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Introduction

In this lecture, we will cover the following topics:

Basics of set theory

Construction of natural numbers N
Construction of integers Z; algebraic notions: the group and
ring structure of (Z,+,−, 0, ·, 1)

Construction of rationals Q; the ordering on Q, the field
structure of (Q,+,−, 0, ·, 1)

Construction of reals R; analytic notions: limits, suprema,
infima, continuity.
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There are lecture notes for this course (see Moodle).
Further reading:
Introduction to mathematics:

J.K.Truss, Foundation of Mathematical Analysis. Clarendon
Press, Oxford. 1997.

Jǐŕı Matoušek a Jaroslav Nešeťril, Kapitoly z diskrétńı
matematiky. Karolinum, Praha. 2002.

Milan Mareš, Př́ıběhy matematiky. Pistorius a Oľsanská,
Př́ıbram 2008.

Walter Rudin, Principles of Mathematical Analysis.
McGraw-Hill, 3rd edition.

Mathematical Logic and Set theory:

Antońın Sochor, Klasická matematická logika, Karolinum
2001.

V́ıtězlav Švejdar, Logika: neúplnost, složitost a nutnost,
Academia 2002.

Bohuslav Balcar a Petr Štěpánek, Teorie množin, Academia
2000
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We will focus on the on the mathematical way of thinking: from
hypotheses and informal arguments to rigorous proofs. We will try
to include one Theorem (a proved statement) in each section to
give you the idea how the concepts which we introduce work.

Structure of arguments in mathematics:

Starting with some primitive notions, which are implicitly
defined by the theory we work in, all other notions are defined
by means of definitions from earlier notions.

Theorem, lemmas, claims are formulated for the defined
notions and proved in the theory.

Note: Some statements are considered “interesting” but no
proof has been found for them or their negation. We will have
more examples later, but the following is perhaps the easiest
to formulate: (Goldbach’s conjecture) Every even number
greater than 2 is the sum of two primes.
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Example (a bit informal). Suppose we know how to add and
multiply reals R.

Definition

We say that a real number is rational if it can be written as p
q

where q 6= 0, and p, q are from Z. We say that a real number is
irrational if it is not rational. We say that an integers x is even if it
can be written as 2y for some integer y ; it is odd if it can be
written as 2y + 1 for some y .

Theorem

There exist an irrational number. In fact if x is a real such that
x2 = 2, then x is irrational.
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Proof.

Suppose for contradiction that x (we can denote it
√

2) is rational
and let p, q be positive integers which have no common divisor
greater than 1:

√
2 = p

q . Equivalently, 2q2 = p2. This means that

p2 is even, and also (check) that p is even, and can be written as
2r for some r . So we can write 2q2 = (2r)2, equivalently
2q2 = 4r2, and so q2 = 2r2. With the same argument as we
argued for p, it follows that q must be even. But this is a
contradiction because we assumed that p, q have no common
divisor: but they do: 2. It means that our original starting
assumption must be false, i.e. there are no such p, q and therefore√

2 is irrational.
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Similar arguments can show that e is irrational (easy) and π is
irrational (not that easy). But other theorems may mention more
abstract structures, such as graphs, groups, trees, vector spaces,
etc. This makes it essential learn all definitions and understand
them. In fact how are e and π really defined? You may check for
yourselves that their definition uses the notion of the limit of a
sequence, which must itself be defined.
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It is tempting to think that every “reasonable statement” can be
proved or refuted in principle, only that we do not know how in
this partical moment (P = NP? Riemann’s hypothesis, Goldbach’s
conjecture, Twin-prime conjecture, and other). Unfortunately, by
results of Gödel (here is where logic enters the picture), for every
reasonable theory there are always infinitely many statements
which the theory cannot prove or refute.
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Natural numbers in set theory

Axioms of (naive) set theory: (i) Structural properties.

– We completely ignore the question what sets are, both in the
metaphysical and physical sense.

– Extensionality. Two sets will be identical iff1 they have the
same elements; i.e. we disregard any intensional properties of
the elements.

– Infinity. There is an infinite set.

1“Iff” is shorthand for “in and only if”.
R. Honzik Introduction to mathematics 9/93



(ii) Algebraic properties.

– Pairing. For any two sets x , y there is another set {x , y} that
contains exactly the sets x , y .

– Union. For any set x there is another set
⋃
x that contains all

elements of all the elements of x (i.e. y is in
⋃
x iff there is

another set z in x , and y is in z).

Comment. This operation has an obvious connection with the
∪ operation known from the basic (school-taught) set theory:⋃

{x , y} = x ∪ y .⋃
is obviously more general – unlike the ∪ operation which

joins elements from two sets,
⋃

can join the elements of
arbitrarily many sets (their number is determined by the size
of x in

⋃
x).
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– Power set. For any set x there is another set P(x) which
contains exactly all the subsets of x .

– Closure under arbitrary set-operations. For any operation F
from sets to sets, the image of F from a set x is also a set, i.e.
F ′′x = {y | ∃q ∈ x such that y = F (q)} for a set x is a set.

Comment. In formulating this property we have admittedly
crossed the line of what is intuitively true. But a weakening of
the above property is intuitive: if P is a property and x a set
then there is a set y which contains exactly the elements of x
satisfying property P. The stronger form is however necessary
even for the most elementary proofs.

There may be other axioms such as Axiom of Foundation or Axiom
of Choice but we will leave these aside for the moment.

R. Honzik Introduction to mathematics 11/93



The above axioms postulate what objects are sets. For instance if
x is a set, then P(x) is a set. But what about X = {x | x 6∈ x}?
Russell’s paradox leads us to say that X must not be a set, or else
our system is inconsistent.

Exercise: Show that that the assumption that X = {x | x 6∈ x} is a
set leads to a contradiction.
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Basic properties of sets:

x ∈ y , a binary relation of membership: if a set x is in the
relation “to be an element of” with a set y , we write it
symbolically as x ∈ y .

x ⊆ y ↔ (∀q) q ∈ x → q ∈ y , we say that x is a subset of y .
This relation is determined by the propositional connective “if,
then”, →.

