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ABSTRACT 
 
Weak instruments can produce biased IV estimators and hypothesis tests with 

large size distortions.  But what, precisely, are weak instruments, and how does one 
detect them in practice?  This paper proposes quantitative definitions of weak instruments 
based on the maximum IV estimator bias, or the maximum Wald test size distortion, 
when there are multiple endogenous regressors.  We tabulate critical values that enable 
using the first-stage F-statistic (or, when there are multiple endogenous regressors, the 
Cragg-Donald (1993) statistic) to test whether given instruments are weak.  
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1.  Introduction 

Standard treatments of instrumental variables (IV) regression stress that for 

instruments to be valid they must be exogenous.  It is also important, however, that the 

second condition for a valid instrument, instrument relevance, holds, for if the 

instruments are only marginally relevant, or “weak,” then first-order asymptotics can be a 

poor guide to the actual sampling distributions of conventional IV regression statistics. 

At a formal level, the strength of the instruments matters because the natural 

measure of this strength – the so-called concentration parameter – plays a role formally 

akin to the sample size in IV regression statistics. Rothenberg (1984) makes this point in 

his survey of approximations to the distributions of estimators and test statistics.  He 

considered the single equation IV regression model, 

 

y = Yβ + u,       (1.1) 

 

where y and Y are T×1 vectors of observations on the dependent variable and endogenous 

regressor, respectively, and u is a T×1 vector of i.i.d. N(0,σuu) errors.  The reduced form 

equation for Y is 

 

Y = ZΠ + V,       (1.2) 

 

where Z is a T×K2 matrix of fixed, exogenous instrumental variables, Π is a K2×1 

coefficient vector, and V is a T×1 vector of i.i.d. N(0,σVV) errors, where corr(ut,Vt) = ρ. 
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The two stage least squares (TSLS) estimator of β is ˆTSLSb  = (Y′PZy)/ (Y′PZY), 

where PZ = Z(Z′Z)-1Z′.  Rothenberg (1984) expresses ˆTSLSb  as 

 

µ( ˆTSLSb  – β) = 
1/ 2

2

( / )

1 (2 / ) ( / )
uu u Vu

VV V VV

S

S

s z m
s z m m
  +
  + + 

,    (1.3) 

 

where ζu = Π  ′Z′u/(σuuΠ  ′Z′ZΠ)1/2, ζV = Π  ′Z′V/(σVVΠ  ′Z′ZΠ)1/2, SVu = V ′PZu/(σuuσVV)1/2, 

SVV = V ′PZV/σVV, and µ is the square root of the concentration parameter, µ2 =  

Π  ′Z′ZΠ/σVV. 

Under the assumptions of fixed instruments and normal errors, ζu and ζV are 

standard normal variables with correlation ρ, and SVu and SVV are elements of a matrix 

with a central Wishart distribution.  Because the distributions of ζu, ζV, SVu, and SVV do 

not depend on the sample size, the sample size enters the distribution of the TSLS 

estimator only through the concentration parameter.  In fact, the form of (1.3) makes it 

clear that µ2 can be thought of as an effective sample size, in the sense that µ formally 

plays the role usually associated with T .  Rothenberg (1984) proceeds to discuss 

expansions of the distribution of the TSLS estimator in orders of µ, and he emphasizes 

that the quality of these approximations can be poor when µ2 is small.  This has been 

underscored by the dramatic numerical results of Nelson and Startz (1990a, 1990b) and 

Bound, Jaeger and Baker (1995). 

If µ2 is so small that inference based on some IV estimators and their 

conventional standard errors are potentially unreliable, then the instruments are said to be 
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weak.  But this raises two practical questions.  First, precisely how small must µ2 be for 

instruments to be weak?  Second, because Π, and thus µ2, is unknown, how is an applied 

researcher to know whether µ2 is in fact sufficiently small that his or her instruments are 

weak? 

This paper provides answers to these two questions.  First, we develop precise, 

quantitative definitions of weak instruments for the general case of n endogenous 

regressors.  In our view, the matter of whether a group of instrumental variables is weak 

cannot be resolved in the abstract;  rather, it depends on the inferential task to which the 

instruments are applied and how that inference is conducted.  We therefore offer two 

alternative definitions of weak instruments.  The first definition is that a group of 

instruments is weak if the bias of the IV estimator, relative to the bias of ordinary least 

squares (OLS), could exceed a certain threshold b, for example 10%.  The second is that 

the instruments are weak if the conventional α-level Wald test based on IV statistics has 

an actual size that could exceed a certain threshold r, for example r = 10% when α = 5%.  

Each of these definitions yields a set of population parameters that defines weak 

instruments, that is, a “weak instrument set.”  Because different estimators (e.g., TSLS or 

LIML) have different properties when instruments are weak, the resulting weak 

instrument set depends on the estimator being used.  For TSLS and other k-class 

estimators, we argue that these weak instrument sets can be characterized in terms of the 

minimum eigenvalue of the matrix version of µ2/K2. 

Second, given this quantitative definition of weak instrument sets, we show how 

to test the null hypothesis that a given group of instruments is weak against the 

alternative that it is strong.  Our test is based on the Cragg-Donald (1993) statistic; when 
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there is a single endogenous regressor, this statistic is simply the “first-stage F-statistic”, 

the F-statistic for testing the hypothesis that the instruments do not enter the first stage 

regression of TSLS.  The critical values for the test statistic, however, are not Cragg and 

Donald’s (1993):  our null hypothesis is that the instruments are weak, even though the 

parameters might be identified, whereas Cragg and Donald (1993) test the null hypothesis 

of underidentification.  We therefore provide tables of critical values that depend on the 

estimator being used, whether the researcher is concerned about bias or size distortion, 

and the numbers of instruments and endogenous regressors.  These critical values are 

obtained using weak instrument asymptotic distributions (Staiger and Stock (1997)), 

which are more accurate than Edgeworth approximations when the concentration 

parameter is small.1 

This paper is part of a growing literature on detecting weak instruments, surveyed 

in Stock, Wright, and Yogo (2002) and Hahn and Hausman (2003).  Cragg and Donald 

(1993) proposed a test of underidentification, which (as discussed above) is different 

from a test for weak instruments.  Hall, Rudebusch, and Wilcox (1996), following the 

work by Bowden and Turkington (1984), suggested testing for underidentification using 

the minimum canonical correlation between the endogenous regressors and the 

instruments.  Shea (1997) considered multiple included regressors and suggested looking 

at a partial R2.  Neither Hall, Rudebusch, and Wilcox (1996) nor Shea (1997) provide a 

formal characterization of weak instrument sets or a formal test for weak instruments, 

with controlled type I error, based on their respective statistics.  For the case of a single 

endogenous regressor, Staiger and Stock (1997) suggested declaring instruments to be 

weak if the first-stage F-statistic is less than ten.  Recently Hahn and Hausman (2002) 
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suggested comparing the forward and reverse TSLS estimators and concluding that 

instruments are strong if the null hypothesis that these are the same cannot be rejected.  

Relative to this literature, the contribution of this paper is twofold.  First, we provide a 

formal characterization of the weak instrument set for a general number of endogenous 

regressors.  Second, we provide a test of whether given instruments fall in this set, that is, 

whether they are weak, where the size of the test is controlled asymptotically under the 

null of weak instruments. 

The rest of the paper is organized as follows.  The IV regression model and the 

proposed test statistic are presented in Section 2.  The weak instrument sets are developed 

in Section 3.  Section 4 presents the test for weak instruments and provides critical values 

for tests based on TSLS bias and size, Fuller-k bias, and LIML size.  Section 5 examines 

the power of the test, and conclusions are presented in Section 6. 

