holds and κ is weakly inaccessible, then Vκ is the model of the
formal version of ZFC. Thus ZFC + GCH + “there exists a weakly inaccessible cardinal”
proves the consistency of (the formal version of) ZFC. Compare with the fact that ZFC
proves the consistency of (the formal version of) PA.

7.4 Cardinal exponentiation

If X is a set, we denote by X<ω the set of all finite sequences in X:

X<ω =
⋃
{Xn |n < ω}.

If |X| = ℵα, then we write
(ℵα)<ω = |X<ω|.

Lemma 7.15 The following holds for every α:

(ℵα)<ω = ℵα.

Proof. Let |X| = ℵα. By induction on n < ω, it holds by Theorem 7.2 that |Xn| = ℵα.
By the argument in the proof of Corollary 7.10, the union of at most ℵα many sets each
of size at most ℵα is at most ℵα, and so:

ℵα ≤ |X<ω| = |
⋃
{Xn |n < ω}| = (ℵα)<ω ≤ ℵα,

and so ℵα = (ℵα)<ω as desired. �

Example. Let L be a first-order language with ℵα symbols. Then the number of all
formulas in the language L is at most (ℵα)<ω. Since (ℵα)<ω = ℵα by the above argument,
it follows that the number of all L-formulas is exactly ℵα. Note that in the most common
case where L has ℵ0 symbols (variables v0, v1, . . ., and finite number of functional and
relational symbols), this says that there are countably many formulas in the language L.

For the general values of the exponent, we limit ourselves to the following simple
properties:

Lemma 7.16 For every κ ≥ ω, 2κ = κκ.

Proof.

(7.133) 2κ ≤ κκ ≤ (2κ)κ = 2κ·κ = 2κ.

�

Or more generally:
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Lemma 7.17 If 2 ≤ κ ≤ λ and λ is infinite, then κλ = 2λ.

Proof.

(7.134) 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ.

�

By definition, κλ is the set of all λ-sequences of elements in κ. If λ ≤ κ, and we
consider not λ-sequences, but subsets of κ of size λ, nothing will change with regard to
size:

Let A be a set and |A| ≥ λ, the we write

(7.135) [A]λ = {X ⊆ A | |X| = λ}.

Lemma 7.18 If |A| = κ ≥ λ ≥ ω, then the set [A]λ has cardinality κλ.

Proof. Clearly |[A]λ| ≤ |A|λ because if X ⊆ A has size λ, there is a bijection h : λ→ X,
and so X can identified with a function f : λ→ A.

Conversely, let f : λ→ A be given. Then f ⊆ (λ×A) and |f | = λ. It follows that f is
in [(λ×A)]λ, which has the same size as [A]λ because |A× λ| = max(|A|, λ) = |A|, thus

(7.136) |A|λ ≤ |[A× λ]λ| ≤ |[A]λ|.

�

For more information about κλ in general, see Section 7.8.

7.5 Infinite sums and products

Let λ be an infinite cardinal and let 〈Xi | i < λ〉 be a sequence of pairwise disjoint non-
empty sets such that |Xi| = κi for each i < λ. We define∑

i<λ κi = |
⋃
{Xi | i < λ}|.

Lemma 7.19 Let λ be an infinite cardinal and κi > 0 for each i < λ:

(7.137)
∑

i<λκi = λ · sup({κi | i < λ}).

Proof. Denote κ̄ = sup({κi | i < λ}.
To prove the lemma, we will show that

(i)
∑

i<λ κi ≤ λ · κ̄, and
(ii)

∑
i<λ κi ≥ λ · κ̄.

By definition
∑

i<λ κi = |
⋃
{{i} × κi | i < λ}|.

Ad (i). We will define a 1-1 function g from
⋃
{{i} × κi | i < λ} to λ × κ̄. Set

f(〈i, ξ〉) = 〈i, ξ〉.
Ad (ii). It suffices to show separately λ ≤

∑
i<λ κi and κ̄ ≤

∑
i<λ κi because by λ ≥ ω,

λ · κ̄ = max(λ, κ̄). For the first inequality, define g1 so that g1(i) = 〈i, 0〉 for every i < λ.
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For the second inequality, define g2 so that g2(ξ) = 〈i, ξ〉, where i is the least j such that
ξ ∈ κj . �

We can also define infinite products. Recall that if {Xi | i ∈ I} is a family of non-empty
sets, we define the product

∏
i∈I Xi as follows:

(7.138)
∏
i∈I Xi = {f | f a function : I →

⋃
i∈I Xi such that (∀i ∈ I)f(i) ∈ Xi}.

