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ABSTRACT

Weak instruments can produce biased IV estimators and hypothesis tests with
large size distortions. But what, precisely, are weak instruments, and how does one
detect them in practice? This paper proposes quantitative definitions of weak instruments
based on the maximum IV estimator bias, or the maximum Wald test size distortion,
when there are multiple endogenous regressors. We tabulate critical values that enable
using the first-stage F-statistic (or, when there are multiple endogenous regressors, the
Cragg-Donald (1993) statistic) to test whether given instruments are weak.
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1. Introduction

Standard treatments of instrumental variables (1V) regression stress that for
instruments to be valid they must be exogenous. It is also important, however, that the
second condition for avalid instrument, instrument relevance, holds, for if the
instruments are only marginally relevant, or “weak,” then first-order asymptotics can be a
poor guide to the actual sampling distributions of conventional |1V regression statistics.

At aformal level, the strength of the instruments matters because the natural
measure of this strength — the so-called concentration parameter — plays arole formally
akin to the sample sizein IV regression statistics. Rothenberg (1984) makes this point in
his survey of approximations to the distributions of estimators and test statistics. He

considered the single equation IV regression model,

y=YB+u, (1.2)

wherey and Y are Tx1 vectors of observations on the dependent variable and endogenous
regressor, respectively, and u isa Tx1 vector of i.i.d. N(O,qy,) errors. The reduced form

equation for Y is

Y=2Z/7+V, (1.2)

where Z isa TxK; matrix of fixed, exogenous instrumental variables, /7isaK;x1

coefficient vector, and V isa Tx1 vector of i.i.d. N(O,a) errors, where corr(u,Vy) = o.



The two stage least squares (TSLS) estimator of Bis 8™ = (Y'P2y)/ (Y'P,Y),

where P, = Z(Z'2)Z'. Rothenberg (1984) expresses 8™ as

QTS _ - O-uu v’ gu +(S/u /ﬂ) 13
Ho==h [GW] 1+(20, 1) +(Sy 1 1) -9

where &, = 17'Z’ul(0uwl1'Z’ZINY2, & = T ZNI(GnIT'Z' 22, Sy = V 'P2ul(0uoin) Y2,
Sw = V'P2V/cw, and iisthe square root of the concentration parameter, 1/ =
MzZ'Z17 o

Under the assumptions of fixed instruments and normal errors, ¢, and ¢y are
standard normal variables with correlation o, and Sy, and Sy are elements of a matrix
with a central Wishart distribution. Because the distributions of ¢, &, Sw, and Sy, do
not depend on the sample size, the sample size enters the distribution of the TSLS
estimator only through the concentration parameter. In fact, the form of (1.3) makesit

clear that £/ can be thought of as an effective sample size, in the sense that xformally

plays the role usually associated with JT . Rothenberg (1984) proceeds to discuss
expansions of the distribution of the TSLS estimator in orders of £, and he emphasizes
that the quality of these approximations can be poor when ¢Z is small. This has been
underscored by the dramatic numerical results of Nelson and Startz (1990a, 1990b) and
Bound, Jaeger and Baker (1995).

If £/ isso small that inference based on some IV estimators and their

conventional standard errors are potentially unreliable, then the instruments are said to be



weak. Buit this raisestwo practical questions. First, precisely how small must £# be for
instruments to be weak? Second, because /7, and thus (7, is unknown, how is an applied
researcher to know whether 7 isin fact sufficiently small that his or her instruments are
weak?

This paper provides answers to these two questions. First, we develop precise,
guantitative definitions of weak instruments for the general case of n endogenous
regressors. In our view, the matter of whether a group of instrumental variables is weak
cannot be resolved in the abstract; rather, it depends on the inferential task to which the
instruments are applied and how that inference is conducted. We therefore offer two
aternative definitions of weak instruments. Thefirst definition is that a group of
instrumentsisweak if the bias of the IV estimator, relative to the bias of ordinary least
sguares (OLS), could exceed a certain threshold b, for example 10%. The second is that
the instruments are weak if the conventional a-level Wald test based on IV statistics has
an actual size that could exceed a certain threshold r, for example r = 10% when a = 5%.
Each of these definitions yields a set of population parameters that defines weak
instruments, that is, a“weak instrument set.” Because different estimators (e.g., TSLS or
LIML) have different properties when instruments are weak, the resulting weak
instrument set depends on the estimator being used. For TSLS and other k-class
estimators, we argue that these weak instrument sets can be characterized in terms of the
minimum eigenvalue of the matrix version of 1A/Ko.

Second, given this quantitative definition of weak instrument sets, we show how
to test the null hypothesis that a given group of instruments is weak against the

alternative that it is strong. Our test is based on the Cragg-Donald (1993) statistic; when



there is a single endogenous regressor, this statistic is simply the “first-stage F-statistic”,
the F-statistic for testing the hypothesis that the instruments do not enter the first stage
regression of TSLS. The critical valuesfor the test statistic, however, are not Cragg and
Donald’'s (1993): our null hypothesisis that the instruments are weak, even though the
parameters might be identified, whereas Cragg and Donald (1993) test the null hypothesis
of underidentification. We therefore provide tables of critical values that depend on the
estimator being used, whether the researcher is concerned about bias or size distortion,
and the numbers of instruments and endogenous regressors. These critical values are
obtained using weak instrument asymptotic distributions (Staiger and Stock (1997)),
which are more accurate than Edgeworth approximations when the concentration
parameter is small.

This paper is part of agrowing literature on detecting weak instruments, surveyed
in Stock, Wright, and Y ogo (2002) and Hahn and Hausman (2003). Cragg and Donald
(1993) proposed atest of underidentification, which (as discussed above) is different
from atest for weak instruments. Hall, Rudebusch, and Wilcox (1996), following the
work by Bowden and Turkington (1984), suggested testing for underidentification using
the minimum canonical correlation between the endogenous regressors and the
instruments. Shea (1997) considered multiple included regressors and suggested looking
at apartial R%. Neither Hall, Rudebusch, and Wilcox (1996) nor Shea (1997) provide a
formal characterization of weak instrument sets or aformal test for weak instruments,
with controlled type | error, based on their respective statistics. For the case of asingle
endogenous regressor, Staiger and Stock (1997) suggested declaring instruments to be

weak if the first-stage F-statistic isless than ten. Recently Hahn and Hausman (2002)



suggested comparing the forward and reverse TSLS estimators and concluding that
instruments are strong if the null hypothesis that these are the same cannot be rejected.
Relative to this literature, the contribution of this paper istwofold. First, we provide a
formal characterization of the weak instrument set for a general number of endogenous
regressors. Second, we provide atest of whether given instrumentsfall in this set, that is,
whether they are weak, where the size of the test is controlled asymptotically under the
null of weak instruments.

Therest of the paper is organized asfollows. The IV regression model and the
proposed test statistic are presented in Section 2. The weak instrument sets are developed
in Section 3. Section 4 presents the test for weak instruments and provides critical values
for tests based on TSLS bias and size, Fuller-k bias, and LIML size. Section 5 examines

the power of the test, and conclusions are presented in Section 6.