 

2.  The IV Regression Model, the Proposed Test Statistic, and 

Weak Instrument Asymptotics 

2.1.  The IV Regression Model 

We consider the linear IV regression model (1.1) and (1.2), generalized to have n 

included endogenous regressors Y and K1 included exogenous regressors X: 

 

y = Yβ + Xγ + u,       (2.1) 

Y = ZΠ + XΦ + V,       (2.2) 
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where Y is now a T×n matrix of included endogenous variables, X is a T×K1 matrix of 

included exogenous variables (one column of which is 1’s if (2.1) includes an intercept), 

Z is a T×K2 matrix of excluded exogenous variables to be used as instruments, and the 

error matrix V is T×n.  It is assumed throughout that K2 ≥ n.  Let Y = [y Y] and Z = [X Z] 

respectively denote the matrices of all the endogenous and exogenous variables.  The 

conformable vectors β and γ and the matrices Π and Φ are unknown parameters. 

Throughout this paper we exclusively consider inference about β. 

Let Xt = ( )
11t K tX X ′, Zt = ( )

21t K tZ Z ′, Vt = ( )1t ntV V ′, and Zt = 

(Xt′ Zt′)′ denote the vectors of the tth observations on these variables.  Also let Σ and Q 

denote the population second moment matrices, 

 

( )
t

't uu u
t t

u

u
E u

s    
= =    

    

V

V VV

V
V

S
S

S S
 and E(Zt Zt′) = Z

X

 
= 

 
XX X

Z ZZ

Q Q
Q

Q Q
. (2.3) 

 

2.2.  k-Class Estimators and Wald Statistics 

Let the superscript “⊥ ” denote the residuals from the projection on X, so for 

example Y⊥  = MXY, where MX = I – X(X′X)-1X′.  In this notation, the OLS estimator of β 

is b̂  = (Y⊥ ′Y⊥ )-1(Y⊥ ′y).  The k-class estimator of β is 

 

ˆ ( )kb  = [Y⊥ ′(I - k ^Z
M )Y⊥ ]-1[Y⊥ ′(I - k ^Z

M )y⊥ ].   (2.4) 
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The Wald statistic, based on the k-class estimator, testing the null hypothesis that 

β = β0, is 

 

W(k) = 0 0
ˆ ˆ[ ( ) ]'[ '( ) ][ ( ) ]

ˆ ( )uu

k I k k

n ks
^

^ ^− − −
Z

Y M Yb b b b
 ,  (2.5) 

 

where ˆ ( )uu kσ  = ˆ ( )k⊥u ′ ˆ ( )k⊥u /(T – K1 – n), where ˆ ( )k⊥u = y⊥  – Y⊥ ˆ ( )kb . 

This paper considers four specific k-class estimators:  TSLS, the limited 

information maximum likelihood estimator (LIML), the family of modified LIML 

estimators proposed by Fuller (1977) (“Fuller-k estimators”), and bias-adjusted TSLS 

(BTSLS;  Nagar (1959), Rothenberg (1984)).  The values of k for these estimators are (cf. 

Donald and Newey (2001)): 

 

TSLS:  k = 1,           (2.6) 

LIML:  k = ˆ
LIMLk  is the smallest root of det(Y′MXY - k Y′MZY) = 0,    (2.7) 

Fuller-k: k = ˆ
LIMLk  – c/(T – K1 – K2), where c is a positive constant,    (2.8) 

BTSLS: k = T/(T – K2 + 2),         (2.9) 

 

where det(A) is the determinant of the matrix A.  If the errors are symmetrically 

distributed and the exogenous variables are fixed, LIML is median unbiased to second 

order (Rothenberg (1983)).  In our numerical work, we examine the Fuller-k estimator 

with c = 1, which is the best unbiased estimator to second order among estimators with k 

= 1 + a( ˆ
LIMLk  – 1) – c/(T – K1 – K2) for some constants a and c (Rothenberg (1984)).  For 
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further discussion, see Donald and Newey (2001) and Stock, Wright, and Yogo (2002, 

Section 6.1). 

2.3.  The Cragg-Donald Statistic 

The proposed test for weak instruments is based on the eigenvalue of the matrix 

analog of the F-statistic from the first stage regression of TSLS, 

 

GT = 1/ 2ˆ −
VVS ′Y⊥ ′ ^Z

P Y⊥ 1/ 2ˆ −
VVS /K2,     (2.10) 

 

where ˆ
VVS  = (Y′MZY)/(T–K1–K2).

2  The test statistic is the minimum eigenvalue of GT: 

 

gmin = mineval(GT).       (2.11) 

 

This statistic was proposed by Cragg and Donald (1993) to test the null 

hypothesis of underidentification, which occurs when the concentration matrix is 

singular.  Instead, we are interested in the case that the concentration matrix is 

nonsingular but its eigenvalues are sufficiently small that the instruments are weak.  To 

obtain the limiting null distribution of the Cragg-Donald statistic (2.11) under weak 

instruments, we rely on weak instrument asymptotics. 

2.4.  Weak Instrument Asymptotics:  Assumptions and Notation 

We start by summarizing the elements of weak instrument asymptotics from 

Staiger and Stock (1997).  The essential idea of weak instruments is that Z is only weakly 

related to Y, given X.  Specifically, weak instrument asymptotics are developed by 

modeling Π as local to zero: 
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Assumption LΠ:  Π = ΠT = C/ T , where C is a fixed K2×n matrix. 

 

Following Staiger and Stock (1997), we make the following assumption on the 

moments: 

 

Assumption M.  The following limits hold jointly for fixed K2: 

(a) (T–1u′u, T–1V′u, T–1V′V) 
p

→  (σuu, ΣVu, ΣVV);  

(b) T–1Z′Z 
p

→ Q; 

(c)  (T–1/2X′u, T–1/2Z′u, T–1/2X′V, T–1/2Z′V) 
d

→  (ΨXu, ΨZu, ΨXV, ΨZV), where Ψ ≡ 

[ΨXu′, ΨZu′, vec(ΨXV)′, vec(ΨZV)′]′ is distributed N(0, Σ ⊗  Q). 

 

Assumption M can hold for time series or cross-sectional data.  Part (c) assumes 

that the errors are homoskedastic. 

Notation and definitions.  The following notation in effect transforms the 

variables and parameters and simplifies the asymptotic expressions.  Let ρ = 

1/ 2 1/ 2' u uus− −
VV VS S , θ  = 1

u
−

VV VS S  = 1/ 2
uus 1/ 2−

VVS ρ, λ = Ω1/2C 1/ 2−
VVS , Λ = λ′λ/K2, and Ω = QZZ – 

QZX
1−

XXQ QXZ.  Note that ρ′ρ ≤ 1.  Define the K2 × 1 and K2 × n random variables, zu =  

Ω–1/2′(ΨZu – QZX
1−

XXQ ΨXu)
1/ 2

uus −  and zV = Ω–1/2′(ΨZV – QZX
1−

XXQ ΨXV) 1/ 2−
VVS , so 

 

vec( )

 
 
 

u

V

z

z
 ∼ N(0, 

2K⊗S I ), where 
1 '

 
n

 
=  
 I

r
S

r
.   (2.12) 



10 

 

Also let 

 

ν1 = (λ + zV)′ (λ + zV)   and      (2.13) 

ν2 = (λ + zV)′ zu.       (2.14) 

 

2.5.  Selected Weak Instrument Asymptotic Representations 

We first summarize some results from Staiger and Stock (1997). 