If {κi | i ∈ I} is a family of cardinal numbers, we define the infinite product:

(7.139)
∏
i∈I κi = |

∏
i∈I Xi|,

where {Xi | i ∈ I} is a family of sets such that |Xi| = κi for each i ∈ I (by AC, the
definition of the product does not depend on the particular Xi’s).

Lemma 7.20 Let λ be an infinite cardinal and 〈κi | i < λ〉 a non-decreasing sequence of
cardinals such that for each i, κi > 0. Then:

(7.140)
∏
i<λ κi = (sup({κi | i < λ}))λ.

Proof. Denote κ̄ = sup({κi | i < λ}). We need to show
(i)
∏
i<λ κi ≤ κ̄λ, and

(ii)
∏
i<λ κi ≥ κ̄λ

(i) is obvious since κ̄ ≥ κi for every i < λ.
For (ii), we first prove the following general property of products: let Xi for i ∈ I be

a system of non-empty sets (I 6= ∅), and {Ij | j ∈ J} be some partition of I. Then

(7.141)
∏
i∈I Xi ≈

∏
j∈J(

∏
i∈Ij Xi).

Define g with domain
∏
i∈I Xi as follows. Given f ∈

∏
i∈I Xi, set g(f) to be a function

F with domain J such that for each j ∈ J , F (j) is a function h with domain Ij defined
by h = f �Ij . It is easy to verify that g is a bijection from

∏
i∈I Xi onto

∏
j∈J(

∏
i∈Ij Xi),

thus proving (7.141).
Let us now return to the proof of (ii). Since λ ≥ ω, there is a bijection e : λ× λ→ λ.

Define a partition P of λ as follows:

(7.142) P = {e′′({j} × λ) | j < λ}; let us write P = {Ej | j < λ}.

P is a partition of λ into λ-many pieces, each of size λ. As we assume that the sequence
of κi’s is non-decreasing, and for each j < λ, Ej unbounded in λ (otherwise we would
have a bijection between λ and its bounded segment), we have that

(7.143) for each j < λ, κ̄ = sup({κi | i ∈ Ej}).

Because each κi > 0, this implies that for each j < λ,

(7.144)
∏
i∈Ej κi ≥ κ̄.

When we put all these pieces together, we obtain:

(7.145) κ̄λ ≤
∏
j<λ κ̄ ≤

∏
j<λ(

∏
i∈Ej κi) =

∏
i<λ κi.

�
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7.6 König’s theorem

Infinite sums and infinite products which we reviewed in Section 7.5 are connected by the
following important theorem:

Theorem 7.21 (König) If 0 < κi < λi for every i ∈ I where I is non-empty, then

(7.146)
∑

i∈I κi <
∏
i∈I λi.

Proof. Fix a 1-1 function ei : κi → λi\{0} for each i ∈ I. This is possible because λi > κi.
We first show

∑
i∈I κi ≤

∏
i∈I λi. By definition,

∑
i∈I κi = |

⋃
{{i} × κi | i ∈ I}|. We

will therefore find 1-1 function g from
⋃
{{i} × κi | i ∈ I} to

∏
i∈I λi. Let 〈i0, ξ0〉 be an

arbitrary element of
⋃
{{i} × κi | i ∈ I}. Define g(〈i0, ξ0〉) to be a function f ∈

∏
i∈I λi

such that f(i0) = ei0(ξ0), and f(j) = 0 for j 6= i0. Define g this way for every element of⋃
{{i} × κi | i ∈ I}. g is correctly defined and is 1-1.

In order to show the strict inequality <, we will assume for contradiction that there
is a bijection h from

⋃
{{i} × κi | i ∈ I} to

∏
i∈I λi. By diagonalization, we will find

F ∈
∏
i∈I λi not in the range h, thus showing that h is not a bijection after all. For a

fixed i ∈ I, let us denote

(7.147) H(i) = {ζ ∈ λi | ∃ξ ∈ κi(h(〈i, ξ〉)(i) = ζ)}.

Notice that for every i, H(i) is a proper subset of λi because κi < λi, and |H(i)| ≤ κi.
Let us define F as follows:

(7.148) F (i) = min(λi \H(i)),

for every i ∈ I. F is an element of
∏
i∈I λi and therefore by our assumption, there must

be some 〈i0, ξ0〉 such that h(〈i0, ξ0〉) = F . However, F (i0) is an element of H(i0), which
contradicts the definition of F in (7.148). �

Corollary 7.22 (i) 2κ > κ, so König’s theorem implies Cantor’s theorem.
(ii) cf(2κ) > κ.

(iii) κcf(κ) > κ.

Proof. Ad (i). Set I = κ, κi = 1, and λi = 2 for each i < κ. By König’s lemma,

(7.149) κ =
∑

i<κ 1 <
∏
i<κ 2 = 2κ.