2. ThelV Regression Model, the Proposed Test Statistic, and

Weak | nstrument Asymptotics

2.1. ThelV Regression Model
We consider the linear IV regression model (1.1) and (1.2), generalized to have n

included endogenous regressors Y and K included exogenous regressors X:

y=YSB+ Xy+u, (2.1)

Y=Z/T+X@+V, (2.2)



whereY is now a Txn matrix of included endogenous variables, X isa TxK; matrix of
included exogenous variables (one column of which is1’sif (2.1) includes an intercept),
Z isaTxK, matrix of excluded exogenous variables to be used as instruments, and the
error matrix V is Txn. Itisassumed throughout that K;=>n. LetY =[y Y] andZ = [X Z]
respectively denote the matrices of all the endogenous and exogenous variables. The
conformable vectors B and yand the matrices /7 and @ are unknown parameters.

Throughout this paper we exclusively consider inference about S.
LetXe= (Xy o X )\ Ze= (Zy - Z ) Ve= (Vy - V), andZi=

(X{ Z{)' denote the vectors of the t™ observations on these variables. Alsolet Sand Q

denote the population second moment matrices,

ut ' _ O-uu z'uV _ " — QXX QXZ _
e v 2 [g S oa

2.2. k-Class Estimatorsand Wald Statistics

« O

Let the superscript “ = denote the residuals from the projection on X, so for

example Y™ = MxY, where My = | — X(X'X)*X'. In this notation, the OLS estimator of 3

is B = (YY) (Y™y). Thek-class estimator of Bis

BK) =Y -kM_OYTHYT (1 -kM Y. (2.4)



The Wald statistic, based on the k-class estimator, testing the null hypothesis that

B=pois

[BK) = BITY (1 =kM )Y T[B(K) - B]

9= n6.,,(K)

: (2.)

where 8, (k) = G°(K)" G°(K) /(T — K1 —n), where G°(k) =y~ - YP B(K) .

This paper considers four specific k-class estimators: TSLS, the limited
information maximum likelihood estimator (LIML), the family of modified LIML
estimators proposed by Fuller (1977) (“Fuller-k estimators’), and bias-adjusted TSLS

(BTSLS; Nagar (1959), Rothenberg (1984)). The values of k for these estimators are (cf.

Donald and Newey (2001)):
TSLS: k=1, (2.6)
LIML: k= IQL,ML isthe smallest root of det(Y'MxY - KY'MzY) =0, (2.7)
Fuller-k: k= IQL,ML —c/(T-K1—Ky), where cisapositive constant,  (2.8)
BTSLS: k=T/(T-K;+2), (2.9

where det(A) is the determinant of the matrix A. If the errors are symmetrically
distributed and the exogenous variables are fixed, LIML is median unbiased to second
order (Rothenberg (1983)). In our numerical work, we examine the Fuller-k estimator

with ¢ = 1, which is the best unbiased estimator to second order among estimators with k

=1l+a( IQL,ML —1) —c/(T —Ky—Kjy) for some constants a and ¢ (Rothenberg (1984)). For



further discussion, see Donald and Newey (2001) and Stock, Wright, and Y ogo (2002,
Section 6.1).
2.3. The Cragg-Donald Statistic

The proposed test for weak instruments is based on the eigenvalue of the matrix

analog of the F-statistic from the first stage regression of TSLS,

Gr= ZV2YY P, YISV IK,, (2.10)

where Z,, = (Y'MzY)/(T-K1—K>).2 Thetest statistic is the minimum eigenvalue of Gr:

Omin = Mineval (Gr). (2.11)

This statistic was proposed by Cragg and Donald (1993) to test the null
hypothesis of underidentification, which occurs when the concentration matrix is
singular. Instead, we are interested in the case that the concentration matrix is
nonsingular but its eigenvalues are sufficiently small that the instruments are weak. To
obtain the limiting null distribution of the Cragg-Donald statistic (2.11) under weak
instruments, we rely on weak instrument asymptotics.

2.4. Weak Instrument Asymptotics: Assumptionsand Notation

We start by summarizing the elements of weak instrument asymptotics from
Staiger and Stock (1997). The essential idea of weak instrumentsisthat Z isonly weakly
related to Y, given X. Specifically, weak instrument asymptotics are developed by

modeling /7 aslocal to zero:



Assumption L7 /7= 7= C/ﬁ, where C is afixed Koxn matrix.

Following Staiger and Stock (1997), we make the following assumption on the

moments:

Assumption M. The following limits hold jointly for fixed K:
p
@ (Thu'u, TVU, TVYV) - (G Svu Sw);
p
B TZZ - Q;

d
(© (TY2X'u, TY?Z'u, TV2X'V, TY22'V) o (W, o, v, $ov), Where W=

[, o, vec(¥y)', vec(¥4y)']" isdistributed N(O, 201 Q).

Assumption M can hold for time series or cross-sectional data. Part (C) assumes
that the errors are homoskedastic.

Notation and definitions. The following notation in effect transforms the
variables and parameters and simplifies the asymptotic expressions. Let p=
Ty o2 0=315, =02 5 %p A= QPCIY N= X AK,, and 2= Qg —

Qzx Qx Qxz. Notethat gp< 1. Definethe K, x 1 and K x n random variables, z, =

Q7 (Y- Qex Qi Y 0™ and 2y = 07 (Woy = Qax Qe H) Z*, 0

4 S =_|1 p
[vec(z\,)J ~N(, 201, ), where X _{p } (2.12)



Also let

n=A+z) (A+z) and (2.13)

wL=(A+2) z. (2.14)

2.5. Selected Weak Instrument Asymptotic Representations
We first summarize some results from Staiger and Stock (1997).

OLS estimator. Under Assumptions L7 and M, the probability limit of the OLS
~ P
estimatoris B - B+ 6.

d
k-class estimators. Supposethat T(k—1) — 4. Then under Assumptions L and

BK) —ﬂi ol? TP (- ko) (va—kp) and (2.15)

W(k) i (Vz_l_ Kp) I(Vl _Kl n)_l(V2 _Kp) - , (216)
nl-2p'(v, -xl1,)" (v, —&p) +(v, —xp)'(v; —x1,)" (v, —&p)]

where (2.16) holds under the null hypothesis £ = .
For LIML and the Fuller-k estimators, « is arandom variable, while for TSLS and
BTSLS xisnonrandom. Let = bethe (n+ 1) x (n+ 1) matrix, ==

[0 (A+2)] [z0 (A+2)]. Thenthelimitsin (2.15) and (2.16) hold with:

10



TSLS: k=0, (2.17)

LIML: K= K*, where k* isthe smallest root of det(=—xX) =0, (2.18)
Fuller-k: K = K* — ¢, where cisthe constant in (2.8), and (2.19)
BTSLS: Kk=Ky—-2. (2.20)

~ d
Note that the convergence in distribution of T(k,,, —1) - «* isjoint with the

convergencein (2.15) and (2.16). For TSLS, the expressionsin (2.15) and (2.16)

simplify to

~ d
B -B - 022 X v, and (2.21)

TSLS i Vz 'Vl_]vz
n(l_ 2plvl_lVZ +V2 'V1_2V2)

(2.22)

Weak instrument asymptotic representations: the Cragg-Donald statistic.
Under the weak instrument asymptotic assumptions, the matrix Grin (2.10) and the

Cragg-Donald statistic (2.11) have the limiting distributions,

d
Gr - Vl/Kz and (223)

d
Omin — Mineval (K/Ky). (2.24)

11



Inspection of (2.13) revealsthat v; has a noncentral Wishart distribution with
noncentrality matrix A'A = KA. This noncentrality matrix is the weak instrument limit of

the concentration matrix:

p
SAEMZZAE? - KA. (2.25)

Thus the weak instrument asymptotic distribution of the Cragg-Donald statistic
Omin IS that of the minimum eigenvalue of anoncentral Wishart, divided by K>, where the
noncentrality parameter is Ko/1. To obtain critical values for the weak instrument test
based on gmin, We characterize the weak instrument set in terms of the eigenvalues of A,

the task taken up in the next section.