OLS estimator.  Under Assumptions LΠ and M, the probability limit of the OLS 

estimator is b̂  
p

→  β + θ. 

k-class estimators.  Suppose that T(k – 1) 
d

→  κ.  Then under Assumptions LΠ and 

M, 

 

ˆ ( )kb  – β 
d

→  1/ 2
uus 1/ 2−

VVS (ν1 – κIn)
–1(ν2 – κρ)    and   (2.15) 

 

W(k) 
d

→  
1

2 1 2
1 2

1 2 2 1 2

( ) '( ) ( )

[1 2 '( ) ( ) ( ) '( ) ( )]
n

n nn

k k k
k k k k k

−

− −

− − −
− − − + − − −

I
I I
n r n n r

r n n r n r n n r
,  (2.16) 

 

where (2.16) holds under the null hypothesis β = β0. 

For LIML and the Fuller-k estimators, κ is a random variable, while for TSLS and 

BTSLS κ is nonrandom.  Let Ξ  be the (n + 1) × (n + 1) matrix, Ξ =  

[zu  (λ + zV)]′ [zu  (λ + zV)].  Then the limits in (2.15) and (2.16) hold with: 
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TSLS:  κ = 0,        (2.17) 

LIML:  κ = κ*, where κ* is the smallest root of det(Ξ – κ S ) = 0, (2.18) 

Fuller-k: κ = κ* – c, where c is the constant in (2.8), and  (2.19) 

BTSLS: κ = K2 – 2.       (2.20) 

 

Note that the convergence in distribution of T( ˆ
LIMLk  – 1) 

d

→  κ* is joint with the 

convergence in (2.15) and (2.16).  For TSLS, the expressions in (2.15) and (2.16) 

simplify to 

  

ˆ TSLSb  – β 
d

→  1/ 2
uus 1/ 2−

VVS 1
1 2
−n n   and     (2.21) 

WTSLS 
d

→  
1

2 1 2
1 2

1 2 2 1 2

'

(1 2 ' ' )n

−

− −− +
n n n

r n n n n n
.    (2.22) 

 

Weak instrument asymptotic representations: the Cragg-Donald statistic.   

Under the weak instrument asymptotic assumptions, the matrix GT in (2.10) and the 

Cragg-Donald statistic (2.11) have the limiting distributions, 

 

GT 
d

→  ν1/K2 and      (2.23) 

gmin 
d

→  mineval(ν1/K2).     (2.24) 
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Inspection of (2.13) reveals that ν1 has a noncentral Wishart distribution with 

noncentrality matrix λ′λ = K2Λ.  This noncentrality matrix is the weak instrument limit of 

the concentration matrix: 

1/ 2−
VVS Π  ′Z′ZΠ 1/ 2−

VVS ′ 
p

→  K2Λ.    (2.25) 

 

Thus the weak instrument asymptotic distribution of the Cragg-Donald statistic 

gmin is that of the minimum eigenvalue of a noncentral Wishart, divided by Κ2, where the 

noncentrality parameter is K2Λ.  To obtain critical values for the weak instrument test 

based on gmin, we characterize the weak instrument set in terms of the eigenvalues of Λ, 

the task taken up in the next section. 

 

3. Weak Instrument Sets 

This section provides two general definitions of a weak instrument set, the first 

based on the bias of the estimator and the second based on size distortions of the 

associated Wald statistic.  These two definitions are then specialized to TSLS, LIML, the 

Fuller-k estimator, and BTSLS, and the resulting weak instrument sets are characterized 

in terms of the minimum eigenvalues of the concentration matrix. 

3.1. First Characterization of a Weak Instrument Set: Bias 

One consequence of weak instruments is that IV estimators are in general biased, 

so our first definition of a weak instrument set is in terms of its maximum bias. 

When there is a single endogenous regressor, it is natural to discuss bias in the 

units of β, but for n > 1, a bias measure must scale β so that the bias is comparable across 
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elements of β.  A natural way to do this is to standardize the regressors Y⊥  so that they 

have unit standard deviation and are orthogonal or, equivalently, to rotate β by 1/ 2
^ ^Y Y

S , 

where ^ ^Y Y
S  = plim(Y⊥ ′Y⊥ /T).  In these standardized units, the squared bias of an IV 

estimator, which we generically denote by ˆ IVb , is (E ˆ IVb  – β)′ ^ ^Y Y
S (E ˆ IVb  – β).  As our 

measure of bias, we therefore consider the relative squared bias of the candidate IV 

estimator ˆ IVb , relative to the squared bias of the OLS estimator, 

 

2
TB  = 

IV IVˆ ˆ( ) ' ( )
ˆ ˆ( ) ' ( )

Y Y

Y Y

E E

E E

^ ^

^ ^

− −

− −

b b S b b
b b S b b

.    (3.1) 

 

If n = 1, then the scaling matrix in (3.1) drops out and the expression simplifies to BT = 

|E ˆ IVb  – β|/|E b̂  – β|.  The measure (3.1) was proposed, but not pursued, in Staiger and 

Stock (1997). 

The asymptotic relative bias, computed under weak instrument asymptotics, is 

denoted by B = limT→∞BT . Under weak instrument asymptotics, E( b̂ – β) → θ  = 

1/ 2
uus 1/ 2−

VVS ρ  and ^ ^Y Y
S  → ΣVV, so the denominator in (3.1) has the limit 

ˆ ˆ( ) ' ( )
Y Y

E E^ ^− −b b S b b  → σuuρ′ρ.  Thus for ρ′ρ > 0, the square of the asymptotic 

relative bias is 

 

B2 =  1
uu
−σ  limT→∞ 

ˆ ˆ( ) ' ( )

'

IV IV

Y Y
E E^ ^− −b b S b b

r r
.   (3.2) 
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We deem instruments to be strong if they lead to reliable inferences for all 

possible degrees of simultaneity ρ; otherwise they are weak.  Applied to the relative bias 

measure, this leads us to consider the worst-case asymptotic relative bias, 

 

Bmax =  maxρ: 0 < ρ′ρ ≤ 1|B|.     (3.3) 

 

The first definition of a weak instrument set is based on this worst-case bias.  We 

define the weak instrument set, based on relative bias, to consist of those instruments that 

have the potential of leading to asymptotic relative bias greater than some value b.  In 

population, the strength of an instrument is determined by the parameters of the reduced 

form equation (2.2).  Accordingly, let Z = {Π, ΣVV, Ω}.  The relative bias definition of 

weak instruments is 

 

Wbias = {Z: Bmax ≥ b}.      (3.4) 

 

Relative bias vs. absolute bias. Our motivation for normalizing the squared bias 

measure by the bias of the OLS estimator is that it helps to separate the two problems of 

endogeneity (OLS bias) and weak instrument (IV bias).  For example, in an application to 

estimating the returns to education, based on a reading of the literature the researcher 

might believe that the maximum OLS bias is ten percentage points;  if the relative bias 

measure in (3.1) is 0.1, then the maximum bias of the IV estimator is one percentage 

point.  Thus formulating the bias measure in (3.1) as a relative bias measure allows the 



15 

researcher to return to the natural units of the application using expert judgment about the 

possible magnitude of the OLS bias. 

This said, we will show that the maximal TSLS relative bias is also its maximal 

absolute bias in standardized units, so that for TSLS the maximal relative and absolute 

bias can be treated interchangeably.  We return to this point in Section 3.3. 

3.2. Second Characterization of a Weak Instrument Set: Size 

Our second definition of a weak instrument set is based on the maximal size of 

the Wald test of all the elements of β.  In parallel to the approach for the bias measure, 

we consider an instrument strong from the perspective of the Wald test if the size of the 

test is close to its level for all possible configurations of the IV regression model.  Let 

WIV denote the Wald test statistic based on the candidate IV estimator ˆ IVb .  For the 

estimators considered here, under conventional first-order asymptotics WIV has a chi-

squared null distribution with n degrees of freedom, divided by n.  The actual rejection 

rate RT under the null hypothesis is 

 

RT = 
0

Prb [WIV > 2
;n ac /n],     (3.5) 

 

where 2
;n ac  is the α-level critical value of the chi-squared distribution with n degrees of 

freedom and α is the nominal level of the test.   