Ad (ii). Assume 〈κi | i < µ〉 is cofinal in 2κ, where µ is an infinite cardinal. Then

(7.150) 2κ =
∑

i<µ κi <
∏
i<µ 2κ = (2κ)µ.

If µ ≤ κ, then
(2κ)µ = |(κ×µ)2| = 2κ,

which contradicts the strict < in (7.150) above. Hence µ > κ, and so cf(2κ) > κ.
Ad (iii). Let 〈κi | i < cf(κ)〉 be some cofinal subset of κ. Then

(7.151) κ =
∑

i<cf(κ) κi <
∏
i<cf(κ) κ = κcf(κ).

�

Corollary 7.22(iii) for instance implies that whatever the size of the real numbers is,
one cannot find a countable cofinal sequence in 2ω = |R| because cf(2ω) > ω. See Section
7.7 for more information about the size of real numbers.
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7.7 Continuum function

The function which to every cardinal ℵα assigns the cardinal 2ℵα is called the continuum
function. The behaviour of this function was and is one of the central themes of set theory.
We know from Cantor’s theorem one thing:

(7.152) For every α,ℵα < 2ℵα .

Can we say more?
In 1900 David Hilbert, a distinguished German mathematician, listed the problem

“what is the cardinal 2ℵ0” as the first problem for the next century. The originator of set
theory, another German mathematician Georg Cantor, conjectured that 2ℵ0 is the least
cardinal greater than ℵ0:

(7.153) Continuum hypothesis, CH: 2ℵ0 = ℵ1.

This can be generalised to:

(7.154) Generalised continuum hypothesis, GCH: (∀α)2ℵα = ℵα+1.

Using König’s theorem (7.21), one can show that the cofinality of 2ℵα must be greater
than ℵα. It follows we can show the following three properties of the continuum function:

Theorem 7.23 Continuum function satisfies for very α, β ∈ ORD:
(i) α < β → 2ℵα ≤ 2ℵβ ;

(ii) (Cantor’s theorem) ℵα < 2ℵα;
(iii) (consequence of König’s theorem) ℵα < cf(2ℵα).

Note for every β, cf(ℵβ) ≤ ℵβ, and in particular cf(2ℵα) ≤ 2ℵα , and so (iii) implies (ii)
above. So in fact, only two properties of the continuum function are captured in Theorem
(7.23): (i) and (iii).

For more than 30 years mathematicians tried to prove more about the continuum
function than included in Theorem 7.23, but they failed. Only in early 30’s, Kurt Gödel
managed to prove that if ZF is consistent, so is ZF + AC + GCH.16 However, this just
showed that it is possible that GCH holds.

In early 60’s, Paul Cohen managed to show17 that if ZF is consistent so is ZF + AC
+ ¬CH, and ZF + ¬AC. This showed that the axioms of ZF and ZFC are too weak to
decide the validity of CH and GCH.

In early 70’s, William Easton finally managed to show that the properties identified
in Theorem 7.23 are the only properties one can show about the continuum function in
ZFC for regular cardinals18. For instance the following is consistent with ZFC:

(i) 2ℵ0 = ℵ2;
(ii) 2ℵ1 = ℵ2;

(iii) 2ℵ2 = ℵ117;

16In fact ZF proves that GCH implies AC.
17He developed the technique of forcing to prove this theorem, which since then has become the major

set-theoretic tool for mathematicians if they want to derive consistency results.
18Situation for singular cardinals is more complex. For instance a celebrated result of Shelah is that

the following holds in ZFC: if 2ℵn < ℵω for every n < ω, then 2ℵω < ℵω4 .
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(iv) 2ℵ3 = ℵℵω+1 , etc.
It follows that if we want to know more about the continuum function, new and more

powerful axioms must be added to ZFC. This is a long process, and there is no undivided
opinion about which axioms should be added. However, at least the following agreement
seems to be settled among mathematicians: if anything, GCH seems to be false in our
intuition (because it presents too neat a picture which does contradict some otherwise
intuitively acceptable axioms).

7.7.1 Fixed finite and infinite gaps

Easton’s result which we referred to in the previous section says that the continuum
function on regular cardinals can be very arbitrary. The value 2κ for a singular cardinal
κ cannot be manipulated so easily, but some results can be shown: For instance is is
consistent that for any fixed 0 < n < ω, 19

2ℵα = ℵα+n,

for all α.
However, ZFC does prohibit a fixed infinite gap: i.e. there is no β ≥ ω such that for

all α, 2ℵα = ℵα+β. We show this results and use this opportunity to introduce some more
cardinal arithmetics in Lemmas 7.24 and 7.25.