3. Weak Instrument Sets

This section provides two general definitions of aweak instrument set, the first
based on the bias of the estimator and the second based on size distortions of the
associated Wald statistic. These two definitions are then specialized to TSLS, LIML, the
Fuller-k estimator, and BTSLS, and the resulting weak instrument sets are characterized
in terms of the minimum eigenvalues of the concentration matrix.

3.1. First Characterization of a Weak Instrument Set: Bias

One consequence of weak instrumentsisthat IV estimators are in general biased,
so our first definition of aweak instrument set isin terms of its maximum bias.

When there is a single endogenous regressor, it is natural to discuss biasin the

units of B, but for n > 1, a bias measure must scale 8 so that the bias is comparable across

12



elementsof B A natural way to do this s to standardize the regressors Y- so that they

have unit standard deviation and are orthogonal or, equivalently, to rotate Bby X7/

where X, =plim(Y™"Y"/T). Inthese standardized units, the squared bias of an IV
estimator, which we generically denote by 8", is(EZ" - B Z,.. (EB" - B. Asour
measure of bias, we therefore consider the relative squared bias of the candidate 1V

estimator 3", relative to the squared bias of the OLS estimator,

EAIV_ IZLLEAIV_
BTZ:(’BA B) YY(ﬂA ﬂ)_ (31)
(Eﬂ—ﬂ)'ZYLYL(Eﬂ _)8)
If n =1, then the scaling matrix in (3.1) drops out and the expression simplifiesto Br =
EB"Y — BIE B — B The measure (3.1) was proposed, but not pursued, in Staiger and
Stock (1997).

The asymptotic relative bias, computed under weak instrument asymptotics, is
denoted by B = limr_, Bt . Under weak instrument asymptotics, E( ,é -p - 0=
ol Eypand X, . — S, sothedenominator in (3.1) hasthe limit

(E,é -p) .. (E,é -B) - oudp. Thusfor gp> 0, the square of the asymptotic

relative biasis

(EF" -B) 2, (EF" -B)

B°= g, limr_e /
pp

(3.2)

13



We deem instruments to be strong if they lead to reliable inferences for all
possible degrees of simultaneity o; otherwise they are weak. Applied to the relative bias

measure, this leads us to consider the worst-case asymptotic relative bias,

B™ = MaXyp 0< pp< 1|B| (33)

Thefirst definition of aweak instrument set is based on this worst-case bias. We
define the weak instrument set, based on relative bias, to consist of those instruments that
have the potentia of |eading to asymptotic relative bias greater than somevalueb. In

population, the strength of an instrument is determined by the parameters of the reduced

form equation (2.2). Accordingly, let Z={/7, 2y, £2}. Therelative bias definition of

weak instrumentsis

Wias = { Z: B™* > b}. (3.9

Relative bias vs. absolute bias. Our motivation for normalizing the squared bias
measure by the bias of the OL S estimator isthat it helps to separate the two problems of
endogeneity (OLS bias) and weak instrument (1V bias). For example, in an application to
estimating the returns to education, based on areading of the literature the researcher
might believe that the maximum OLS biasis ten percentage points; if the relative bias
measurein (3.1) is 0.1, then the maximum bias of the IV estimator is one percentage

point. Thus formulating the bias measure in (3.1) as arelative bias measure allows the

14



researcher to return to the natural units of the application using expert judgment about the
possible magnitude of the OLS bias.

This said, we will show that the maximal TSLSrelative biasis also its maximal
absolute bias in standardized units, so that for TSLS the maximal relative and absolute
bias can be treated interchangeably. We return to this point in Section 3.3.

3.2. Second Char acterization of a Weak Instrument Set: Size

Our second definition of aweak instrument set is based on the maximal size of
the Wald test of all the elements of B. In paralé to the approach for the bias measure,
we consider an instrument strong from the perspective of the Wald test if the size of the

test isclosetoitslevel for all possible configurations of the IV regression model. Let

W" denote the Wald test statistic based on the candidate IV estimator 3" . For the

estimators considered here, under conventional first-order asymptotics W has a chi-
squared null distribution with n degrees of freedom, divided by n. The actual rejection

rate Ry under the null hypothesisis

Rr= Pr, [WY> »2 In], (3.5)

where an;a isthe a-level critical value of the chi-squared distribution with n degrees of

freedom and a isthe nominal level of the test.
In generdl, the rgjection rate in (3.5) depends on p. Asin the definitions of the

bias-based weak instrument set, we consider the worst-case limiting rejection rate,

R™ =max, gp<1 R where R=limr_« Rr. (3.6)

15



The size-based weak instrument set Wy consists of instruments that can lead to a

sizeof atleastr > o

Weze ={Z: R™ >r}. (3.7)

For example, if a = .05 then aresearcher might consider it acceptable if the worst case
sizeisr = 0.10.
3.3 Weak Instrument Setsfor TSLS

We now apply these general definitions of weak instrument setsto TSLS and
argue that the sets can be characterized in terms of the minimum eigenvalue of A.

Weak instrument set based on TSLS bias. Under weak instrument asymptotics,

(BI*SY % = (6™ and 39
max 'h'h
(B™ ™92 = max, o< ppe1 pp,pp, (39)

where h = E[v;" (A + 2y)'2,]. The asymptotic relative bias B™° depends on pand A,
which are unknown, as well as K, and n.

Because h depends on A but not p, by (3.8) we have that B™* -5 =
[maxeval (h'h)]¥?, where maxeval (A) denotes the maximum eigenvalue of the matrix A.

By applying the singular value decomposition to A, it is further possible to show that the

16



maximum eigenva ue of h'h depends only on K, n, and the eigenvalues of A'A/K; = A. It
follows that, for a given K, and n, the maximum TSLS asymptotic biasis a function only
of the eigenvalues of /.

When the number of instrumentsislarge, it is possible to show further that the
maximum TSLS asymptotic biasis a decreasing function of the minimum eigenvalue of
/. Specifically, consider sequences of K, and T suchthat K, » 0o and T — oo jointly,
subject to K? /T - 0, where /A (which in general depends on Kj) is held constant as K
- .2 Wewritethisjoint limit as (Ko, T — ) and, following Stock and Y ogo (2003),
werefer to it as representing “ many weak instruments.” It follows from (3.9) and

Theorem 2(a) of Stock and Y ogo (2003) that the many weak instrument limit of B[ is,

. (A+1)2
lim ;. (BIE®)? = %. (3.10)

By solving the maximization problem (3.9), we obtain the many weak instrument limit,

B™ ™5 = (1 + mineval (A)) ™. It follows that, for many instruments, the set Whias ta s

can be characterized by the minimum eigenvalue of A, and the TSLS weak instrument set

Wias, Ta.s Can be written as

Whias, a.s = { Z2: mineva(A) < £ pias 1s.s(b;K2,n)}, (3.11)

where / pias, 19.5(b;K2,n) is a decreasing function of the maximum alowable bias b.