Exercise: Show that for every x , y it holds that
x = y ↔ x ⊆ y ∧ y ⊆ x .
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Notice that ⊆ is a partial order, partial ordering, or just ordering:
it is a binary relation which is

reflexive: x ⊆ x for every set x .

transitive: x ⊆ y and y ⊆ z implies x ⊆ z for all sets x , y , z .

weakly anti-symmetrical: x ⊆ y and y ⊆ x implies x = y for
all x , y .

Exercise. Verify that ⊆ is indeed a partial ordering.
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x ∩ y = {q | q ∈ x ∧ q ∈ y}, the operation of intersection.
This operation is determined by the propositional connective
and, ∧.

x ∪ y = {q | q ∈ x ∨ q ∈ y}, the operation of union. This
operation is determined by the propositional connective or, ∨.

x − y = {q | q ∈ x ∧ q 6∈ y}, the operation of subtraction.
This operation is determined by the propositional connective
not, ¬.

P(x) is the powerset of x : P(x) = {q | q ⊆ x}.
{x , y} is a set which contains exactly x , y as elements. Note
that it works for a single set x as well: {x , x} = {x}; this set
is called the singleton (singleton) of x .
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Comprehension. Given a property ϕ and a set y , there is a set
x of all q which are in y and satisfy ϕ: x = {q | q ∈ y ∧ϕ(q)}.
I.e. for all q, q ∈ x if and only if q ∈ y ∧ ϕ(q).
Notation. Sometimes we write {q ∈ y |ϕ(q)} instead of
{q | q ∈ y ∧ ϕ(q)}. This is just a matter of notation. In any
case, these two expressions denote the same set. (We prefer
the notation {q ∈ y |ϕ(q)} because it is shorter.)
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Assume there is at least one set x . Then there is an empty
set, denoted by ∅, where ∅ = {q | q ∈ x ∧ q 6= q}.
Exercise. Verify that there is only one empty set; i.e. the
definition of the empty set does not depend on the initial set
x : if x1 and x2 are two sets, then
{q | q ∈ x1 ∧ q 6= q} = {q | q ∈ x2 ∧ q 6= q}.
Exercise. Verify that the empty set ∅ is a subset of every set,
i.e. if x is a set, then ∅ ⊆ x . However, notice that it is not
true that ∅ is an element of every set. Give an example of a
set x such that ∅ 6∈ x .
Exercise. Use the previous exercise to conclude that P(x), the
powerset of x , is always non-empty, even if x = ∅.
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We say that a structure 〈B,∧,∨,−, 0, 1〉 is a Boolean algebra if B
is a set, ∧ and ∨ are binary operations, − is an unary operation
and 0, 1 are constants, and the following axioms hold:

Associativity of ∧,∨:
a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c.

Commutativity of ∧,∨:
a ∧ b = b ∧ a and a ∨ b = b ∨ a.

Absorption:
a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a.

Distributivity:
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Axioms of constants:
a ∨ −a = 1 and a ∧ −a = 0.
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Exercise: Verify that if x is a nonempty set, then

〈P(x),∩,∪,−, ∅, x〉

is a Bolean algebra, called the powerset algebra, when we identify
∧ with intersection, ∨ with union, −a with the operation of
subtraction x − a, 0 with the empty set and 1 with the set x .

Show also that the de Morgan’s law holds:

−(a ∪ b) = −a ∩ −b and − (a ∩ b) = −a ∪ −b.
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Generalisation of ∪ and ∩ for any set x :⋃
x = {q | (∃y)(y ∈ x ∧ q ∈ y)}

and ⋂
x = {q | (∀y)(y ∈ x → q ∈ y)}.

Exercise.
⋃
{x , y} = x ∪ y ,

⋂
{x , y} = x ∩ y .

⋂
∅ = V (all

sets),
⋃
∅ = ∅.
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Definition of N in set theory:

Definition

A set x is called inductive if it contains ∅ and with every element y
in x , x also contains the set y ∪ {y}.

Definition

The axiom of infinity is the following startement: There exists an
inductive set.

Definition (Natural numbers)

N, the set of natural numbers, is defined as

N =
⋂
{x | x is an inductive set}, (1)

in other words N is defined to be the intersection of all inductive
sets.
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Theorem (Induction)

Assume A is a subset of N such that ∅ ∈ A and for every n ∈ A
also n ∪ {n} ∈ A. Then A = N.

Proof.

Our assumption about A means that A is an inductive set. Since N
is the least inductive set, we get N ⊆ A. By the assumption of
theorem, we also know that A ⊆ N, which implies N = A as
required.
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Comparing sizes of sets:

Definition

A set a has the same size as a set b if there is a bijection f from a
onto b, and we denote this by a ≈ b. We say that a is smaller than
b if there is a 1-1 function f from a into b, and we denote this by
a � b. We say that a is strictly smaller if a � b but a 6≈ b, and we
denote this by a ≺ b.

If a ≈ N, then we say that a is countable. If N ≺ a, we say that a
is uncountable.
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Theorem (Cantor)

For every set X it holds

X ≺ P(X ).

In particular, the set P(N) is uncountable.

R. Honzik Introduction to mathematics 24/93



Proof.

A function h : X → P(X ) defined by h(x) = {x} for each x ∈ X is
clearly 1-1 from X to P(X ). This means that X is smaller than
P(X ): X � P(X ).
Now we show that there is no bijection between X and P(X ),
which will imply X ≺ P(X ). In fact, we will show a stronger
property, namely that there is no surjection from X onto P(X ).
Suppose for contradiction that there exists a surjection f from X
onto P(X ).
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Continuation of proof.

Define
A = {x ∈ X | x 6∈ f (x)}.