In general, the rejection rate in (3.5) depends on ρ.  As in the definitions of the 

bias-based weak instrument set, we consider the worst-case limiting rejection rate, 

 

Rmax = maxρ: ρ′ρ ≤ 1 R, where R = limT→∞ RT.   (3.6) 
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The size-based weak instrument set Wsize consists of instruments that can lead to a 

size of at least r > α: 

 

Wsize = {Z: Rmax ≥ r}.     (3.7) 

 

For example, if α = .05 then a researcher might consider it acceptable if the worst case 

size is r = 0.10. 

3.3  Weak Instrument Sets for TSLS 

We now apply these general definitions of weak instrument sets to TSLS and 

argue that the sets can be characterized in terms of the minimum eigenvalue of Λ. 

Weak instrument set based on TSLS bias.  Under weak instrument asymptotics, 

 

( TSLS
TB )2 → 

' '

'

h hr r
r r

 ≡ (BTSLS)2    and    (3.8) 

(Bmax, TSLS)2 =  maxρ: 0 < ρ′ρ ≤ 1 
' '

'

h hr r
r r

,    (3.9) 

 

where h = E[ 1
1
−n (λ + zV)′zV].  The asymptotic relative bias BTSLS depends on ρ and λ, 

which are unknown, as well as K2 and n. 

Because h depends on λ but not ρ, by (3.8) we have that Bmax, TSLS =  

[maxeval(h′h)]1/2, where maxeval(A) denotes the maximum eigenvalue of the matrix A.  

By applying the singular value decomposition to λ, it is further possible to show that the 
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maximum eigenvalue of h′h depends only on K2, n, and the eigenvalues of λ′λ/K2 = Λ.  It 

follows that, for a given K2 and n, the maximum TSLS asymptotic bias is a function only 

of the eigenvalues of Λ. 

When the number of instruments is large, it is possible to show further that the 

maximum TSLS asymptotic bias is a decreasing function of the minimum eigenvalue of 

Λ.  Specifically, consider sequences of K2 and T such that K2 → ∞ and T → ∞ jointly, 

subject to 2
2K  /T → 0, where Λ (which in general depends on K2) is held constant as K2 

→ ∞.3  We write this joint limit as (K2, T → ∞) and, following Stock and Yogo (2003), 

we refer to it as representing “many weak instruments.” It follows from (3.9) and 

Theorem 2(a) of Stock and Yogo (2003) that the many weak instrument limit of TSLS
TB  is, 

 

2( , )lim K T →∞ ( TSLS
TB )2 = 

2'( )

'

−+ Ir L r
r r

.    (3.10) 

 

By solving the maximization problem (3.9), we obtain the many weak instrument limit, 

Bmax, TSLS = (1 + mineval(Λ))–1.  It follows that, for many instruments, the set Wbias, TSLS 

can be characterized by the minimum eigenvalue of Λ, and the TSLS weak instrument set 

Wbias, TSLS can be written as 

 

Wbias, TSLS = {Z: mineval(Λ) ≤ bias, TSLS(b;K2,n)},   (3.11) 

 

where bias, TSLS(b;K2,n) is a decreasing function of the maximum allowable bias b. 
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Our formal justification for the simplification that Wbias, TSLS depends only on the 

smallest eigenvalue of Λ, rather than on all its eigenvalues, rests on the many weak 

instrument asymptotic result (3.10).  Numerical analysis for n = 2 suggests, however, that 

Bmax, TSLS is decreasing in each eigenvalue of Λ for all values of K2.  These numerical 

results suggest that the simplification in (3.11), relying only on the minimum eigenvalue, 

is valid for all K2 under weak instrument asymptotics, even though we currently cannot 

provide a formal proof.4 

Reinterpretation in terms of absolute bias.  Although Bmax was defined as 

maximal bias relative to OLS, for TSLS Bmax is also the maximal absolute bias in 

standardized units.   The numerator of (3.8) is evidently maximized when ρ′ρ = 1. Thus, 

for TSLS, (3.2) can be restated as (Bmax)2 = 1
uu
−σ maxρ: ρ′ρ = 1 limT→∞ 

ˆ ˆ( ) ' ( )TSLS TSLS

Y Y
E E^ ^− −b b S b b .  But ˆ ˆ( ) ' ( )TSLS TSLS

Y Y
E E^ ^− −b b S b b  is the squared 

bias of ˆ TSLSb , not relative to the bias of the OLS estimator.  For TSLS, then, the relative 

bias measure can alternatively be reinterpreted as the maximal bias of the candidate IV 

estimator, in the standardized units of 1/ 2 1/ 2
uus ^ ^
−

Y Y
S . 

Weak instrument set based on TSLS size.  For TSLS, it follows from (2.22) that 

the worst-case asymptotic size is 

 

Rmax, TSLS = maxρ: ρ′ρ ≤ 1 
1

22 1 2
;1 2

1 2 2 1 2

'
Pr

1 2 ' ' n ac
−

− −

 
> − + 

n n n
r n n n n n

.  (3.12) 
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Rmax, TSLS, and consequently Wsize, TSLS, depends only on the eigenvalues of Λ as well as n 

and K2 (the reason is the same as for the similar assertion for Bmax, TSLS). 

When the number of instruments is large, the Wald statistic is maximized when 

ρ′ρ = 1 and is an increasing function of the eigenvalues of Λ.  Specifically, it is shown in 

Stock and Yogo (2003), Theorem 2(a), that the many weak instrument limit of the TSLS 

Wald statistic, divided by K2, is 

 

WTSLS/K2 
p

→  
1

1 2

'( )

[1 2 '( ) '( ) ]
n

n nn

−

− −

+
− + + +

I
I I

r L r
r L r r L r

.   (3.13) 

 

The right hand side of (3.13) is maximized when ρ′ρ = 1, in which case this expression 

can be written, ρ′(Λ + In)
–1ρ/ρ′[In – (Λ + In)

–1]2ρ.  In turn, the maximum of this ratio over 

ρ depends only on the eigenvalues of Λ and is decreasing in those eigenvalues. 

The many weak instrument limit of Rmax, TSLS is 

 

Rmax, TSLS = maxρ: ρ′ρ ≤ 1 
2( , )lim K T →∞ Pr[WTSLS

 /K2 > 2
;n ac /(nK2)] = 1,    (3.14) 

 

where the limit follows from (3.13) and from 2
;n ac /(nK2) → 0.  With many weak 

instruments, the TSLS Wald statistic WTSLS is Op(K2), so the boundary of the weak 

instrument set, in terms of the eigenvalues of Λ, increases as a function of K2 without 

bound. 
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For small values of K2, numerical analysis suggests that Rmax, TSLS is a 

nonincreasing function of all the eigenvalues of Λ, which (if so) implies that the 

boundary of the weak instrument set can, for small K2, be characterized in terms of this 

minimum eigenvalue.  The argument leading to (3.11) therefore applies here and leads to 

the characterization, 

 

Wsize, TSLS = {Z: mineval(Λ) ≤ size, TSLS(r;K2,n,α) },   (3.15) 

 

where size, TSLS(r;K2,n,α) is decreasing in the maximal allowable size r. 