17



Our formal justification for the simplification that Whias, 1s.s depends only on the

smallest eigenvalue of A, rather than on all its eigenvalues, rests on the many weak
instrument asymptotic result (3.10). Numerical analysisfor n = 2 suggests, however, that
B™* ™-5is decreasing in each eigenvalue of A for all values of K,. These numerical
results suggest that the simplification in (3.11), relying only on the minimum eigenvalue,
isvalid for al K, under weak instrument asymptotics, even though we currently cannot
provide aformal proof.*

Reinterpretation in terms of absolute bias. Although B™ was defined as

maximal biasrelativeto OLS, for TSLS B™ is also the maximal absolute biasin

standardized units. The numerator of (3.8) is evidently maximized when 0 p= 1. Thus,

for TSLS, (3.2) can be restated as (B™)? = 0, maX, pp=1limr_ o

(EB™°-8)'2 . . (EB™°-pB). But (EF™°-B)'% . . (EB™° - B) isthesquared
biasof ™S, not relative to the bias of the OLS estimator. For TSLS, then, the relative

bias measure can alternatively be reinterpreted as the maximal bias of the candidate IV

estimator, in the standardized units of o,,'°27'% | .

Weak instrument set based on TSLSsize. For TSLS, it follows from (2.22) that

the worst-case asymptotic sizeis

(3.12)

v,'v'v
R™ TS = max, yp<1 P 2 71 72 > y2 1.
P pp= 1-2p'vv, +v, vV, Ana

18



R™* T35 and consequently Wiz ta s, depends only on the eigenvalues of A aswell asn

and K (the reason is the same as for the similar assertion for B™* ™5,

When the number of instrumentsis large, the Wald statistic is maximized when
P p=1andisanincreasing function of the eigenvalues of A. Specificaly, it is shownin
Stock and Y ogo (2003), Theorem 2(a), that the many weak instrument limit of the TSLS

Wald statistic, divided by K, is

WSSIK, pA+1,)"p . (3.13)
nl-2p(A+1)"p+p(A+1,)?p]

Theright hand side of (3.13) is maximized when g p = 1, in which case this expression
can bewritten, g(A + 1) A 2[1n— (A + 1) %p. Inturn, the maximum of this ratio over
p depends only on the eigenvalues of A and is decreasing in those eigenval ues.

The many weak instrument limit of R™* ™5is

Rmax, TS = maXp' gp<l ”m(KZ’T ) Pr[WTSLS/KZ > Zﬁ;a /(nKz)] = 1, (3.14)

where the limit follows from (3.13) and from ;(ria/(nKz) - 0. With many weak

instruments, the TSLS Wald statistic W™-°is Oy(K>), so the boundary of the weak
instrument set, in terms of the eigenvalues of A, increases as a function of K, without

bound.

19



For small values of K, numerical analysis suggests that R™* ™=-isa
nonincreasing function of all the eigenvalues of A, which (if so) impliesthat the
boundary of the weak instrument set can, for small K5, be characterized in terms of this
minimum eigenvalue. The argument leading to (3.11) therefore applies here and leadsto

the characterization,

Wsize Ta.s={ Z: mineval(N) £ / gz ta.5(r;K2,n,a) }, (3.15)

where / g4z 1 .5(r;K2,n,a) is decreasing in the maximal allowable sizer.
3.4 Weak Instrument Setsfor Other k-class Estimators

The general definitions of weak instrument sets given in Sections 3.1 and 3.2 aso
can be applied to other 1V estimators. The weak instrument asymptotic distribution for
general k-class estimatorsis given in Section 2.2. What remains to be shown is that the
weak instrument sets, defined for specific estimators and test statistics, can be
characterized in terms of the minimum eigenvalue of A. Asinthe caseof TSLS, the
argument for the estimators considered here has two parts, for small K; and for large Ka.

For small K, the argument applied for the TSLS bias can be used generally for k-
class statistics to show that, given K, and n, the k-class maximal relative bias and
maximal size depend only on the eigenvalues of A. In general, this dependenceis
complicated and we do not have theoretical results characterizing this dependence.
Numerical work for n = 1 and n = 2 indicates, however, that the maximal bias and
maximal size measures are decreasing in each of the eigenvalues of A in the relevant

range of those eigenvalues.®> Thisin turn means that the boundary of the weak instrument
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set can be written in terms of the minimum eigenvalue of A, although this
characterization could be conservative (see footnote 4).

For large K5, we can provide theoretical results, based on many weak instrument
limits, showing that the boundary of the weak instrument set depends only on
mineval(AN). These results are summarized here.

LIML and Fuller-k. Asshown in Stock and Y ogo (2003), Theorem 2(c), the
LIML and Fuller-k estimators and their Wald statistics have the many weak instrument

asymptotic distributions,

\/K—z(ﬂALIML _m i N(O, Oijuzvv—\}/Z/‘—l(/‘ + |n_pﬂ)/|_12v_\:/l/2'), (3.16)

wme X' (A + 1= p0) PA NN + 1, = po) > x/n, wherex ~ N(O, 1),  (3.17)

where these distributions are written for LIML but also apply to Fuller-k.
An implication of (3.16) isthat the LIML and Fuller-k estimators are consi stent
under the sequence (Ko, T) — oo, aresult shown by Chao and Swanson (2002) for LIML.
Thus the many weak instrument maximal relative bias for these estimators is zero.
Animplication of (3.17) isthat the Wald statistic is distributed as a weighted sum
of nindependent chi-squared random variables. When n =1, it follows from (3.17) that

the many weak instrument size has the simple form,

, LIML _ . IML 2
R = MaXy pp<1 limy ;. PIWME > 22 ]
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= Pr[/%’lz >

A4,
A +1 Zl;a]’ (318)

that is, the maximal sizeisthetail probability that a chi-squared distribution with one

degree of freedom exceeds (//(A + 1)) ;(fa . Thisevidently isdecreasing in /1 and

depends only on A (which trivially hereisits minimum eigenvalue).
BTSLS. The many weak instrument asymptotic distributions of the BTSLS

estimator and Wald statistic are (Stock and Y ogo (2003), Theorem 2(b)),

~ d
VK, (BF3° =B - N(O, a2’ A+ 10+ po) A 257, (3.19)

wWerss © XA+ 1y + pd)PAYN A + 1, + pd) 2 x/n, where x ~ N(O, I,). (3.20)

It follows from (3.19) that the BTSLS estimator is consistent and that its maximal
relative bias tends to zero under many weak instrument asymptotics.
For n =1, the argument leading to (3.18) appliesto BTSLS, except that the factor

isdifferent: the many weak instrument limit of the maximal sizeis
BTSLS 2 A 2
R™ES2=Prl gy > —— 21 (3.21)

A+2

which is a decreasing function of A.
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It isinteresting to note that, according to (3.18) and (3.21), for agiven value of A
the maximal size distortion of LIML and Fuller-k testsis |ess than that of BTSLS when
there are many weak instruments.

3.5. Numerical Resultsfor TSLS, LIML, and Fuller-k

We have computed weak instrument sets based on maximum bias and size for
several k-class statistics. Here, we focuson TSLS bias and size, Fuller-k (withc=11in
(2.8)) bias, and LIML size. Additional results are reported in Stock, Y ogo, and Wright
(2002). Because LIML does not have momentsin finite samples, LIML biasis not well-
defined so we do not analyze it here.