Note that A ⊆ X . Since A ⊆ X (i.e. A ∈ P(X )), there is a ∈ X
such that f (a) = A because f is onto. It must be the case that
either a ∈ A or a 6∈ A: If a ∈ A, then a 6∈ f (a) = A, contradiction.
If a 6∈ A, then a 6∈ f (a) and so a ∈ A, contradiction. It follows that
there cannot be a surjection from X onto P(X ), and in particular
no bijection.
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Some basic notions and their properties.

Definition

If x , y are sets, then the Cartesian product x × y of x , y is defined
as follows: x × y = {〈a, b〉 | a ∈ x ∧ b ∈ y}.

Definition

A binary relation r on sets x , y is a subset of x × y , i.e. r ⊆ x × y .

If r is a relation on x , y , we define the domain of r as

dom(r) = {q | (∃q′ ∈ y)〈q, q′〉 ∈ r}. (2)

and similarly we define range of r as

rng(r) = {q | (∃q′ ∈ x)〈q′, q〉 ∈ r}. (3)
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We also define the inverse relation r−1 = {〈q, q′〉 | 〈q′, q〉 ∈ r}, and
if a ⊆ x we define the image of r on a:

r ′′a = {q | (∃q′ ∈ a)〈q′, q〉 ∈ r}.

If a ⊆ x then we say that r �a is the restriction of r to a, where

r �a = {〈q, q′〉 | 〈q, q′〉 ∈ r ∧ q ∈ a}.
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Exercise. Check the following for binary relations x ,w and sets
y , z :

1 x ∪ w , x ∩ w , x − w are binary relations,

2 x ′′(y ∪ z) = x ′′y ∪ x ′′z ,

3 x ′′(y ∩ z) ⊆ x ′′y ∩ x ′′z and x ′′y − x ′′z ⊆ x ′′(y − z).

Give an example where the converse inclusion ⊇ does not hold in
the previous line.
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Definition

A binary relation r is called a function if it satisfies the following:

(∀x , y1, y2)(〈x , y1〉 ∈ r ∧ 〈x , y2〉 ∈ r → y1 = y2).

Since every function f is a relation, we can use for f the notation
defined above for relation. The following is specific for functions:

If x ∈ dom(f ) we write f (x) for the unique y such that
〈x , y〉 ∈ f .

Let f : x → y and g : y → z be two functions. This notation
means that dom(f ) = x , dom(g) = y and rng(f ) ⊆ y and
rng(g) ⊆ z . We will denote as g ◦ f the function h : x → z
defined by h(q) = g(f (q)) for every q ∈ x . Note that this
deviates from the notation used for composition of relations.
The reason is that if we write (g ◦ f )(q) = g(f (q)), it
suggests that f is the first function which we apply.
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A function f is called injective, or 1-1, if it satisfies:

(∀x0, x1 ∈ dom(f )) x0 6= x1 → f (x0) 6= f (x1).

Exercise. Verify that f is 1-1 if and only if f −1 is a function.
f is onto y if rng(f ) = y . f is a bijection if it is both injective and
onto.

Exercise. Suppose n is a fixed element of N. Consider function
f : N→ N, g : Z→ Z, and h : Q→ Q defined as follows:
f (m) = m + n, g(x) = x + n, h(q) = q + n. Determine whether
f , g , h are injective, onto, or bijections.
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Exercise. Let x , y be any sets and f a function. Prove the
following properties.

1 (f −1)′′(x ∩ y) = (f −1)′′x ∩ (f −1)′′y .

2 (f −1)′′(x − y) = (f −1)′′x − (f −1)′′y .
If f is moreover 1-1, then it also holds:

3 f ′′(x ∩ y) = f ′′x ∩ f ′′x and f ′′(x − y) = f ′′x − f ′′y .
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Definition

For all sets x , y , let us define:

xy = {f | f : x → y}.

Sometimes we write y x if there is no danger of confusion (however,
sometimes y x denotes the size of xy).

Exercise. Show by induction on n ∈ N that for all m ∈ N,
|nm| = mn.
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Exercises.

Let x be a non-empty set. Show there is a bijection between
the Cartesian product x2 = x × x , and the set 2x .

Let x be a set. There is a bijection between the set of all
subsets of x , P(x) = {y | y ⊆ x} and the set x2.
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An axiomatic approach to N. An axiomatic approach is useful if
we wish to avoid the use of set theory in defining N and aritmetics.
However, as we will see later on, the axiomatic approach is by
necessity weaker than we would like to have it; in particular it is
not possible to give a reasonable axiomatization of natural
numbers and ensure that the resulting axiomatization will be
strong enough to prove or refute every arithematical statement
(Gödel’s first incompleteness theorem).
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What follows is the standard axiomatization of arithmetics in the
first-order logic, called the Peano arithmetics, in the honor of
G. Peano (1858–1932), an Italian mathematicians who first
formulated a similar axiomatization.2

2Peano’s axiomatization was in the second-order logic, see the lecture notes
for more details.
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First-order axiomatisation of arithmetics (Peano arithmetics, PA):
(Q1) (∀x , y)(S(x) = S(y)→ x = y),
(Q2) (∀x)(S(x) 6= 0),
(Q3) (∀x)(x 6= 0→ (∃y)x = S(y)),
(Q4) (∀x)(x + 0 = x)
(Q5) (∀x , y)(x + S(y) = S(x + y))
(Q6) (∀x)(x · 0 = 0)
(Q7) (∀x , y)(x · S(y) = x · y + x)
(Induction) For every formula ϕ(x) in the language {0,S ,+, ·}
(including parameters) the following is an axiom:

[ϕ(0) ∧ (∀x) (ϕ(x)→ ϕ(S(x)))]→ (∀x)ϕ(x).
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Note that PA contains infinitely many axioms (because Induction is
a collection of infinitely many instances of induction). It can be
shown that no finite subtheory of PA is equally strong as PA, so
the infinite number of axioms is necessary.