3.4  Weak Instrument Sets for Other k-class Estimators 

The general definitions of weak instrument sets given in Sections 3.1 and 3.2 also 

can be applied to other IV estimators.  The weak instrument asymptotic distribution for 

general k-class estimators is given in Section 2.2.  What remains to be shown is that the 

weak instrument sets, defined for specific estimators and test statistics, can be 

characterized in terms of the minimum eigenvalue of Λ.  As in the case of TSLS, the 

argument for the estimators considered here has two parts, for small K2 and for large K2. 

For small K2, the argument applied for the TSLS bias can be used generally for k-

class statistics to show that, given K2 and n, the k-class maximal relative bias and 

maximal size depend only on the eigenvalues of Λ.  In general, this dependence is 

complicated and we do not have theoretical results characterizing this dependence.  

Numerical work for n = 1 and n = 2 indicates, however, that the maximal bias and 

maximal size measures are decreasing in each of the eigenvalues of Λ in the relevant 

range of those eigenvalues.5  This in turn means that the boundary of the weak instrument 
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set can be written in terms of the minimum eigenvalue of Λ, although this 

characterization could be conservative (see footnote 4). 

For large K2, we can provide theoretical results, based on many weak instrument 

limits, showing that the boundary of the weak instrument set depends only on 

mineval(Λ).  These results are summarized here. 

LIML and Fuller-k.  As shown in Stock and Yogo (2003), Theorem 2(c), the 

LIML and Fuller-k estimators and their Wald statistics have the many weak instrument 

asymptotic distributions, 

 

2K ( ˆ LIMLb  – β) 
d

→  N(0, σuu
1/ 2−

VVS Λ–1(Λ + In – ρρ′)Λ–1 1/ 2−
VVS ′),  (3.16) 

WLIML 
d

→  x′(Λ + In – ρρ′)1/2Λ–1(Λ + In – ρρ′)1/2′x/n, where x ∼ N(0, In), (3.17) 

 

where these distributions are written for LIML but also apply to Fuller-k. 

An implication of (3.16) is that the LIML and Fuller-k estimators are consistent 

under the sequence (K2, T) → ∞, a result shown by Chao and Swanson (2002) for LIML.  

Thus the many weak instrument maximal relative bias for these estimators is zero. 

An implication of (3.17) is that the Wald statistic is distributed as a weighted sum 

of n independent chi-squared random variables.  When n = 1, it follows from (3.17) that 

the many weak instrument size has the simple form, 

 

        Rmax, LIML = maxρ: ρ′ρ ≤ 1 
2( , )lim K T →∞ Pr[WLIML

  > 2
1;ac ] 
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= Pr[ 2
1c  > 

1+
L

L
2

1;ac ],       (3.18) 

 

that is, the maximal size is the tail probability that a chi-squared distribution with one 

degree of freedom exceeds (Λ/(Λ + 1))
 

2
1;ac .  This evidently is decreasing in Λ and 

depends only on Λ (which trivially here is its minimum eigenvalue). 

BTSLS.  The many weak instrument asymptotic distributions of the BTSLS 

estimator and Wald statistic are (Stock and Yogo (2003), Theorem 2(b)), 

 

2K ( ˆ BTSLSb  – β) 
d

→  N(0, σuu
1/ 2−

VVS Λ–1(Λ + In + ρρ′)Λ–1 1/ 2−
VVS ′) ,  (3.19) 

WBTSLS 
d

→  x′(Λ + In + ρρ′)1/2Λ–1(Λ + In + ρρ′)1/2′x/n, where x ∼ N(0, In). (3.20) 

 

It follows from (3.19) that the BTSLS estimator is consistent and that its maximal 

relative bias tends to zero under many weak instrument asymptotics. 

For n =1, the argument leading to (3.18) applies to BTSLS, except that the factor 

is different:  the many weak instrument limit of the maximal size is 

 

 Rmax, BTSLS = Pr[ 2
1c  > 

2+
L

L
2

1;ac ],       (3.21) 

 

which is a decreasing function of Λ. 
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It is interesting to note that, according to (3.18) and (3.21), for a given value of Λ 

the maximal size distortion of LIML and Fuller-k tests is less than that of BTSLS when 

there are many weak instruments. 

3.5.  Numerical Results for TSLS, LIML, and Fuller-k 

We have computed weak instrument sets based on maximum bias and size for 

several k-class statistics.  Here, we focus on TSLS bias and size, Fuller-k (with c = 1 in 

(2.8)) bias, and LIML size.  Additional results are reported in Stock, Yogo, and Wright 

(2002).  Because LIML does not have moments in finite samples, LIML bias is not well-

defined so we do not analyze it here. 

The TSLS maximal relative bias was computed by Monte Carlo simulation for a 

grid of minimal eigenvalue of Λ from 0 to 30 for K2 = n + 2,…, 100, using 20,000 Monte 

Carlo draws.  Computing the maximum TSLS bias entails computing h defined following 

(3.8) by Monte Carlo simulation, given n, K2, then computing the maximum bias, 

[maxeval(h′h)]1/2.  Computing the maximum bias of Fuller-k and the maximum size 

distortions of TSLS and LIML is more involved than computing the maximal TSLS bias 

because there is no simple analytic solution to the maximum problem (3.6).  Numerical 

analysis indicates that RTSLS is maximized when ρ′ρ = 1, so the maximization for n = 2 

was done by transforming to polar coordinates and performing a grid search over the half 

unit circle (half because of symmetry in (2.22)).  For Fuller-k bias and LIML size, 

maximization was performed over this half circle and over 0 ≤ ρ′ρ ≤ 1.  Because the bias 

and size measures appear to be decreasing functions of all the eigenvalues, at least in the 

relevant range, we set Λ = In.  The TSLS size calculations were performed using a grid 
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of  with 0 ≤  ≤ 75 (100,000 Monte Carlo draws); for Fuller-k bias, 0 ≤  ≤ 12 (50,000 

Monte Carlo draws); and for LIML size, 0 ≤  ≤ 10 (100,000 Monte Carlo draws). 

The minimal eigenvalues of Λ that constitute the boundaries of Wbias, TSLS,  

Wsize, TSLS, Wbias, Fuller-k, and Wsize, LIML are plotted, respectively, in the top panels of 

Figures 1 – 4 for various cutoff values b and r.  First consider the regions based on bias.  

The boundary of Wbias, TSLS is essentially flat in K2 for K2 sufficiently large; moreover, the 

boundaries for n = 1 and n = 2 are numerically very similar, even for small K2.  The 

boundary of the relative bias region for b = 0.1 (10% bias) asymptotes to approximately 8 

for both n = 1 and n = 2.  In contrast, the boundary of the bias region for Fuller-k tends to 

zero as the number of instruments increase, which agrees with the consistency of the 

Fuller-k estimator under many weak instrument asymptotics. 

Turning to the regions based on size, the boundary of Wsize, TSLS depends strongly 

on K2 and n;  as suggested by (3.14), the boundary is approximately linear in K2 for K2 

sufficiently large.  The boundary eigenvalues are very large when the degree of 

overidentification is large.  For example, if one is willing to tolerate a maximal size of 

15%, so the size distortion is 10% for the 5% level test, then with 10 instruments the 

minimum eigenvalue boundary is approximately 20 for n = 1 and approximately 16 for 

n= 2.  In contrast, the boundary of Wsize, LIML decreases with K2 for both n = 1 and n =2.  

Comparing these two plots shows that tests based on LIML are far more robust to weak 

instruments than tests based on TSLS. 
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4.  Test for Weak Instruments 

This section provides critical values for the weak instrument test based on the 

Cragg-Donald (1993) statistic, gmin.  These critical values are based on the boundaries of 

the weak instrument sets obtained in Section 3 and on a bound on the asymptotic 

distribution of gmin. 