The TSLS maximal relative bias was computed by Monte Carlo simulation for a
grid of minimal eigenvalue of A from 0to 30 for K, =n+ 2,..., 100, using 20,000 Monte
Carlo draws. Computing the maximum TSLS bias entails computing h defined following
(3.8) by Monte Carlo simulation, given n, K5, then computing the maximum bias,
[maxeval (h'h)]¥2. Computing the maximum bias of Fuller-k and the maximum size
distortions of TSLS and LIML is more involved than computing the maximal TSLS bias
because there is no simple analytic solution to the maximum problem (3.6). Numerical
analysis indicates that R is maximized when g 0= 1, so the maximization for n = 2
was done by transforming to polar coordinates and performing agrid search over the half
unit circle (half because of symmetry in (2.22)). For Fuller-k biasand LIML size,
maximization was performed over this half circleand over 0< g p< 1. Because the bias
and size measures appear to be decreasing functions of al the eigenvalues, at least in the

relevant range, weset A= /1,. The TSLS size calculations were performed using agrid
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of ¢/ with0O< ¢ <75 (100,000 Monte Carlo draws); for Fuller-k bias, 0< ¢ < 12 (50,000

Monte Carlo draws); and for LIML size, 0< ¢ < 10 (100,000 Monte Carlo draws).

The minimal eigenvalues of A that constitute the boundaries of Whias, 19.s,

Wsize, TsLS, YWhias, Fuller-k: @Nd Waize LimL &€ plotted, respectively, in the top panels of

Figures 1 — 4 for various cutoff valuesb and r. First consider the regions based on bias.

The boundary of Whias 1o s 1S essentially flat in K; for K sufficiently large; moreover, the

boundariesfor n =1 and n = 2 are numerically very similar, even for small K,. The
boundary of the relative bias region for b = 0.1 (10% bias) asymptotes to approximately 8
for bothn=1and n=2. In contrast, the boundary of the bias region for Fuller-k tends to
zero as the number of instruments increase, which agrees with the consistency of the

Fuller-k estimator under many weak instrument asymptotics.

Turning to the regions based on size, the boundary of W, ts.s depends strongly

on K and n; as suggested by (3.14), the boundary is approximately linear in K, for K,
sufficiently large. The boundary eigenvalues are very large when the degree of
overidentification islarge. For example, if oneiswilling to tolerate a maximal size of
15%, so the size distortion is 10% for the 5% level test, then with 10 instruments the

minimum eigenvalue boundary is approximately 20 for n = 1 and approximately 16 for

n=2. In contrast, the boundary of Wsz, LimL decreases with K, for bothn =1 and n=2.

Comparing these two plots shows that tests based on LIML are far more robust to weak

instruments than tests based on TSLS.
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4. Test for Weak Instruments

This section provides critical values for the weak instrument test based on the
Cragg-Donald (1993) statistic, gmin. These critical values are based on the boundaries of
the weak instrument sets obtained in Section 3 and on a bound on the asymptotic
distribution of gmin.
4.1 A Bound on the Asymptotic Distribution of gmin.

Recall that the Cragg-Donald statistic grin IS the minimum eigenvalue of Gr,
where Grisgiven by (2.10). Asstated in (2.23), under weak instrument asymptotics,
KoGr is asymptotically distributed as a noncentral Wishart with dimension n, degrees of

freedom Ko, identity covariance matrix, and noncentrality matrix K,A; that is,

d
Gr - Vl/Kz ~ Wn(Kz, I, Kz/l)/Kz (41)

Thejoint pdf for the n eigenvalues of a noncentral Wishart has an infinite series
expansion in terms of zonal polynomials (Muirhead [1978]). Thisjoint pdf depends on
all the eigenvalues of A, aswell asn and K,. In principle the pdf for the minimum
eigenvalue can be determined from thisjoint pdf for all the eigenvalues. It appears that
this pdf (the “exact asymptotic” pdf of gmin) depends on al the eigenvalues of A.

This exact asymptotic distribution of gmin iSsnot very useful for applications both
because of the computational difficultiesit poses and because of its dependence on al the

eigenvalues of A. Thislatter consideration is especially important because in practice
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these eigenvalues are unknown nuisance parameters, so critical values that depend on
multiple elgenvalues would produce an infeasible test.
We circumvent these two problems by proposing conservative critical values

based on the following bounding distribution.

Proposition 1. Primineval (Wn(K, I, A)) = X] < Pr[ xZ(mineval(A)) = x], where
2 (a) denotes anoncentral chi-squared random variable with noncentrality

parameter a.

Proof. Let a bethe eigenvector of A corresponding to its minimum eigenvalue.

Then dWaisdistributed y(mineval(A)) (Muirhead [1982, Theorem 10.3.6]). But

aWa = mineval (W), and the result follows.

Applying (4.1), the continuous mapping theorem, and Proposition 1, we have that

Z«, (mineval (K, A)) -

< (4.2)

Pr{gmin = X] - Pr[mineval(n/K3) 2X] < Pr

Note that this inequality holds as an equality in the special casen = 1.

Conservative critical values for the test based on gnin are obtained as follows.
First, select the desired minimal eigenvalue of A. Next, obtain the desired percentile, say
the 95% point, of the noncentral chi-squared distribution with noncentrality parameter

equal to K times this selected minimum eigenvalue, and divide this percentile by K5.°
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4.2. TheWeak Instruments Test

The bound (4.2) yields the following testing procedure to detect weak
instruments. To be concrete, thisis stated for atest based on the TSLS bias measure with
significance level 1000%. The null hypothesisis that the instruments are weak, and the

aternative isthat they are not:

Ho: Z U Whias, Tas VS. Hi: Z U Whias, TaLs- 4.3)

Thetest procedureis

where dyias ta.s(b; K2,0,d) = K;* 7 15 (Kot bias Taus (0;K2,0)), where ¢ | ;(m) isthe

100(1- 9)% percentile of the noncentral chi-squared distribution with K, degrees of
freedom and noncentrality parameter m and the function ¢ ias 195 1S the weak instrument
boundary minimum eigenvalue of /in (3.11).

The results of Section 3 and the bound resulting from Proposition 1 imply that,

asymptotically, the test (4.4) has the desired asymptotic level:

limt_ o Pr{Omin = Ohias Ta.s(b; K2,n,9) | 2 0 Wias, Tas] < O. (4.5
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The procedure for testing whether the instruments are weak from the perspective
of the size of the TSLS (or LIML) is the same, except that the critical valuein (4.4) is
obtained using the size-based boundary eigenvalue function, ¢ ¢, 19 s(r;Kz,n,a) (or, for
LIML, 7 sz uimL (r;Kz,n,0)).

4.3. Critical Values
Given aminimum eigenvalue ¢, conservative critical valuesfor the test are

percentiles of the scaled noncentral chi-squared distribution, Zéz,l— s (K22)IKa. The

minimum eigenvalue ¢ is obtained from the boundary eigenvalue functions in Section
3.5.

Critical values are tabulated in Tables 1 — 4 for the weak instrument tests based on
TSLS bias, TSLS size, Fuller-k bias and LIML size, respectively, for one and two
included endogenous variables (and three for TSLS bias) and up to 30 instruments.