By Gödel’s 2nd incompleteness theorem, a finite argument is not
sufficient to argue that PA is consistent.3 If it is consistent,
Gödel’s 1st incompleteness theorem shows that there are infinitely
many ϕ such that PA does not prove either ϕ or ¬ϕ (we say that
ϕ is independent over PA). It may be that some of the open
problems in arithmetics cannot be decided by the axioms of PA. An
analogous coveat applies to axiomatization of set theory.

3Set theory can prove that PA is consistent; but this is may be viewed as
cheating because set theory itself is more in danger of inconsistency than PA.
Usually, the consistency of PA, and also of set theory, is taken on faith based
on intuition and the past experience (no inconsistency has been discovered
since the beginning of mathematics in the ancient Greece).
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An example of finite combinatorics: Ramsey theorem for
graphs.

Motivation. Suppose there are n people at the party. What is the
biggest group of people such that either everyone knows everyone
in that group, or nobody knows anybody in that group (we call
such a group homogeneous)? In particular is there a number n
such that in every party with n people one can find a homogeneous
group with 5 people (or any other number you wish)?

Intuitively, the bigger the homogeneous set, the more order we
have in the group of people (or equivalently, less chaos).
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From popular mathematics, one perhaps knows that in any party
with at least 6 people there is a homogeneous group with 3 people.
In a party with at least 18 people, there is a homogeneous group
with size 4. What about a homogeneous group of size 5?
Currently, it is known that it suffices to have a party of 48, but it is
currently unknown whether already 43 is not enough. How do we
get these numbers? And how is it possible that we do not know
the exact number for a homogeneous group of size 5? After all 43
is a very small number, so perhaps computers could help us here?
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To formulate this problem in the mathematical language, first
notice that it is irrelevant what the people in the party are – it is
enough to know their number. Thus n people in a party can be
represented by natural numbers {1, . . . , n}. The fact that two
people m, k know each other can be represented by considering the
set {m, k}. Thus we can represent the situation by fixing a set E
of two-element subsets of {1, . . . , n} such that for any pair of
people k ,m, k knows m if and only if {k ,m} ∈ E .4

4Notice that we need to make some extra assumptions in formalising the
problem: we have decided that the relation of knowing one another is
symmetric: k knows m if and only if m knows k.
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The pair 〈{1, . . . ,m},E 〉 is an example of a undirected graph:

Definition

Let V be a non-empty set and E a subset of [V ]2, where [V ]2 is
the set of all two-element subsets of V , i.e.

[V ]2 = {{v1, v2} | v1 6= v2 & v1, v2 ∈ V }.

We call elements in V vertices, and elements in E edges. The pair
〈V ,E 〉 is called a undirected graph.

If we changed the definition by writing E ⊆ V 2, then we get the
notion of a directed graph – in a directed graph, one considers also
the order of the elements in the edges: 〈v1, v2〉 may be in E , but
〈v2, v1〉 not (and v1 = v2 is allowed).
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What is the number of undirected graphs on n vertices?

Lemma

For n > 1, there are 2l many undirected graphs on V = {1, . . . , n},
where l = 1

2n(n− 1). This means that the number of graphs grows
exponentially with the number of vertices.

Proof.

Fist compute the size of [V ]2 which is l = 1
2n(n − 1). Then realize

that E ⊆ [V ]2, and so the number of graphs on V is the size of
the powerset of [V ]2, which is 2l .
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We have discussed above that it is currently unknown what is the
least number n such that every undirected graph on n vertices has
a homogeneous set of size 5 (we only know that n is in the set
{43, 44, 45, 46, 47, 48}). To answer this question, it is enough to
check all undirected graphs on 43 vertices (and possibly on 44–47).
This seems feasible until we calculate the number of such graphs:

2
1
2
43·42 which is extremely big.5 Of course, finding the exact

number for a homogeneous set of size 6, 7, 101, etc. is even more
difficult. The crude force will not going to help us here.

5Technically speaking not all graphs need to be checked – some are
isomorphic, i.e. behave the same way, but even with this limitation the number
of graphs is too high (see below on slide 55 for a discussion of isomorphisms).
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Definition

Let 〈V ,E 〉 be a undirected graph. We say that H ⊆ V is a
homogenous set of vertices if either all vertices in H are connected
by edges with every other element in H (i.e. [H]2 ⊆ E ), or no
elements in H are connected with edges (i.e. [H]2 ∩ E = ∅).

We now have everything set up to formulate a mathematical
theorem corresponding to the above-mentioned problem.
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Theorem (Finite Ramseya theorem for graphs)

aFrank P. Ramsey (1903–1930) was a British mathematician and
philosopher.

Let k be a natural number, k > 1. Then there exists a number n
such that every undirected graph 〈V ,E 〉 on n vertices has a
homogeneous subset of size at least k.

Note that the theorem claims the existence of some n which
suffices. The proof we give actually gives an algorithm for
computing some such n with respect to the size of |V | (and for
finding a homogeneous set). However, this n is far from being
optimal in the cases which can be checked. No significantly better
algorithm for finding n is known at the moment.
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Our strategy is to find in every graph on n > 1 vertices a
homogenous set of size at least 1

2 log2 n. For a given k , it
therefore suffices to take n equal to 22k because then
1
2 log2 n = k .

Without the loss of generality V = {1, . . . , n}. To simplify our
exposition, note that we can represent unordered pairs in E by
ordered pairs 〈k,m〉 with the condition that k < m.

We say that a pair 〈k , l〉 has color c1 if k and m are
connected by an edge, and color c0 otherwise.
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Denote X0 = V . Fix the vertex 1, denote it v0, and consider
all pairs 〈v0, k〉 for 1 < k ≤ n and look at the color of the
pairs. There must be one prevailing color: there are at least
p12(n− 1)q-many pairs 〈v0, k〉 which have all either color c1 or
color c0.

Choose this prevailing color, and consider the set
X1 = {v0, v1, . . .} of the vertices such that for every element
x > 1 in X1, 〈v0, x〉 has the prevailing color.