4.1  A Bound on the Asymptotic Distribution of gmin. 

Recall that the Cragg-Donald statistic gmin is the minimum eigenvalue of GT, 

where GT is given by (2.10).  As stated in (2.23), under weak instrument asymptotics, 

K2GT is asymptotically distributed as a noncentral Wishart with dimension n, degrees of 

freedom K2, identity covariance matrix, and noncentrality matrix K2Λ; that is, 

 

GT 
d

→  ν1/K2 ∼ Wn(K2, In, K2Λ)/K2.     (4.1) 

 

The joint pdf for the n eigenvalues of a noncentral Wishart has an infinite series 

expansion in terms of zonal polynomials (Muirhead [1978]).  This joint pdf depends on 

all the eigenvalues of Λ, as well as n and K2.  In principle the pdf for the minimum 

eigenvalue can be determined from this joint pdf for all the eigenvalues.  It appears that 

this pdf (the “exact asymptotic” pdf of gmin) depends on all the eigenvalues of Λ. 

This exact asymptotic distribution of gmin is not very useful for applications both 

because of the computational difficulties it poses and because of its dependence on all the 

eigenvalues of Λ.  This latter consideration is especially important because in practice 
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these eigenvalues are unknown nuisance parameters, so critical values that depend on 

multiple eigenvalues would produce an infeasible test. 

We circumvent these two problems by proposing conservative critical values 

based on the following bounding distribution. 

 

Proposition 1. Pr[mineval(Wn(k, In, A)) ≥ x] ≤ Pr[ 2
kc (mineval(A)) ≥ x], where 

2
kc (a) denotes a noncentral chi-squared random variable with noncentrality 

parameter a. 

 

Proof.  Let α be the eigenvector of A corresponding to its minimum eigenvalue.  

Then α′Wα is distributed 2
kc (mineval(A)) (Muirhead [1982, Theorem 10.3.6]).  But 

α′Wα ≥ mineval(W), and the result follows. 

 

Applying (4.1), the continuous mapping theorem, and Proposition 1, we have that 

 

Pr[gmin ≥ x] → Pr[mineval(ν1/K2) ≥ x] ≤ 2

2
2

2

(mineval( ))
Pr K K

K
x

c 
 
  

≥
L

. (4.2) 

 

Note that this inequality holds as an equality in the special case n = 1. 

Conservative critical values for the test based on gmin are obtained as follows. 

First, select the desired minimal eigenvalue of Λ.  Next, obtain the desired percentile, say 

the 95% point, of the noncentral chi-squared distribution with noncentrality parameter 

equal to K2 times this selected minimum eigenvalue, and divide this percentile by K2.
6 
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4.2.  The Weak Instruments Test 

The bound (4.2) yields the following testing procedure to detect weak 

instruments.  To be concrete, this is stated for a test based on the TSLS bias measure with 

significance level 100δ%.  The null hypothesis is that the instruments are weak, and the 

alternative is that they are not: 

 

H0: Z ∈  Wbias, TSLS   vs.   H1: Z ∉  W bias, TSLS .   (4.3) 

 

The test procedure is 

 

Reject H0 if gmin ≥ dbias, TSLS(b; K2,n,δ),    (4.4) 

 

where dbias, TSLS(b; K2,n,δ) = 1
2K −

2

2
,1K dc −  (K2 bias, TSLS (b;K2,n)), where 

2

2
,1K dc − (m) is the 

100(1-δ)% percentile of the noncentral chi-squared distribution with K2 degrees of 

freedom and noncentrality parameter m and the function bias, TSLS is the weak instrument 

boundary minimum eigenvalue of Λ in (3.11). 

The results of Section 3 and the bound resulting from Proposition 1 imply that, 

asymptotically, the test (4.4) has the desired asymptotic level: 

 

limT→∞ Pr[gmin ≥ dbias, TSLS(b; K2,n,δ) | Z ∈  Wbias, TSLS ] ≤ δ.  (4.5) 
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The procedure for testing whether the instruments are weak from the perspective 

of the size of the TSLS (or LIML) is the same, except that the critical value in (4.4) is 

obtained using the size-based boundary eigenvalue function, size, TSLS (r;K2,n,α) (or, for 

LIML, size, LIML (r;K2,n,α)). 

4.3.  Critical Values 

Given a minimum eigenvalue , conservative critical values for the test are 

percentiles of the scaled noncentral chi-squared distribution, 
2

2
,1K dc −  (K2 )/K2.  The 

minimum eigenvalue  is obtained from the boundary eigenvalue functions in Section 

3.5. 

Critical values are tabulated in Tables 1 – 4 for the weak instrument tests based on 

TSLS bias, TSLS size, Fuller-k bias and LIML size, respectively, for one and two 

included endogenous variables (and three for TSLS bias) and up to 30 instruments.  

These critical values are plotted in the panel below the corresponding boundaries of the 

weak instrument sets in Figures 1 – 4.  The critical value plots are qualitatively similar to 

the corresponding boundary eigenvalue plots, except of course the critical values exceed 

the boundary eigenvalues to take into account the sampling distribution of the test 

statistic. 

These critical value plots provide a basis for comparing the robustness to weak 

instruments of various procedures:  the lower the critical value curve, the more robust is 

the procedure.  For discussion and comparisons of TSLS, BTSLS, Fuller-k, JIVE, and 

LIML, see Stock, Wright, and Yogo (2002, Section 6). 

Comparison to the Staiger-Stock (1997) rule of thumb.  Staiger and Stock (1997) 

suggested the rule of thumb that, in the n = 1 case, instruments be deemed weak if the 
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first-stage F is less than ten.  They motivated this suggestion based on the relative bias of 

TSLS.  Because the 5% critical value for the relative bias weak instrument test with b = 

0.1 is approximately 11 for all values of K2, the Staiger-Stock rule of thumb is 

approximately a 5% test that the worst case relative bias is approximately 10% or less.  

This provides a formal, and not unreasonable, testing interpretation of the Staiger-Stock 

rule of thumb. 

The rule of thumb fares less well from the perspective of size distortion.  When 

the number of instruments is one or two, the Staiger-Stock rule of thumb corresponds to a 

5% level test that the maximum size is no more than 15% (so the maximum TSLS size 

distortion is no more than 10%).  However, when the number of instruments is moderate 

or large, the critical value is much larger and the rule of thumb does not provide 

substantial assurance that the size distortion is controlled. 

 

5.  Asymptotic Properties of the Test as a Decision Rule 

This section examines the asymptotic rejection rate of the weak instrument test as 

a function of the smallest eigenvalue of Λ.  When this eigenvalue exceeds the boundary 

minimum eigenvalue for the weak instrument set, the asymptotic rejection rate is the 

asymptotic power function. 

The exact asymptotic distribution of gmin depends on all the eigenvalues of Λ.  It 

is bounded above by (4.2).  Based on numerical analysis, we conjecture that this 

distribution is bounded below by the distribution of the minimum eigenvalue of a random 

matrix with the noncentral Wishart distribution Wn(K2, In, mineval(K2Λ)In)/K2.  These 
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two bounding distributions are used to bound the distribution of gmin as a function of 

mineval(Λ). 

The bounds on the asymptotic rejection rate of the test (4.4) (based on TSLS 

maximum relative bias) are plotted in Figure 5 for b = 0.1 and n = 2.  The value of the 

horizontal axis (the minimum eigenvalue) at which the upper rejection rate curve equals 

5% is bias(.1;K2,2).  Evidently, as the minimum eigenvalue increases, so does the 

rejection rate.  If K2 is moderate or large, this increase is rapid and the test essentially has 

unit power against values of the minimum eigenvalue not much larger than the critical 

value.  The bounding distributions give a reasonably tight range for the actual power 

function, which depends on all the eigenvalues of Λ. 