These critical values are plotted in the panel below the corresponding boundaries of the
weak instrument setsin Figures 1 —4. The critical value plots are qualitatively similar to
the corresponding boundary eigenvalue plots, except of course the critical values exceed
the boundary eigenvalues to take into account the sampling distribution of the test
statistic.

These critical value plots provide a basis for comparing the robustness to weak
instruments of various procedures. the lower the critical value curve, the more robust is
the procedure. For discussion and comparisons of TSLS, BTSLS, Fuller-k, JVE, and
LIML, see Stock, Wright, and Y ogo (2002, Section 6).

Comparison to the Staiger-Stock (1997) rule of thumb. Staiger and Stock (1997)

suggested the rule of thumb that, in the n = 1 case, instruments be deemed weak if the
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first-stage F isless than ten. They motivated this suggestion based on the relative bias of
TSLS. Because the 5% critical value for the relative bias weak instrument test with b =
0.1 isapproximately 11 for al values of Ky, the Staiger-Stock rule of thumbis
approximately a 5% test that the worst case relative bias is approximately 10% or less.
This provides aformal, and not unreasonable, testing interpretation of the Staiger-Stock
rule of thumb.

The rule of thumb fares less well from the perspective of size distortion. When
the number of instrumentsis one or two, the Staiger-Stock rule of thumb correspondsto a
5% level test that the maximum size is no more than 15% (so the maximum TSLS size
distortion is no more than 10%). However, when the number of instrumentsis moderate
or large, the critical value is much larger and the rule of thumb does not provide

substantial assurance that the size distortion is controlled.

5. Asymptotic Properties of the Test asa Decision Rule

This section examines the asymptotic rejection rate of the weak instrument test as
afunction of the smallest eigenvalue of A. When this elgenval ue exceeds the boundary
minimum eigenvalue for the weak instrument set, the asymptotic rejection rate is the
asymptotic power function.

The exact asymptotic distribution of gmin depends on all the eigenvalues of A. It
is bounded above by (4.2). Based on numerical analysis, we conjecture that this
distribution is bounded below by the distribution of the minimum eigenvalue of arandom

matrix with the noncentral Wishart distribution W,(Ky, I, mineval (KoA)1p)/Kz. These

29



two bounding distributions are used to bound the distribution of grin as afunction of
mineval (A).

The bounds on the asymptotic regjection rate of the test (4.4) (based on TSLS
maximum relative bias) are plotted in Figure 5 for b= 0.1 and n = 2. The value of the
horizontal axis (the minimum eigenvalue) at which the upper rejection rate curve equals
5% is /pias(.1;K2,2). Evidently, as the minimum eigenvalue increases, so does the
rejection rate. If K, is moderate or large, thisincreaseisrapid and the test essentialy has
unit power against values of the minimum eigenvalue not much larger than the critical
value. The bounding distributions give a reasonably tight range for the actual power
function, which depends on all the eigenvalues of /.

The analogous curves for the test based on Fuller-k bias, TSLS size, or LIML size
are centered differently because the tests have different critical values but otherwise are
qualitatively similar to those in Figure 5 and thus are omitted.

I nterpretation as a decision rule. It isuseful to think of the weak instrument test
asadecisionrule: if gmin islessthan the critical value, conclude that the instruments are
weak, otherwise conclude that they are strong.

Under this interpretation, the asymptotic rejection ratesin Figure 5 bound the
asymptotic probability of deciding that the instruments are strong. Evidently, for values
of mineval (/) much below the weak instrument region boundary, the probability of
correctly concluding that the instruments are weak is effectively one. Thus, if in fact the
researcher is confronted by instruments that are quite weak, thiswill be detected by the
weak instruments test with probability essentialy one. Similarly, if the researcher has

instruments with a minimum eigenvalue of A substantially above the threshold for the
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weak instruments set, then the probability of correctly concluding that they are strong
also isessentially one.

The range of ambiguity of the decision procedure is given by the values of the
minimum eigenvalue for which the asymptotic rejection rates effectively fall between
zero and one. When K3 is small, this range can be ten or more, but for K; large this range

of potential ambiguity of the decision ruleis quite narrow.

6. Conclusions

The procedure proposed hereissimple: compare the minimum eigenvalue of Gr,
the first-stage F-statistic matrix, to acritical value. The critical value is determined by
the IV estimator the researcher is using, the number of instruments K, the number of
included endogenous regressors n, and how much bias or size distortion the researcher is
willing to tolerate. Thetest statistic is the same whether one focuses on the biasof TSLS
or Fuller-k or on thesize of TSLS or LIML; all that differsisthe critical value.

Viewed as atest, the procedure has good power, especially when the number of
instrumentsislarge. Viewed as adecision rule, the procedure effectively discriminates
between weak and strong instruments, and the region of ambiguity decreases as the
number of instruments increases.

Our findings support the view that LIML isfar superior to TSLS when the
researcher has weak instruments, at least from the perspective of coverage rates. Actual
LIML coverage rates are close to their nominal rates even for quite small values of the
concentration parameter, especially for moderately many instruments. Similarly, the

Fuller-k estimator is more robust to weak instruments than TSLS, when viewed from the
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perspective of bias. Additional comparisons are made in Stock, Wright, and Y ogo
(2002).

When thereis asingle included endogenous variable, this procedure provides a
refinement and improvement to Staiger and Stock’ s (1997) rule of thumb that instruments
be deemed “weak” if the first-stage F isless than ten. The difference between that rule of
thumb and the procedure of this paper is that, instead of comparing the first-stage F to
ten, it should be compared to the appropriate entry in Table 1 (TSLS bias), Table 2
(TSLS size), Table 3 (Fuller-k bias), or Table 4 (LIML size). Those critical values
indicate that their rule of thumb can be interpreted as atest with approximately a 5%
significance level, of the hypothesis that the maximum relative biasis at least 10%. The
Staiger-Stock rule of thumb istoo conservative if LIML or Fuller-k are used unless the
number of instrumentsis very small, but it isinsufficiently conservative to ensure that the
TSLS Wald test has good size.

This paper has two loose ends. First, the characterization of the set of weak
instruments is based on the premise that the maximum relative bias and maximum size
distortion are nonincreasing in each eigenvalue of A, for values of those eigenvaluesin
the relevant range. Thiswas justified formally using the many weak instrument
asymptotics of Stock and Y ogo (2003); athough numerical analysis suggestsit istrue
for al Ky, thisremains to be proven. Second, the lower bound of the power function in
Section 5 is based on the assumption that the cdf of the minimum eigenvalue of a
noncentral Wishart random variable is nondecreasing in each of the eigenvalues of its
noncentrality matrix. Thistoo appearsto be true based on numerical analysis but we do

not have a proof nor does this result seem to be available in the literature.
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Beyond this, several avenues of research remain open. First, the tests proposed
here are conservative when n > 1 because they use critical values computed using the
noncentral chi-squared bound in Proposition 1. Although the tests appear to have good
power despite this, tightening the Proposition 1 bound (or constructing tests based on all
the eigenvalues) could produce more powerful tests. Second, we have considered
inference based on TSLS, Fuller-k, and LIML, but there are other estimators to explore as
well. Third, the analysis here is predicated upon homoskedasticity, and it remainsto
extend these teststo GMM estimation of the linear 1V regression model under

heteroskedasticity.
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Endnotes

! See Rothenberg (1984, p. 921) for a discussion of the quality of the Edgeworth
approximation as a function of 47 and Ko.