Lemma 7.24 Suppose κ is a limit cardinal, then

(2<κ)cf(κ) = 2κ.

Proof. It suffices to find an injective function from (2<κ)cf(κ) to 2κ and conversely. 2κ ≤
(2<κ)cf(κ) is shown by arguing that every subset of κ can be uniquely coded as a sequence
of its initial segments indexed by a fixed cofinal sequence in κ of order-type cf(κ). The
converse follows easily: (2<κ)cf(κ) ≤ (2κ)κ = 2κ. �

Lemma 7.25 Suppose κ is a singular cardinal and the continuum function is eventually
constant below κ, i.e. there is µ < κ such that for all µ ≤ µ′ < κ, 2µ = 2µ

′
= λ for some

λ. Then 2κ = λ.

Proof. We have: 2κ = (2<κ)cf(κ) = (2µ)cf(κ) = 2µ, if we take µ large enough (i.e. greater
than cf(κ)). �

Theorem 7.26 There is no β ≥ ω such that for all α,

2ℵα = ℵα+β.

Proof. Suppose for contradiction that some such β exists. Let α be least such that

α+ β > β.

19The consistency of this statement depends on the consistency of fairly big large cardinals.
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Notice that α is a limit ordinal less or equal to β: Since β is infinite, it can be written as
β∗+n for some n < ω and limit β∗; if α = α∗+ 1, then by associativity α∗+ 1 +β∗+n =
α∗ + β∗ + n = α∗ + β contradicting the minimality of α.

Consider the cardinal κ = ℵα+α; clearly, its cofinality is equal to cf(α) and hence κ is
a singular cardinal. By Lemma 7.24 and 7.25,

2κ = ℵα+β

since the continuum function is eventually constant below κ with value ℵα+β: for all
ξ < α, ξ + β = β, and therefore 2ℵα+ξ = ℵα+ξ+β = ℵα+β. However, we also have that

2κ = ℵα+α+β.

This is a contradiction since ℵα+α+β is strictly bigger than ℵα+β because α+(α+β) > α+β
as α+ β > β by our assumption. �

7.8 Cardinal exponentiation under GCH

We show that under GCH, we have a complete answer to the question what is κλ for
λ ≥ ω.

First notice the following simple consequence of GCH. For κ, λ as above let µ =
max(κ, λ). Then

(7.155) κλ ≤ µµ = 2µ = µ+.

Theorem 7.27 Assume GCH and λ ≥ ω, κ > 0.
(i) If κ ≤ λ, then κλ = λ+.

(ii) If λ < κ and cf(κ) ≤ λ, then κλ = κ+.
(iii) If λ < κ and λ < cf(κ), then κλ = κ.

Proof. Ad (i). By Lemma 7.17, κλ = 2λ, which under GCH is equal to λ+.
Ad (ii). We know by (7.155) that κλ ≤ κ+. By a corollary to König’s lemma, we also

know κ < κcf(κ). Together we have:

(7.156) κ < κcf(κ) ≤ κλ ≤ κ+,

which implies κλ = κ+.
Ad (iii). Any function in λκ has its range bounded in κ because cf(κ) > λ. It follows

(7.157) λκ =
⋃
γ<κ

λγ, and so

(7.158) κλ =
∑
γ<κ

|γ|λ.

Since max(|γ|, λ) < κ for every γ < κ, we have by (7.155), that |γ|λ ≤ κ. So κλ = κ by
(7.158). �
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8 Infinite combinatorics

We close the lecture by introducing two notions which are very useful in many fields: trees
and closed unbounded sets.

8.1 Trees

8.1.1 Basic definitions

Definition 8.1 We say that (T,<) is a tree if (T,<) is a partial order such that for each
t ∈ T , the set {s ∈ T | s < t} is well-ordered by <. Let

ht(t, T ) = ot({s ∈ T | s < t}),

where “ot” denotes the order-type of a given well-ordered set. We define Tα = {t ∈
T | ht(t, T ) = α}. We set height(T ) to be the least α such that Tα = ∅. We further set
T �α =

⋃
β<α Tβ (which makes T �α a subtree of T of height α).

Note that we do not require that a tree has a single node of height 0 (root).20

Examples. Recall that 2<ω denotes the set of all finite sequences of 0’s and 1’s. We
say that T ⊆ 2<ω is closed under initial segments if s ∈ T and t ⊆ s implies t ∈ T . For
every T ⊆ 2<ω closed under initial segments, (T,⊆) is a tree: ∅ is the root of the tree and
for every n < height(T ), Tn is equal to the set of all sequences s ∈ T of length n. Note
that T is infinite if and only if T has height ω. In general, if α is an infinite ordinal, then
T ⊆ 2<α closed under initial segments is a tree with the ordering ⊆.