Now start with v1 and consider the prevailing color for pairs
〈v1, x〉 for x ∈ X1, x > v1, and define the set
X2 = {v0, v1, v2, . . .} similarly as X1.
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Repeat this argument several times till you have no more
vertices to consider (i.e. till Xr = {v0, . . . , vr}).

Denote the resulting set of vertices A = {v0, v1, . . . , vr}.
For every 0 ≤ i < r , we do not lose more than one half of the
elements in Xi when defining Xi+1. It follows that that we can
carry out this construction at least log2 n-many times, and
each time we repeat the step from Xi to Xi+1 we fix one more
element vi which stays in A. Thus the size of A is therefore at
least log2 n.
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A may not be homogenous but has the nice property that the
color of any pair 〈x , y〉 in A, where x < y , depends only on
the color of the first element.

Choose a color which prevails in A and select those elements
in A with this color. Denote the resulting set H. H is
homogeneous and has size at least 1

2 |A|.
It follows that n = 22k satisfies the conditions of theorem,
which finishes the proof.
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Examples of graphs.

Suppose < is an ordering on some set X . Then 〈X , <〉 is a
directed graph on X .

A finite tree is a finite undirected graph (V ,E ) which does not
contain any cycles, i.e. there is no sequence of distinct nodes
{x1, . . . , xn} such that for all 1 ≤ i < n, {xi , xi+1} ∈ E and
{xn, x1} ∈ E . If 〈V ,E 〉 is moreover connected, i.e. every node
is connected to some other node, then this is equivalent to
saying that between any two nodes there is exactly one path.
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Infinite graphs.

Note that we can define a graph on any set V , where V can be
infinite. For instance if E ⊆ [N]2, then 〈N,E 〉 is an undirected
graph of N. Is there an analogue of Ramsey theorem for infinite
graphs? Indeed, there is, and was also proved by Ramsey (more
general versions are known).

Theorem (Infinite Ramsey theorem)

Every undirected graph on N has an infinite homogeneous set.
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Note that both finite and infinite graphs are quite complicated
strutures.

In fact graphs on N can be extremely complex: If ZFC (the
standard set theory) is consistent, then there exists6 E ⊆ N2 such
that the directed graph 〈N,E 〉 models all axioms of set theory: the
set N represents the domain of the set theory (i.e. all sets), and
〈m, n〉 ∈ E is interpreted as saying that m is an element of n. With
this intepretation, any axiom ϕ of ZFC is true in 〈N,E 〉.

Hence all mathematics can be modelled as a directed graph on N.7

6This follows from the Löwenheim-Skolem theorem for the 1st order
predicate logic; you will learn more in Logic lectures.

7This may seem paradoxical. The philosophical discussion concerning the so
called Löwenheim-Skolem paradox are extensive.
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Graph isomorphisms.

If V1 = {a, b, c} and V2 = {1, 2, 3}, then any graph on V1 is
different from any graph on V2. However, they may be different
only inessentially in the sense that if we “rename” the nodes, the
graphs may become the same. As a simple example suppose
E1 = [V1]2 and E2 = [V2]2: then 〈V1,E1〉 and 〈V2,E2〉 are
different, but both have three nodes and every node is connected
to every other node. If we are intersted only in the mathematical
properties of graphs, then any result shown for the first graph
applies to the second graph, and conversely, i.e. for mathematical
purposes they are the same. 〈V1,E1〉 is isomorphic to 〈V2,E2〉 if
we identify (for instance) a with 1, b with 2, and c with 3. See the
definition on the next slide.
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Definition

We say that undirected graphs 〈V ,E 〉 and 〈U,F 〉 are isomorphic if
there is a bijection f : V → U which satisfies for all x 6= y ∈ V :

{x , y} ∈ E ↔ {f (x), f (y)} ∈ F .

The notion of an isomorphism can be formulated for directed
graphs, and more complicated structures. There weaker notions of
similarity of structures, for instance homomorphisms or
embeddings.
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Integers Z as a group with respect to addition

Integers Z extend the natural numbers N and have the property
that for every n ∈ Z, there is an inverse element −n ∈ Z such that
n + (−n) = 0. In particular, the operation of subtraction is total in
Z: n−m = n + (−m). This extension Z is unique and the smallest
such (every element of Z is either in N or is an inverse of an
element in N)

Integers Z, together with the binary operation +, the unary
operation − and the constant 0, are an example of a group.
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Groups

Definition

We say that a set G together with the constant e ∈ G , binary
operation ◦ : G 2 → G and unary operation ′ : G → G is a group if
the following identities are true in G :

(G1) Associativity. For all x , y , z ∈ G , (x ◦ y) ◦ z = x ◦ (y ◦ z),

(G2) Neutral element. For every x ∈ G , x = x ◦ e = e ◦ x ,

(G3) Inverse element. For every x ∈ G , x ◦ x ′ = x ′ ◦ x = e.

If the operation ◦ is commutative, i.e.

(G4) For every x , y ∈ G , x ◦ y = y ◦ x ,

we say that the group G is abelian, or commutative group.
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Examples of groups

The structure 〈Z,+,−, 0〉, i.e. integers with addition +,
inverse element −, and the constant 0, is a commutative
group.

The structure 〈Q− {0}, ·,−1, 1〉, i.e. rational numbers without
0 with multiplication ·, inverse element −1, and the constant
1, is a commutative group.

The structure 〈{0, 1, 2}, ◦,′ , e〉 where ◦ is defined by
n ◦m = n + m mod 3, n′ = 3− n mod 3, and e = 0 is a finite
commutative group. More generally, for any k there exists
group of size k which has elements {0, . . . , k − 1} and which
has + as the addition mod k .
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Permutation groups.
Sym(N), the permutation group on N is defined as follows: a
function p : N→ N is in Sym(N) if it is a permutation, i.e. a
bijection between N and N. The neutral element is the
identity function id defined by id(n) = n for every n. The
inverse to p is p−1, the inverse function. The binary operation
is the composition of functions.