2 The definition of Grin (2.10) is Gy in Staiger and Stock (1997, eg. (3.4)), divided by K5
to put it in F-statistic form.

% In Stock and Y ogo (2003), the assumption that A is constant is generalized to consider
sequences of A, indexed by K, that have afinite limit A., asK; — .

* Because in general the maximal bias depends on all the eigenvalues, the maximal bias
when all the eigenvalues are equal to some value ¢ o might be greater than the maximal

bias when one eigenvalueis dlightly lessthan 7 ¢ but the others are large. For thisreason

the set Whias IS potentially conservative when K, issmall. This comment appliesto size-

based sets as well.

> |t appears that there is some non-monotonicity in the dependence on the eigenvalues for
Fuller-k bias when the minimum eigenvalue is very small, but for such small eigenvalues
the bias is sufficiently large that this non-monotonicity does not affect the boundary
eigenvalues.

®The critical values based on Proposition 1 can be quite conservative when al the
eigenvalues of A are small. For example, the boundary of the TSLS bias-based weak
instrument set with b = 0.1, n =2, and K, = 4 ismineval (A1) = 3.08, and the critical value
for a5% test with b = 0.1 based on Proposition 1is 7.56. If the second eigenvalue in fact
equalsthefirst, the correct critical value should be 4.63, and the rejection probability

under the null isonly 0.1%. (Of course, it isinfeasible to use this critical value because



the second eigenvalue of A isunknown.) If the second eigenvalueis 10, then the
rejection rate is approximately 2%. On the other hand, if the second eigenvalue islarge,
the Proposition 1 bound istighter. For example, for values of K, from4to 34 and n =2,
if the second eigenval ue exceeds 20 the rejection probability under the null range from

3.3% t0 4.1% for the nomina 5% weak instrument test based on TSLS biaswith b = 0.1.
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Table 1.
Critical Values for the Weak Instrument Test Based on TSLS Bias
Sgnificance level is5%

n=1b= n=2b= n=3,b=

0.05/0.10|/0.20  0.30 | 0.05/0.10 | 0.20| 0.30 | 0.05 | 0.10 | 0.20 | 0.30

1391 9.08 6.46/ 5.39

16.85/10.27| 6.71 5.34/11.04| 7.56 5.57| 4.73

18.37/10.83] 6.77| 5.25/13.97| 8.78 5.91 4.79 9.53 6.61 4.99 4.30

19.28/11.12] 6.76 5.15/15.72| 9.48 6.08 4.78/12.20| 7.77, 5.35 4.40

19.86/11.29] 6.73] 5.07/16.88 9.92] 6.16 4.76/13.95 8.50 5.56| 4.44

20.25/11.39| 6.69 4.99/17.70 10.22| 6.20, 4.73/15.18| 9.01 5.69 4.46

20.74/11.49| 6.61] 4.86/18.76/10.58 6.23| 4.66/16.80 9.64 5.83 4.45

20.90/11.51] 6.56] 4.80/19.12 10.69| 6.23 4.62/17.35| 9.85 5.87 4.44

21.01/11.52| 6.53| 4.75/19.40/10.78] 6.22| 4.59/17.80/10.01 5.90 4.42

Ks
3
4
5
6
7
8
9 |20.53/11.46| 6.65 4.92/18.30/10.43| 6.22| 4.69/16.10] 9.37| 5.78 4.46
10
11
12
13

21.10/11.52| 6.49 4.7119.6410.84] 6.21 4.56/18.17/10.14 5.92 4.41

14 |21.18/11.52] 6.45 4.67/19.83/10.89 6.20 4.5318.47/10.25 5.93| 4.39

15 [21.23|11.51] 6.42) 4.63/19.98 10.93| 6.19 4.50/18.73/10.33] 5.94 4.37

16 |21.28/11.50] 6.39] 4.59/20.12/10.96 6.17 4.48 18.94/10.41 5.94| 4.36

17 [21.31/11.49| 6.36] 4.56/20.23/10.99| 6.16 4.45/19.13/10.47| 594 4.34

18 [21.34/11.48] 6.33] 4.53/20.33/11.00, 6.14 4.43/19.29/10.52 5.94| 4.32

19 [21.36/11.46| 6.31 4.51 20.4111.02] 6.13 4.41/19.44/10.56] 5.94 4.31

20 |21.38/11.45 6.28) 4.48/20.48/11.03] 6.11 4.39 19.56/10.60, 5.93] 4.29

21 121.39/11.44 6.26] 4.46/20.54/11.04/ 6.10 4.37/19.67/10.63] 5.93] 4.28

22 121.40/11.42 6.24] 4.43/20.60/11.05 6.08 4.3519.77/10.65 592 4.27

23 2141 1141 6.22] 4.41/20.65/11.05 6.07 4.3319.86/10.68 5.92| 4.25

24 1214111140, 6.20] 4.39/20.69/11.05] 6.06, 4.32/19.94/10.70| 591 4.24

25 |21.42/11.38] 6.18 4.37/20.73/11.06) 6.05 4.3020.01/10.71 5.90] 4.23

26 121.42/11.37 6.16] 4.35/20.76/11.06/ 6.03 4.2920.07/10.73] 5.90 4.21

27 121.42/11.36| 6.14] 4.34/20.79/11.06] 6.02 4.27/20.13/10.74| 5.89 4.20

28 121.42/11.34 6.13] 4.32/20.82/11.05 6.01 4.26/20.18 10.75 5.88 4.19

29 2142/ 11.33] 6.11 4.31/20.84/11.05 6.00 4.24 20.23/10.76| 5.88/ 4.18

30 121.42/11.32 6.09] 4.29/20.86/11.05 5.99 4.23/20.27/10.77| 587 4.17

Notes: Thetest rejectsif gmin exceedsthe critical value. The critical value isafunction
of the number of included endogenous regressors (n), the number of instrumental
variables (K;), and the desired maximal bias of the IV estimator relative to OLS (b).
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Table 2.
Critical Values for the Weak Instrument Test Based on TSLS Size
Sgnificance level is5%