The analogous curves for the test based on Fuller-k bias, TSLS size, or LIML size 

are centered differently because the tests have different critical values but otherwise are 

qualitatively similar to those in Figure 5 and thus are omitted. 

Interpretation as a decision rule.  It is useful to think of the weak instrument test 

as a decision rule:  if gmin is less than the critical value, conclude that the instruments are 

weak, otherwise conclude that they are strong. 

Under this interpretation, the asymptotic rejection rates in Figure 5 bound the 

asymptotic probability of deciding that the instruments are strong.  Evidently, for values 

of mineval(Λ) much below the weak instrument region boundary, the probability of 

correctly concluding that the instruments are weak is effectively one.  Thus, if in fact the 

researcher is confronted by instruments that are quite weak, this will be detected by the 

weak instruments test with probability essentially one.  Similarly, if the researcher has 

instruments with a minimum eigenvalue of Λ substantially above the threshold for the 
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weak instruments set, then the probability of correctly concluding that they are strong 

also is essentially one. 

The range of ambiguity of the decision procedure is given by the values of the 

minimum eigenvalue for which the asymptotic rejection rates effectively fall between 

zero and one.  When K2 is small, this range can be ten or more, but for K2 large this range 

of potential ambiguity of the decision rule is quite narrow. 

 

6. Conclusions 

The procedure proposed here is simple:  compare the minimum eigenvalue of GT, 

the first-stage F-statistic matrix, to a critical value.  The critical value is determined by 

the IV estimator the researcher is using, the number of instruments K2, the number of 

included endogenous regressors n, and how much bias or size distortion the researcher is 

willing to tolerate.  The test statistic is the same whether one focuses on the bias of TSLS 

or Fuller-k or on the size of TSLS or LIML; all that differs is the critical value.  

Viewed as a test, the procedure has good power, especially when the number of 

instruments is large.  Viewed as a decision rule, the procedure effectively discriminates 

between weak and strong instruments, and the region of ambiguity decreases as the 

number of instruments increases. 

Our findings support the view that LIML is far superior to TSLS when the 

researcher has weak instruments, at least from the perspective of coverage rates.  Actual 

LIML coverage rates are close to their nominal rates even for quite small values of the 

concentration parameter, especially for moderately many instruments.  Similarly, the 

Fuller-k estimator is more robust to weak instruments than TSLS, when viewed from the 
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perspective of bias.  Additional comparisons are made in Stock, Wright, and Yogo 

(2002). 

When there is a single included endogenous variable, this procedure provides a 

refinement and improvement to Staiger and Stock’s (1997) rule of thumb that instruments 

be deemed “weak” if the first-stage F is less than ten.  The difference between that rule of 

thumb and the procedure of this paper is that, instead of comparing the first-stage F to 

ten, it should be compared to the appropriate entry in Table 1 (TSLS bias), Table 2 

(TSLS size), Table 3 (Fuller-k bias), or Table 4 (LIML size).  Those critical values 

indicate that their rule of thumb can be interpreted as a test with approximately a 5% 

significance level, of the hypothesis that the maximum relative bias is at least 10%.  The 

Staiger-Stock rule of thumb is too conservative if LIML or Fuller-k are used unless the 

number of instruments is very small, but it is insufficiently conservative to ensure that the 

TSLS Wald test has good size. 

This paper has two loose ends.  First, the characterization of the set of weak 

instruments is based on the premise that the maximum relative bias and maximum size 

distortion are nonincreasing in each eigenvalue of Λ, for values of those eigenvalues in 

the relevant range.  This was justified formally using the many weak instrument 

asymptotics of Stock and Yogo (2003);  although numerical analysis suggests it is true 

for all K2, this remains to be proven.  Second, the lower bound of the power function in 

Section 5 is based on the assumption that the cdf of the minimum eigenvalue of a 

noncentral Wishart random variable is nondecreasing in each of the eigenvalues of its 

noncentrality matrix.  This too appears to be true based on numerical analysis but we do 

not have a proof nor does this result seem to be available in the literature. 
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Beyond this, several avenues of research remain open.  First, the tests proposed 

here are conservative when n > 1 because they use critical values computed using the 

noncentral chi-squared bound in Proposition 1.  Although the tests appear to have good 

power despite this, tightening the Proposition 1 bound (or constructing tests based on all 

the eigenvalues) could produce more powerful tests.  Second, we have considered 

inference based on TSLS, Fuller-k, and LIML, but there are other estimators to explore as 

well.  Third, the analysis here is predicated upon homoskedasticity, and it remains to 

extend these tests to GMM estimation of the linear IV regression model under 

heteroskedasticity. 
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Endnotes 

 
1 See Rothenberg (1984, p. 921) for a discussion of the quality of the Edgeworth 

approximation as a function of µ2 and K2. 

2 The definition of GT in (2.10) is GT in Staiger and Stock (1997, eq. (3.4)), divided by K2 

to put it in F-statistic form. 

3 In Stock and Yogo (2003), the assumption that Λ is constant is generalized to consider 

sequences of Λ, indexed by K2, that have a finite limit Λ∞ as K2 → ∞. 

4 Because in general the maximal bias depends on all the eigenvalues, the maximal bias 

when all the eigenvalues are equal to some value 0 might be greater than the maximal 

bias when one eigenvalue is slightly less than 0 but the others are large.  For this reason 

the set Wbias is potentially conservative when K2 is small.  This comment applies to size-

based sets as well. 

5 It appears that there is some non-monotonicity in the dependence on the eigenvalues for 

Fuller-k bias when the minimum eigenvalue is very small, but for such small eigenvalues 

the bias is sufficiently large that this non-monotonicity does not affect the boundary 

eigenvalues. 

6The critical values based on Proposition 1 can be quite conservative when all the 

eigenvalues of Λ are small.  For example, the boundary of the TSLS bias-based weak 

instrument set with b = 0.1, n = 2, and K2 = 4 is mineval(Λ) = 3.08, and the critical value 

for a 5% test with b = 0.1 based on Proposition 1 is 7.56.  If the second eigenvalue in fact 

equals the first, the correct critical value should be 4.63, and the rejection probability 

under the null is only 0.1%.  (Of course, it is infeasible to use this critical value because 
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the second eigenvalue of Λ is unknown.)  If the second eigenvalue is 10, then the 

rejection rate is approximately 2%.  On the other hand, if the second eigenvalue is large, 

the Proposition 1 bound is tighter.  For example, for values of K2 from 4 to 34 and n = 2, 

if the second eigenvalue exceeds 20 the rejection probability under the null range from 

3.3% to 4.1% for the nominal 5% weak instrument test based on TSLS bias with b = 0.1. 
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Table 1. 
Critical Values for the Weak Instrument Test Based on TSLS Bias 