Definition 8.2 For a regular cardinal κ ≥ ω, T is called a κ-tree if T has height κ, and
|Tα| < κ for each α < κ.

Note that a tree (T,⊆) with T ⊆ 2<ω, T infinite, is an ω-tree.
If T is a tree and B ⊆ T , we say that B is a branch if it is a maximal (under inclusion)

chain in T . The following is a basic observation concerning ω-trees, due to König.

Theorem 8.3 (König) Every ω-tree T has an infinite branch.

Proof. We construct a branch B by induction on levels. Since T is an ω-tree, |T0| < ω.
It follows there is some t0 ∈ T0 such that S(t0) = {s ∈ T | t0 < s} is infinite (this is true
because T0 is finite, T is infinite, and every element in T is above an element of T0). The
set S(t0) ∩ T1 is finite – pick t1 ∈ S(t0) ∩ T1 such that S(t1) = {s ∈ T | t1 < s} is infinite.
Proceed in the same fashion and pick tn for each n < ω. Then B = {tn |n < ω} is a
branch in T . �

Examples. Note that there are trees of height ω which have no infinite branches: for
instance consider a tree T = {{i} × i | i < ω} where the ordering < on T is as follows:
(m,n) < (k, l) if and only if m = k and n < l. T has height ω but every branch is finite;
this does not contradict König’s theorem because T is not an ω-tree: already the level 0
has ω-many nodes.

20Very often, more “well-behaved” trees are considered: such as with a root or with the property that
above every node there is a node which splits (t ∈ T splits if there are s 6= s′, s and s′ immediate successors
of t in T ); since we are stating just the simple facts, we will not go into details here.
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8.1.2 Aronszajn trees

Definition 8.4 Let κ be a regular cardinal. We say that a κ-tree (T,<) is an Aronszajn
tree if it has no branch of size κ.

Remark 8.5 An Aronszajn κ-tree T is a typical example of an “incompact object”: by
definition, for each α < κ, there is a branch Bα of height α in T – if T were to be “compact”
(in the analogous sense as first-order logic is compact), then from the assumption that for
each α < κ, there exists a branch of height α, we should be able to conclude that there is
a branch of height κ.

By König’s theorem, there is no Aronszajn tree on ω. Is there an Aronszajn tree on
ω1? Yes, there is, as we will show in Theorem 8.8. Before the theorem, we will state some
more properties of trees which are useful.

Very often, a κ-tree T is isomorphic to a subtree of the full κ-ary tree (κ<κ,⊆). More
precisely, whenever T is normal (indeed, normal here means representable as a subtree of
(κ<κ,⊆)). See Definition 8.6.

Definition 8.6 A normal κ-tree is a tree T with the following properties:
(i) height(T ) = κ;

(ii) |T0| = 1;
(iii) |Tα| < κ, for every α < κ;
(iv) each node has ρ-many successors (exact number varies; ρ < κ);
(v) each x ∈ T has some y > x at each higher level of T ;

(vi) if β < κ is a limit ordinal, and ht(x, T ) = ht(y, T ) = β and x, y have the same
predecessors, then x = y.

Lemma 8.7 Every normal tree T is isomorphic to a subtree T̄ of the full κ-ary tree
(<κκ,⊆), where T̄β consists of sequences with domain β. In fact, only the items (i),(ii),(iii),(vi)
of normality are required.

Proof. We define by induction isomorphisms iα : T �α→ T̄ �α and i =
⋃
iα : T → T̄ . Set

T̄0 = {∅}; by (ii), i1(r) = ∅ is an isomorphism between T0 and T̄0, where r is the unique
root of T . Suppose we have constructed iβ : T �β → T̄ �β for each β < α and we wish to
construct iα.

Assume first that α is limit. Set iα =
⋃
β<α iβ.

Suppose α is a successor of a limit cardinal: α = α′+ 1 where α′ is limit. Then define
iα by extending iα′ setting for each x ∈ Tα

iα(x) = {〈β, iα′(y)〉 |β < α′ & y < x & ht(y, T ) = β}.

By (vi), iα is 1-1. It is obviously also an isomorphism.
Assume now that α is a successor of a successor ordinal β. Since |Tβ| < κ by (iii), one

can naturally extend iβ to iα by including the level Tβ using some 1-1 function from Tβ
into κ.

Set T̄ =
⋃
{rng(iα) |α < κ}. �
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Theorem 8.8 There is an Aronszajn tree T ∗. We construct T ∗ as a subtree of T = {s ∈
<ω1ω | s is 1-1} with ⊆ as the ordering. In particular, our tree will be normal according
to Definition 8.6.