Exercise. Show that Sym(N) is an example of a group which
is not abelian.
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A group of permutations on a set X is also called the symmetric
group on X . Cayley’s Theorem states that every group is
isomorphic to a subgroup of some symmetric group, i.e. every
group is included in some symmetric group. This means that
symmetric groups of permutations are very general.
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Basic properties of groups.

Lemma

Let G be a group, then:

1 The neutral element is unique: if f is an element in G such
that x ◦ f = f ◦ x = x for every x, then f = e. Also e = e ′.

2 The inverse element is unique: given y in G, if z is an element
in G such that z ◦ y = y ◦ z = e, then z = y ′.

3 For every x , y in G: (x ◦ y)′ = y ′ ◦ x ′.
4 For every x in G: x ′′ = x.

5 (The function ′ is a 1-1 function.) For every x , y ∈ G: if
x 6= y then x ′ 6= y ′.

6 (Cancelation). For every x , y , z ∈ G: if x ◦ y = x ◦ z, then
y = z, and if y ◦ x = z ◦ x, then y = z.

See the lecture notes for the proof.
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Subgroups

Definition

Let G be a commutative groupa with operations ◦,′ , e and H be a
subset of G . We say that H is a subgroup of G , and write this as
H ≤ G , if:

e ∈ H,

For every x ∈ H, x ′ ∈ H,

For every x , y ∈ H, x ◦ y ∈ H.

We express the conditions (i)–(iii) by saying that H is closed under
the group operations.

aFor simplicity, we will consider only commutative groups.
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Exercise. Convince yourself that every group G has at least two
subgroups: one contains just the neutral element, and the second
one is the whole group G (a group G is its own subgroup by the
definition). There are groups, such as Z(p) for a prime number p
(see below), which have just these two subgroups.

The conditions (i)–(iii) are equivalent to a single condition over
any commutative group:

Lemma

Let H ⊆ G and H 6= ∅. Then the following holds: H is a subgroup
of G if and only if for every x , y ∈ H, x ◦ y ′ ∈ H.

Exercise. Give a proof of this lemma.
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We will use subgroups and the related notion of a partition to
prove the following theorem for groups:

Theorem (Lagrangea)

aItalian-French mathematician 1736–1813.

Let G be a finite group and H its subgroup. Then the size of H
divides the size of G, i.e. |G ||H| = n for some n ∈ N.

One of the consequences of this theorem is that a group of size p,
where p is a prime number, does not have any proper subgroups.
By a further argument it can be shown that this implies that up to
isomorphism there is exactly one group of size p, p prime, and this
group is commutative.
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Proof of Lagrange’s theorem

Please follow the proof in the lecture notes. Here is a summary of
the key steps:

System A ⊆ P(G ) is called a partition of G if (i) ∅ 6∈ A, (ii)⋃
A = G , and (iii) For all X ,Y ∈ A, if X 6= Y , then

X ∩ Y = ∅. Elements of A are called equivalence classes.8 It
follows that every element g ∈ G is in exactly one of the
equivalence classes.

We show that the subgroup H of G generates a partition of
H, denoted G/H, into cosets9 of the form
H ◦ x = {h ◦ x | h ∈ H}:

G/H = {H ◦ x | x ∈ G}.

8There is a natural correspondence between equivalences on G and
partitions on G ; see lecture notes.

9Coset is another word for an equivalence class in the context of groups.
R. Honzik Introduction to mathematics 65/93



Next we show that each coset H ◦ x has the same size as H.

It follows that if n denotes the number of cosets, then
|G | = n|H|, and this ends the proof.
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Quotient groups.

Suppose G = 〈G ,+,−, 0〉 is a group, not necessarily commutative,
and H its subgroup. We discussed how to define cosets H + x for
x ∈ G . If G is not commutative, then H + x 6= x + H is possible.
If this does not happen, it is possible to use H to define another
group:

Definition

If for all x , H + x = x + H, then H is called normal, and we can
form the quotient group G/H as follows:

The domain of H/G is the set of equivalence classes
{H + x | x ∈ G}.
The operation +G/H : (H + x) +G/H (H + y) = H + (x + y).

The operation −G/H : −G/H(H + x) = H +−x .

The neutral element: 0G/H = H.
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Example.

Let Z = 〈Z,+,−, 0〉 be the group of integers and for k > 1, let Zk

be the subgroup of Z of all multiples of k. Since + is commutative,
H is automatically normal, and therefore Z(k) = Z/Zk is a
well-defined quotient group. It is easy to see that there are k many
equivalance classes: Zk ,Zk + 1, . . . ,Zk + (k − 1). As it turns out,
Z(k) is isomorphic to the group {0, . . . , k − 1} where the
operations are defined modulo k.

The description of Z(k) using the quotient group is preferable
because it is an instance of a general method, whereas the
“manual” definition of Z(k) with addition mod k only works for
this specific case.
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Rings and fields

A ring (okruh) is a structure which extends the notion of a group
by adding one more binary operation called multiplication.

Definition

We say that a structure 〈R,+,−, 0, ·, 1〉 is a ring if 1 6= 0, and the
following properties hold for all x , y , z ∈ R:

(R1) Associativity for +, ·.
(R2) Commutativity for +.

(R3) Neutral element for +. 0 + x = x + 0 = x .

(R4) Inverse element for +. x + (−x) = (−x) + x = 0.

(R5) Neutral element for ·. 1x = x1 = x .

(R6) Distributivity. x(y + z) = xy + xz , (y + z)x = yx + zx .
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Note that if R is a ring, we require that 〈R,+,−, 0〉 is an abelian
group. This is a natural condition; in fact in the presence of the
distributivity axiom (R6), if 〈R,+,−0, 〉 is a group it must be
abelian (i.e. commutative): let x , y be elements of R, then

(1 + 1)(x + y) = 1(x + y) + 1(x + y) = x + y + x + y ,

using distributivity from the right (4)

and

(1 + 1)(x + y) = (1 + 1)x + (1 + 1)y = x + x + y + y ,

using distributivity from the left. (5)

It follows that x + y + x + y = x + x + y + y . By adding −x from
the left, and then −y from the right, we obtain y + x = x + y .
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If the operation of · is commutative, i.e.