n=1r= n=2r=

0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

16.38 8.96 6.66 5.53

1993 1159 8.75 7.25 7.03 4.58 3.95 3.63

22.30] 12.83 9.54 7.80] 1343 8.18 6.40 545

2458 1396 10.26 831 16.87 9.93 7.54 6.28

26.87] 15.09 10.98 884 1945 11.22 8.38 6.89

29.18| 16.23 11.72 938 21.68 12.33 9.10 742

31.50] 1738 1248 993 2372 1334 9.77 791

33.84 1854 1324 1050 2564 1431 1041 8.39

© o~ ONWN RPN

36.19) 19.71 1401 1107, 2751 1524 11.03 8.85

10 3854 2088 1478 11.65 29.32] 16.16 11.65 9.31

11 4090 2206/ 1556 1223 3111 1706 1225 9.77

12 4327, 2324 1635 12.82 3288 17.95 12.86 10.22

13 4564 2442 1714 1341 3462 1884 1345 10.68

14 48.01 2561 1793 14.00 36.36] 19.72] 14.05 11.13

15 50.39] 26.80, 18.72 1460 38.08) 20.60] 14.65 11.58

16 5277, 2799 1951 1519 39.80] 2148 1524 12.03

17 55.15] 2919 2031 1579 4151 2235 1583 1249

18 5753 3038 21.10] 16.39] 43.22] 2322 1642 1294

19 59.92] 3158 2190 1699 4492 2409 1702 13.39

20 62.30] 32.77] 2270 1760 46.62 2496 1761 1384

21 64.69) 3397 2350 1820 4831 2582 1820 14.29

22 67.07] 3517 2430, 1880 5001 26.69 1879 14.74

23 6946/ 36.37 2510 1941 51.70 27.56] 1938 15.19

24 71.85] 3757 2590 20.01 5339 2842 1997 1564

25 7424/ 3877 26.71 20.61] 55.07 29.29] 20.56| 16.10

26 76.62] 3997 2751 21.22] 56.76 30.15 21.15 16.55

27 79.01 41.17] 2831 2183 5845 3102 2174 17.00

28 81.40] 4237, 29120 2243 60.13 3188 2233 17.45

29 83.79 4357 29921 23.04 6182 3274 2292 17.90

30 86.17] 44./8 30.72 2365 6351 3361 2351 1835

Notes: Thetest rejectsif gmin exceedsthe critical value. The critical value isafunction
of the number of included endogenous regressors (n), the number of instrumental
variables (K;), and the desired maximal size (r) of a’5% Wald test of 5= f.
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Table 3.
Critical Values for the Weak Instrument Test Based on Fuller-k Bias
Sgnificance level is5%

n=1b= n=1b=

0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

2409 1936 |1564 |12.71

13.46 |10.89 | 9.00 7.49 1550 | 1255 |9.72 8.03

9.61 7.90 6.61 5.60 10.83 | 8.96 7.18 6.15

7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10

6.42 5.44 4.62 4.03 7.16 6.07 5.04 4.44

5.61 4.81 411 3.63 6.24 5.34 4.48 3.98

5.02 4.35 3.75 3.33 5.59 4.82 4.08 3.65

4.58 4.01 3.47 3.11 5.10 443 3.77 3.39

oloNjo|alN~w Nk ID

4.23 3.74 3.25 2.93 4.71 4.12 3.53 3.19

10 | 3.96 3.52 3.07 2.79 4.41 3.87 3.33 3.02

11 | 3.73 3.34 2.92 2.67 4.15 3.67 3.17 2.88

12 354 3.19 2.80 2.57 3.94 3.49 3.04 2.77

13 | 3.38 3.06 2.70 248 3.76 3.35 2.92 2.67

14 | 324 2.95 2.61 241 3.60 3.22 2.82 2.58

15 | 312 2.85 2.53 2.34 3.47 311 2.73 251

16 |301 2.76 2.46 2.28 3.35 3.01 2.65 244

17 | 292 2.69 2.39 2.23 3.24 2.92 2.58 2.38

18 | 284 2.62 2.34 2.18 3.15 2.84 2.52 2.33

19 | 276 2.56 2.29 2.14 3.06 2.77 2.46 2.28

20 269 2.50 2.24 2.10 2.98 2.71 241 2.23

21 | 2.63 2.45 2.20 2.07 291 2.65 2.36 2.19

22 | 2.58 240 2.16 2.04 2.85 2.60 2.32 2.16

23 | 252 2.36 2.13 2.01 2.79 2.55 2.28 212

24 | 248 2.32 2.10 1.98 2.73 2.50 2.24 2.09

25 243 2.28 2.06 1.95 2.68 2.46 2.21 2.06

26 | 239 2.24 2.04 1.93 2.63 242 2.18 2.03

27 236 2.21 2.01 1.90 2.59 2.38 2.15 2.01

28 232 2.18 1.99 1.88 2.55 2.35 212 1.98

29 229 2.15 1.96 1.86 2.51 2.31 2.09 1.96

30 |226 212 1.94 1.84 247 2.28 2.07 1.94

Seethe notesto Table 1.
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Table 4.

Critical Values for the Weak Instrument Test Based on LIML Size

Sgnificance level is 5%

n=1r= n=1r=
K> 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25
1 16.38 8.96 6.66 5.53 . : . :
2 8.68 5.33 4.42 3.92 7.03 4,58 3.95 3.63
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09
4 5.44 3.87 3.30 2.98 472 3.39 2.99 2.79
5 4.84 3.56 3.05 2.77 4.32 3.13 2.78 2.60
6 4.45 3.34 2.87 2.61 4.06 2.95 2.63 2.46
7 4.18 3.18 2.73 2.49 3.90 2.83 2.52 2.35
8 3.97 3.04 2.63 2.39 3.78 2.73 2.43 2.27
9 3.81 2.93 2.54 2.32 3.70 2.66 2.36 2.20
10 3.68 2.84 2.46 2.25 3.64 2.60 2.30 2.14
11 3.58 2.76 2.40 2.19 3.60 2.55 2.25 2.09
12 3.50 2.69 2.34 2.14 3.58 2.52 2.21 2.05
13 3.42 2.63 2.29 2.10 3.56 2.48 2.17 2.02
14 3.36 2.57 2.25 2.06 3.55 2.46 2.14 1.99
15 331 2.52 2.21 2.03 3.54 2.44 2.11 1.96
16 3.27 2.48 2.18 2.00 3.55 2.42 2.09 1.93
17 3.24 2.44 2.14 1.97 3.55 241 2.07 191
18 3.20 241 2.11 1.94 3.56 2.40 2.05 1.89
19 3.18 2.37 2.09 1.92 3.57 2.39 2.03 1.87
20 3.21 2.34 2.06 1.90 3.58 2.38 2.02 1.86
21 3.39 2.32 2.04 1.88 3.59 2.38 2.01 1.84
22 3.57 2.29 2.02 1.86 3.60 2.37 1.99 1.83
23 3.68 2.27 2.00 1.84 3.62 2.37 1.98 1.81
24 3.75 2.25 1.98 1.83 3.64 2.37 1.98 1.80
25 3.79 2.24 1.96 1.81 3.65 2.37 1.97 1.79
26 3.82 2.22 1.95 1.80 3.67 2.38 1.96 1.78
27 3.85 2.21 1.93 1.78 3.74 2.38 1.96 1.77
28 3.86 2.20 1.92 1.77 3.87 2.38 1.95 1.77
29 3.87 2.19 1.90 1.76 4.02 2.39 1.95 1.76
30 3.88 2.18 1.89 1.75 412 2.39 1.95 1.75
See the notes to Table 2.
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Figure 1: Weak Instrument Sets and Critical Values based on
Bias of TSLS Relative to OLS
Boundary of weak instrument set (n = 1)
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Boundary of weak instrument set (n = 2)
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Figure 2: Weak Instrument Sets and Critical Values based on
Size of TSLS Wald Test
Boundary of weak instrument set (n = 1)
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Boundary of weak instrument set (n = 2)
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Figure 3: Weak Instrument Sets and Critical Values based on
Bias of Fuller-k Relative to OLS

Boundary of weak instrument set (n = 1)
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Boundary of weak instrument set (n = 2)
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Figure 4: Weak Instrument Sets

and Critical Values based on

Size of LIML Wald Test
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Power

Power

Figure 5: Power Function for TSLS Bias Test (Relative Bias = 0.1, n = 2)
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