Proof. Consider the subtree T = {s ∈ <ω1ω | s is 1-1} of the tree <ω1ω. T cannot have
an ω1-branch, because it would yield a 1-1 function from ω1 to ω. However, T is not the
required tree because it has uncountable levels, and so is not an ω1-tree.

Let us define for s and t in <ω1ω the following equivalence relation

s ≈ t↔ dom(s) = dom(t) & {β ∈ dom(s) | s(β) 6= t(β)} is finite.

We call a sequence 〈sα |α < ω1 & dom(sα) = α〉 a semi-branch whenever
(i) sα �β ≈ sβ, for every β ≤ α.

(ii) ω \ rng(sα) is infinite for each α < ω1.
A semi-branch satisfying (i) and (ii) makes it easy to define an Aronszajn tree:

T ∗ = {s ∈ T | ∃α s ≈ sα}.

It is immediate to verify that T ∗ is an Aronszajn tree, and a subtree of T .
To finish the prove of the theorem, it suffices to construct a semi-branch 〈sα |α < ω1〉

satisfying (i) and (ii) above. The construction is by induction on α < ω1. For α + 1,
define sα+1 = sα∪{〈α, n〉}, where n is any natural number in ω \ rng(sα) (this is possible
by (ii)).

At a limit stage γ, first fix an increasing sequence 〈αn |n < ω〉 with limit γ. Define
t ∈ Tγ as the union t =

⋃
n tn, where each tn is in Tαn and tn ≈ sαn (which implies

tn � β ≈ sβ for each β ≤ αn). The sequence 〈tn |n < ω〉 is defined by induction. First
set t0 = sα0 . To construct tn+1 when we have already constructed tn, consider first t∗n+1

defined as tn ∪ (sαn+1 \ sαn). The domain of t∗n+1 is equal to αn+1 and by the induction
assumption on tn and the properties of 〈sα |α < γ〉,

(8.159) t∗n+1 ≈ sαn+1 .

However, while sαn+1 is 1-1, t∗n+1 may not be 1-1 because of the finite disagreement (8.159).
Define tn+1 by making finitely many changes to t∗n+1 to ensure:

(i) tn+1 ≈ t∗n+1.
(ii) tn+1 is 1-1.

This can be done because ω \ rng(sαn+1) is infinite, and so there is plenty of room to make
tn+1 1-1. It follows tn+1 ∈ Tαn+1 .

Finally, the range of t may have used up all of ω, so we define sγ by setting sγ(αn) =
t(α2n), thus leaving t(α2n+1)’s outside the range of sγ . Note that still sγ � β ≈ sβ for
every β < γ, because αn’s are bounded below each β < γ, and so sγ �β ≈ tn �β ≈ sβ, for
any n such that β < αn. �

What about Aronszajn trees at ω2 or ω3? Here things get more complicated: it is
consistent that there are Aronszajn trees at ω2 and ω3 (for instance GCH implies this), but
under some large-cardinal assumptions, it is also consistent that there are no Aronszajn
trees at ω2 and ω3.
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8.1.3 Souslin trees

The notion of an Aronszajn tree can be strengthened as follows:

Definition 8.9 An Aronszajn tree T is called a Souslin tree if all antichains in T are at
most countable.

Note that the tree we have constructed in Theorem 8.8 is not Souslin:

Lemma 8.10 Suppose that T is an Aronszajn tree and a subtree of the tree {s ∈ <ω1ω | s is 1-1}.
Then T is not Souslin.

Proof. Notice that for each n ∈ ω, An = {s ∈ T | ∃α dom(s) = α + 1 & s(α) = n} is
an antichain. To see this, let s 6= t be in An, and assume for contradiction that s ( t.
Then s(α) = n and t(α) = t(α′) = n, where dom(s) = α + 1 and dom(t) = α′ + 1.
This contradicts that t is 1-1. Now, many An’s can be just countable, but by the pigeon
hole principle, there must be some n such that An is uncountable (the set A = {s ∈
T | ∃α dom(s) = α+ 1} is uncountable and A =

⋃
nAn). �

An ω1-Souslin tree exists under some additional set-theoretical assumptions (such as
V = L or ♦).

8.2 Filter of closed unbounded sets

8.2.1 Closed and unbounded sets

Let κ be a regular uncountable cardinal.
To motivate the notional of closed unbounded set, consider the following example. Let

f : κ → κ be a function. Let us say that α < κ is a closure point of f if for all β < α,
f(β) < α. Let us denote CL(f) the set of closure points.