Definition

(R7) Commutativity for ‘·’: xy = yx ,

we call R a commutative ring.

If moreover a commutative ring R has no zero-divisor, i.e.

Definition

(R8) xy = 0 implies x = 0 or y = 0,

we call R an integral domain.a

aThe existence of zero-divisors is not desirable if we want to have
multiplicative inverses: assume xy = 0 and x and y are not 0, then neither x or
y can have the inverse: assume x−1 is the inverse to x , then if we multiply
xy = 0 by x−1, we obtain x−1xy = x−10, and so y = 0, which contradicts our
initial assumption that both x and y are non-zero.
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Definition

If moreover R carries a binary relation ≤ such that:

(R9) ≤ is a linear ordering,

(R10) Monotonicity with respect to +.
x ≤ y implies x + z ≤ y + z ,

(R11) Monotonicity with respect to ·.
x ≤ y and 0 ≤ z implies xz ≤ yz ,

we call R an ordered ring.

Fact

The integers Z = 〈Z,+,−, 0, ·, 1,≤〉 are an ordered commutative
ring which is an integral domain.
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Another widely used example of an integral domain is the ring of
polynomials in the variable x over rationals or reals, denoted Q[x ]
or R[x ], respectively: a polynomial is of the form

q0 + q1x + q2x
2 + · · ·+ qnx

n,

for some n < ω, and q0, . . . , qn either rationals or reals. It is
possible to define additions and multiplication on polynomials so
that the resulting structure is an integral domain. However, it is
not a field (see below for the definition of field).
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Here are some basic properties of rings:

Lemma

If R is a ring, then for all x , y ∈ R:

0x = x0 = 0.

x(−y) = (−x)y = −(xy),

−x(−y) = xy,

−x = (−1)x
If R is moreover an integral domain, then:

If xy = xz and x 6= 0, then y = z (Cancellation law).

Proof: Exercise, or lecture notes.
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Definition

A ring R is called a division ring if every non-zero element x has a
multiplicative inverse, i.e. there exists y such that xy = yx = 1. A
commutative division ring is called a field.
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A field, possibly even an ordered field, is the strongest algebraic
structure with binary operations +, ·, but it is is some sense very
scarce. Examples:

Q and R are ordered fields.

C is a field, which cannot be ordered.10

No other space Rn for n > 2 can be a field. R4, quaternions,
can be equipped with multiplication but it fails to be
commutative. R8, octonions, can be equipped with
multiplication but it fails to be even associative.

10We may view C as the space R2 with suitably defined multiplaction for the
“vectors” (x , y) in R2.

R. Honzik Introduction to mathematics 76/93



To anticipate some future topics, let us mention what is difference
between the fields Q,R,C:

Q is not complete in an analytic sense: there are bounded
subsets of Q which don’t have a supremum or infimum. This
is not an algebraic notion, but it is important for the
development of mathematical analysis (the study of
continuity, differentiation and integration). Morever, Q is not
closed under roots of polynomials: there are polynomials with
rational coefficients which do not have roots in Q. Note that
the existence of multiplicative inverses means that linear
equations have roots: q0 + q1x = 0, with q1 6= 0, has the root
−q0

q1
. However for all n > 1 there is a polynomial of degree n

which does not have a root.
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R is complete in the analytic sense. It is has roots for more
polynomials: R is a real-closed field which means that every
polynomial of odd degree has roots.

C is complete in the analytic sense. Morever, it is also
algebraically closed: every polynomial with complex
coefficients has roots. In fact, it is enough to add one special
root i , which is the root for x2 + 1 = 0, to R to obtain C.
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There are many uses of fields in mathematics. Before we mention
a few, let us show that for finite rings, the notions of integral
domain and field coincide:

Lemma

Any finite integral domain R is already a field.

Proof.

Consider a map x 7→ ax where a is some fixed a ∈ R not equal to
0. Then this map is 1-1 from R to R by the cancellation law, and
since R if finite, rng(f ) = R. It follows that there is some x such
that ax = 1, and this x is the inverse of a. Since a is arbitrary
non-zero, this shows that every element has a multiplicative
inverse.
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Example 1. Recall the quotient group Z(k) of addition modulo k .
This structure can be also equipped with 1 and multiplication, and
we obtain the ring Z(k): the multiplication is also defined as the
usual multiplication mod k.

If k is not prime, then Z(k) is a ring which is not an integral
domain: if k = mn for m, n 6= 0, m, n < k , then mn = 0 in
Z(k).

If k is prime, then Z(k) is an integral domain because if
mn = k = 0 for m, n < k , then either m or n must be zero,
otherwise m, n witness that k is not prime (note that
m, n < k so neither m or n can be 1 because then the other
number would need to be k). It follows by the previous lemma
that Z(k) is already a field.

Remark. Unlike groups, fields cannot have an arbitrary finite size.
It can be shown that if F is a finite field, then |F | = pn for some
prime number p.11

11Morever, every two finite fields of the same size are isomorphic, so up to
isomorphism there is exactly one field of size pn for every prime p and
1 ≤ n ∈ N.
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Example 2. Complete fields are used development of
mathematical analysis. For instance, the notion of differentiation
involves division, i.e. multiplicative inverses, and therefore in
general a ring structure is not enough, and a field is required.

This is the reason whey real analysis and complex analysis are
powerful tools. Analysis for vector spaces for Rn for n > 2 is
possible,12 but some concepts cannot be developed completely (for
instance differentiation can only be applied partially, with all but
one coordinate being fixed).

12Recall that Rn for n > 2 cannot be equipped by a field structure which
extends C.
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Example 3. Vector space is an algebraical structure which
combines an abelian group with a field.

Definition

We say that V is a vector space over a field F if the following
hold:

V is an abelian group.