Claim 8.11 (i) The set CL(f) is unbounded in κ, that is for every α < κ there is
some β such that β ∈ CL(f) and α ≤ β.

(ii) The set CL(f) is closed in κ, that is if α < κ is a limit ordinal, and CL(f) ∩ α is
unbounded, then α ∈ CL(f).

Proof. Ad (i). The proof is a special case of the Skolem hull argument for the construction
of a substructure of κ which is closed under f and contains as a subset a given α ∈ κ (note
that by transitivity of κ, α ⊆ κ). Let α ∈ κ be given. By induction of length ω construct
β ⊇ α, β ∈ κ, which is closed under f . Set α = α0, and if n is already constructed,
αn+1 = max(αn, sup{f(γ) + 1 | γ ∈ αn}). Set β = sup{αn |n ∈ ω}; by regularity of κ,
β ∈ κ. It follows that β ≥ α is a closure point of f .

Ad (ii). Trivial. �

The two properties of CL(f) identified above lead to the concept of a closed unbounded
set. We say that X ⊆ κ is club if it is unbounded and closed in κ.

Lemma 8.12 If C and D are clubs in κ, then C ∩D is a club in κ
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Proof. We first show that C ∩D is closed. This is clear: if α is a limit ordinal and C ∩ α
and D ∩ α are both unbounded in α, then by closedness of C,D, α ∈ C ∩D.

The key of the proof is to show the unboundedness. Let γ < κ be given, we wish to
find some δ ≥ γ such that δ ∈ C ∩D. Let us construct by recursion a sequence 〈ci | i < ω〉
of elements of C and 〈di | i < ω〉 of elements of D as follows. Choose c0 ∈ C and d0 ∈ D
so that γ < c0 < d0. In general, in the step n+ 1, choose cn+1 ∈ C and dn+1 ∈ D so that
. . . cn < dn < cn+1 < dn+1. Let us denote δ1 = sup{ci | i < ω} and δ2 = sup{di | i < ω}.
First note that δ1 = δ2; let us denote this ordinal δ. Note that δ is a limit ordinal of
countable cofinality. By closedness of C and D, δ ∈ C ∩D. �

Lemma 8.13 If {Ci | i < µ} is a set of clubs in κ for some µ < κ, then
⋂
i<µCi is a club

in κ.

Proof. This is a simple generalisation of Lemma 8.12, using the regularity of κ. Here
are some details for the unboundedness: given γ < κ, construct by transfinite recursion
increasing sequences 〈cni |n < ω〉 for every i < µ such that:

(i) c0
0 ≥ γ;

(ii) for a fixed i < µ, cni is in Ci for every n < ω;
(iii) for a fixed n < ω, j < i < µ implies that cnj < cni ;
(iv) for m < n and every i, j < µ, cmi < cnj .

By regularity of κ, X =
⋃
n<ω{cni | i < µ} is bounded in κ. We claim that δ = supX

is in
⋂
i<µCi (and by definition is larger than γ). This follows from the fact that δ is the

supremum of every sequence 〈cni |n < ω〉 for i < µ. �

Exercise. Let C be a club and let Lim(C) be the set of limit points of C, where α ∈ C
is a limit point of C if C ∩ α is unbounded in α. Show that Lim(C) is a club (which is
strictly smaller than C).

Lemma 8.12 allows us to define the closed unbounded filter generated by the club sets.
Let us denote this filter as Club(κ):

Club(κ) = {X ⊆ κ | there is a club C such that C ⊆ X}.

We say that a filter F is κ-complete for a regular cardinal κ if for every family {Xi | i <
λ} of elements of F , where λ < κ, the intersection

⋂
{Xi | i < λ} is in F .

Corollary 8.14 The filter Club(κ) is κ-complete.

Proof. Follows from Corollary 8.13. �

Note. Under AC, Club(κ) is never an ultrafilter (see in Theorem 8.18). The existence
of an ω1-complete non-principal ultrafilter on any regular κ is a very strong assumption
which postulates the existence of the so called measurable cardinal.
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8.2.2 Stationary and non-stationary sets

Let us denote as NS(κ) the dual ideal to Club(κ):

NS(κ) = {X ⊆ κ |κ \X ∈ Club(κ)}.

We call the ideal NS(κ) the non-stationary ideal on κ. By Corollary 8.14, the non-
stationary ideal NS(κ) is κ-complete.21 We say that X ⊆ κ is stationary if X 6∈ NS(κ).

Lemma 8.15 X ⊆ κ is stationary iff X ∩ C 6= ∅ for every club C.

Proof. If X is stationary, then κ \ X is not in Club(κ). This means that there is no C
so that C ⊆ κ \ X, or equivalently for any club C, C 6⊆ κ \ X, which is the same as
C ∩X 6= ∅.

For the converse, just run the argument in the opposite direction. �

The club filter Club(κ) satisfies another important property, that of normality. Let
Xi for i < κ be subsets of κ. Let us define the diagonal intersection

4i<κXi = {ξ < κ | ξ ∈
⋂
ζ<ξ

Xζ}.

Lemma 8.16 The filter Club(κ) is normal, that is it is closed under the diagonal inter-
sections of length κ: If for every i < κ, Xi is an element of Club(κ), then

4i<κXi ∈ Club(κ).

Proof. Let {Ci | i < κ} be clubs such that Ci ⊆ Xi. It suffices to show that D = 4i<κCi
is closed unbounded.

We first show that D is closed. Let α be a limit ordinal and D∩α unbounded, we wish
to show α ∈ D. This is equivalent to demanding that for all β < α, α ∈ Cβ. Fix such
β < α. Then for all γ, β < γ < α, γ ∈ D implies γ ∈ Cβ; it follows D ∩ α is unbounded
in Cβ, and hence α ∈ Cβ as desired.

We now show that D is unbounded. Let α < κ be given, we wish to show there exists
β ≥ α, β ∈ D. Set α0 = α and A0 = ∅. Assume αn and An are already constructed,
we show how to construct αn+1 and An+1. Choose an increasing sequence 〈aβ |β < αn〉
such that aβ ∈ Cβ and aβ > αn for each β < αn. Set An+1 = {aβ |β < αn} and
αn+1 = sup An+1. Finally set β = sup {αn |n < ω}. In order to verify β ∈ D, we need
to check that β ∈ Cγ for each γ < β. Notice that for every γ < β there exists n < ω such
that γ < αn; it follows that for each m ≥ n, there is some a ∈ Am ∩ Cγ . Hence β ∩ Cγ is
unbounded and so β ∈ Cγ as required. �

Note that in general, we cannot hope that any proper filter F on κ is κ+-complete –
for every such F there is a family Xα, α < κ, of elements in F such that

⋂
α<κXα = ∅.

It follows that the diagonal intersection is in some sense the best we can get.
Exercise*. Any normal filter F on κ is also κ-complete.
Intuitively, if set X is stationary, it means that it is not small in the sense of the club

filter. “Stationarity” is therefore a measure of “largeness” for subsets of regular cardinals
of uncountable cofinality. It has no analogue in case of ω, because ω has no limit points.

21Often, we say σ-complete instead of ω1-complete.
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Remark 8.17 The club filter Club(κ) properly extends the Fréchet filter F (κ) on κ,
where X ∈ F (κ)↔ X \κ is bounded in κ. A typical subset of κ for which F (κ) makes no
decision, but Club(κ) does, is the set A of all limit ordinals in κ – A nor its complement
κ \A are in F (κ), but A ∈ Club(κ).

We said above that the club filter Club(κ) is not an ultrafilter. This follows from the
following important theorem:

Theorem 8.18 (Solovay) If κ is regular uncountable, then every stationary subset of κ
is a disjoint union of κ-many stationary sets.

This easily implies that Club(κ) is not an ultrafilter: if it were, then every stationary
set must be in it, but this contradicts the above theorem, which claims that there are two
(in fact κ-many) stationary sets which have empty intersection.

We end the discussion of stationary sets by stating a very useful Fodor’s lemma.
We say that a function f : κ→ κ is regressive if f(α) < α for every α > 0.

Theorem 8.19 (Fodor’s lemma) If f : κ→ κ is regressive, then there is a stationary
set S ⊆ κ on which f is constant.

More generally, if f : T → κ is regressive, where T ⊆ κ is stationary, then there a
stationary set S ⊆ T on which f is constant.

Proof. We will just show the case for f : κ→ κ, although the generalisation to the second
part featuring T is easy.

Assume for contradiction that for each α < κ, the set f−1′′{α} is non-stationary, and
fix for each α a club Cα such that

(8.160) f−1′′{α} ∩ Cα = ∅.

By diagonal intersection, the set 4αCα is a club. However, any ξ ∈ 4αCα contradicts
the fact that f is regressive: ξ ∈

⋂
ζ<ξ Cζ implies by (8.160) that ξ 6∈ f−1′′{ζ} ↔ f(ξ) 6= ζ

for every ζ < ξ. Thus f(ξ) ≥ ξ, which contradicts the fact that f is regressive. �

Exercise*. Show that Fodor’s lemma implies Lemma 8.16.
If κ is regular and µ < κ, then Eµκ = {α < κ | cf(α) = µ} is a very useful example of a

stationary set.
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