F is a field. We denote elements of F by Greek letters
α, β, . . ., and write αβ for their multiplication.

Elements of F , called scalars, act on V : for every vector
x ∈ V and scalar α, αx is a vector. This acting has following
properties:

α(βx) = (αβ)x .
1F x = x .
α(x + y) = αx + αy .
(α + β)x = αx + βx .
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A simple, but an important example, of a vector space is the
n-dimensional vector space Rn. The vectors are identified with
n-tuples of reals, i.e. with elements of Rn, and the the field F is
the reals R.

R with +,−, 0 can be viewed as a vector space over the field Q,
similarly C is a vector space over Q or R.
See more details on the whiteboard.
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Construction and uniqueness of Z

Recall that N is defined as the unique set which is the intersection
of all inductive sets.13

N =
⋂
{X |X is inductive}.

The uniqueness of N ensures that up to isomorphism, all other
number domains Z,Q,R,C are unique. This uniqueness extends to
number domains considered as groups or rings.

13X is inductive if (i) ∅ ∈ X , and (ii) for x ∈ X , x ∪ {x} ∈ X .
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Theorem

Up to isomorphism, the group 〈Z,+,−, 0〉 is unique.

To prove the theorem, we need to show two things:

Existence: we need to construct Z (using N and constructions
available by axioms of set theory).

Uniqueness: we need to show that up to isomorphism, what
we constructed is unique.

See the whiteboard for a sketch of the proof.
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The notion of an isomorphism. The notion of isomorphism is
defined with respect to the operations and relations which are
present in the structures in question. We give just examples which
are most important for us:

Definition

Suppose G = 〈G ,+,−, 0〉 and F = 〈F , ·,−1, 1〉 are two groups. We
say they are isomorphic, and we write G ∼= F , if there is a bijection
f : G → F which has the following properties for all x , y ∈ G :

f (x + y) = f (x)f (y),

f (−x) = f (x)−1,

f (0) = 1.

It is in this sense that Z(k) is isomorphic to the addition on
{0, . . . , k − 1} mod k .
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Definition

Suppose (A, <) and (B,≺) are two partial orders. Then they are
isomorphic if there is a bijection f : A→ B which satisfies the
following for all x , y ∈ A:

x < y ↔ f (x) ≺ f (y).

For instance (Z, <) is isomorphic to (Zk , <) for all k > 1. We will
see in a future lecture that in this sense (Q, <) is isomorphic to
each of its subintervals ((q0, q1), <), for q0 < q1.

But first let us say something about the size of number domains:
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Comparing sizes of infinite sets: N, Z, Q, R, C

Suppose X ,Y are sets (finite or infinite). Recall that X has a size
smaller or equal than Y , |X | ≤ |Y |, if there is an injective function
from X into Y . X and Y have the same size, |X | = |Y |, if there is
a bijection between them. X is strictly smaller than Y , |X | < |Y |,
if there is an injective function from X into Y but no bijection.14

Definition

An infinite set X is called countable it there is a bijection between
X and N. Otherwise it is called uncountable.

Theorem

N,Z,Q are all countable. R, C, Rn, n ∈ N, n ≥ 1 are all
uncountable and have the same size.

14Another notation for these notions is X � Y ,X ≈ Y ,X ≺ Y .
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With the Axiom of Choice, all reasonable definitions of finite are
equivalent, and in particular X is finite if there is no injective
function f : X → X which is not onto (in other words, X is finite
iff every injective function f : X → X is already a bijection). For
infinite sets this fails, so the following theorem (which we will
prove in Set theory class) is useful when dealing with infinite sets:

Theorem (Cantor-Bernstein)

For all sets X ,Y , if |X | ≤ |Y | and |Y | ≤ |X |, then |X | = |Y |.

As we mentioned above, this theorem is trivial for finite sets: if
X ,Y are finite that and f : X → Y , g |Y → X are injective, then
both f , g are actually bijections.
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For a set X , let X<ω be the set of all finite sequences of elements
in X .

Theorem

|N| ≤ |Z| ≤ |Q| ≤ |N<ω| ≤ |N|. Hence N,Z,Q are countable.

Proof.

Hint: Let P = {p0, p1, . . .} be the set of all prime numbers. For
each finite sequence s = 〈n0, . . . , nk〉 of natural numbers, let f (s)
be the number pn00 · · · p

nk
k . By the factorization theorem in

arithmetics if s 6= s ′ then f (s) 6= f (s ′) and so f is injective
function from N<ω into N, and so |N<ω| ≤ |N|. The rest follows
by the Cantor-Bernstein theorm and the fact that Z and Q can be
indentified with pairs of natural numbers.
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Theorem

|N| < |R| = |C| = |Rn| for all n ≥ 1.

Proof.

(Hint) It is a fact (which we will prove in Set theory class) that
|R| = |P(N)|, in fact (∗) for any interval (r0, r1), r0 < r1,
|(r0, r1)| = |P(N)|. Racall that Cantor’s theorem implies
|N| < |P(N)|, and so |R| is uncountable. Regarding the rest of the
theorem, we will sketch that there is a injection from
(0, 1)× (0, 1)→ (0, 1), and so by Cantor-Bernstein and (∗) it
follows |R| = |R2| = |C|. If x = 0.x0x1 . . . and y = 0.y0y1 . . . are
two decimal representations of reals in (0, 1)a, set
f (x , y) = 0.x0y0x1y1 . . .. Exercise: Check that this is an injective
function. Exercise: Generalize this idea to argue that (0, 1)n has
the same size as (0, 1) for n ≥ 1.

aUse some unique representation: for instance avoid a tail of 9’s, eg. use
0.1000 . . . and not 0.099999 . . . to represent 1/10.
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We will see in Set theory class that these results do not apply just
to number domains: if X is an infinite set, the |X 2| = |X | and by
induction |X<ω| = |X |. This in general requires the Axiom of
Choice.
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The field Q, and the uniqueness of the ordering on Q

[ The slides will be added as we approach this topic ]
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