Significance level is 5% 
 

 n = 1, b = n = 2, b = n = 3, b = 
K2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 
3 13.91 9.08 6.46 5.39 . . . . . . . . 
4 16.85 10.27 6.71 5.34 11.04 7.56 5.57 4.73 . . . . 
5 18.37 10.83 6.77 5.25 13.97 8.78 5.91 4.79 9.53 6.61 4.99 4.30 
6 19.28 11.12 6.76 5.15 15.72 9.48 6.08 4.78 12.20 7.77 5.35 4.40 
7 19.86 11.29 6.73 5.07 16.88 9.92 6.16 4.76 13.95 8.50 5.56 4.44 
8 20.25 11.39 6.69 4.99 17.70 10.22 6.20 4.73 15.18 9.01 5.69 4.46 
9 20.53 11.46 6.65 4.92 18.30 10.43 6.22 4.69 16.10 9.37 5.78 4.46 
10 20.74 11.49 6.61 4.86 18.76 10.58 6.23 4.66 16.80 9.64 5.83 4.45 
11 20.90 11.51 6.56 4.80 19.12 10.69 6.23 4.62 17.35 9.85 5.87 4.44 
12 21.01 11.52 6.53 4.75 19.40 10.78 6.22 4.59 17.80 10.01 5.90 4.42 
13 21.10 11.52 6.49 4.71 19.64 10.84 6.21 4.56 18.17 10.14 5.92 4.41 
14 21.18 11.52 6.45 4.67 19.83 10.89 6.20 4.53 18.47 10.25 5.93 4.39 
15 21.23 11.51 6.42 4.63 19.98 10.93 6.19 4.50 18.73 10.33 5.94 4.37 
16 21.28 11.50 6.39 4.59 20.12 10.96 6.17 4.48 18.94 10.41 5.94 4.36 
17 21.31 11.49 6.36 4.56 20.23 10.99 6.16 4.45 19.13 10.47 5.94 4.34 
18 21.34 11.48 6.33 4.53 20.33 11.00 6.14 4.43 19.29 10.52 5.94 4.32 
19 21.36 11.46 6.31 4.51 20.41 11.02 6.13 4.41 19.44 10.56 5.94 4.31 
20 21.38 11.45 6.28 4.48 20.48 11.03 6.11 4.39 19.56 10.60 5.93 4.29 
21 21.39 11.44 6.26 4.46 20.54 11.04 6.10 4.37 19.67 10.63 5.93 4.28 
22 21.40 11.42 6.24 4.43 20.60 11.05 6.08 4.35 19.77 10.65 5.92 4.27 
23 21.41 11.41 6.22 4.41 20.65 11.05 6.07 4.33 19.86 10.68 5.92 4.25 
24 21.41 11.40 6.20 4.39 20.69 11.05 6.06 4.32 19.94 10.70 5.91 4.24 
25 21.42 11.38 6.18 4.37 20.73 11.06 6.05 4.30 20.01 10.71 5.90 4.23 
26 21.42 11.37 6.16 4.35 20.76 11.06 6.03 4.29 20.07 10.73 5.90 4.21 
27 21.42 11.36 6.14 4.34 20.79 11.06 6.02 4.27 20.13 10.74 5.89 4.20 
28 21.42 11.34 6.13 4.32 20.82 11.05 6.01 4.26 20.18 10.75 5.88 4.19 
29 21.42 11.33 6.11 4.31 20.84 11.05 6.00 4.24 20.23 10.76 5.88 4.18 
30 21.42 11.32 6.09 4.29 20.86 11.05 5.99 4.23 20.27 10.77 5.87 4.17 

 
Notes:  The test rejects if gmin exceeds the critical value.  The critical value is a function 
of the number of included endogenous regressors (n), the number of instrumental 
variables (K2), and the desired maximal bias of the IV estimator relative to OLS (b). 
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Table 2. 
Critical Values for the Weak Instrument Test Based on TSLS Size 

Significance level is 5% 
 

 n = 1, r = n = 2, r = 
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 
1 16.38 8.96 6.66 5.53 . . . . 
2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63 
3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45 
4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28 
5 26.87 15.09 10.98 8.84 19.45 11.22 8.38 6.89 
6 29.18 16.23 11.72 9.38 21.68 12.33 9.10 7.42 
7 31.50 17.38 12.48 9.93 23.72 13.34 9.77 7.91 
8 33.84 18.54 13.24 10.50 25.64 14.31 10.41 8.39 
9 36.19 19.71 14.01 11.07 27.51 15.24 11.03 8.85 
10 38.54 20.88 14.78 11.65 29.32 16.16 11.65 9.31 
11 40.90 22.06 15.56 12.23 31.11 17.06 12.25 9.77 
12 43.27 23.24 16.35 12.82 32.88 17.95 12.86 10.22 
13 45.64 24.42 17.14 13.41 34.62 18.84 13.45 10.68 
14 48.01 25.61 17.93 14.00 36.36 19.72 14.05 11.13 
15 50.39 26.80 18.72 14.60 38.08 20.60 14.65 11.58 
16 52.77 27.99 19.51 15.19 39.80 21.48 15.24 12.03 
17 55.15 29.19 20.31 15.79 41.51 22.35 15.83 12.49 
18 57.53 30.38 21.10 16.39 43.22 23.22 16.42 12.94 
19 59.92 31.58 21.90 16.99 44.92 24.09 17.02 13.39 
20 62.30 32.77 22.70 17.60 46.62 24.96 17.61 13.84 
21 64.69 33.97 23.50 18.20 48.31 25.82 18.20 14.29 
22 67.07 35.17 24.30 18.80 50.01 26.69 18.79 14.74 
23 69.46 36.37 25.10 19.41 51.70 27.56 19.38 15.19 
24 71.85 37.57 25.90 20.01 53.39 28.42 19.97 15.64 
25 74.24 38.77 26.71 20.61 55.07 29.29 20.56 16.10 
26 76.62 39.97 27.51 21.22 56.76 30.15 21.15 16.55 
27 79.01 41.17 28.31 21.83 58.45 31.02 21.74 17.00 
28 81.40 42.37 29.12 22.43 60.13 31.88 22.33 17.45 
29 83.79 43.57 29.92 23.04 61.82 32.74 22.92 17.90 
30 86.17 44.78 30.72 23.65 63.51 33.61 23.51 18.35 

 
Notes:  The test rejects if gmin exceeds the critical value.  The critical value is a function 
of the number of included endogenous regressors (n), the number of instrumental 
variables (K2), and the desired maximal size (r) of a 5% Wald test of β = β0. 
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Table 3. 
Critical Values for the Weak Instrument Test Based on Fuller-k Bias 

Significance level is 5% 
 

 n = 1, b = n = 1, b = 
K2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30 
1 24.09 19.36 15.64 12.71 . . . . 
2 13.46 10.89 9.00 7.49 15.50 12.55 9.72 8.03 
3 9.61 7.90 6.61 5.60 10.83 8.96 7.18 6.15 
4 7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10 
5 6.42 5.44 4.62 4.03 7.16 6.07 5.04 4.44 
6 5.61 4.81 4.11 3.63 6.24 5.34 4.48 3.98 
7 5.02 4.35 3.75 3.33 5.59 4.82 4.08 3.65 
8 4.58 4.01 3.47 3.11 5.10 4.43 3.77 3.39 
9 4.23 3.74 3.25 2.93 4.71 4.12 3.53 3.19 
10 3.96 3.52 3.07 2.79 4.41 3.87 3.33 3.02 
11 3.73 3.34 2.92 2.67 4.15 3.67 3.17 2.88 
12 3.54 3.19 2.80 2.57 3.94 3.49 3.04 2.77 
13 3.38 3.06 2.70 2.48 3.76 3.35 2.92 2.67 
14 3.24 2.95 2.61 2.41 3.60 3.22 2.82 2.58 
15 3.12 2.85 2.53 2.34 3.47 3.11 2.73 2.51 
16 3.01 2.76 2.46 2.28 3.35 3.01 2.65 2.44 
17 2.92 2.69 2.39 2.23 3.24 2.92 2.58 2.38 
18 2.84 2.62 2.34 2.18 3.15 2.84 2.52 2.33 
19 2.76 2.56 2.29 2.14 3.06 2.77 2.46 2.28 
20 2.69 2.50 2.24 2.10 2.98 2.71 2.41 2.23 
21 2.63 2.45 2.20 2.07 2.91 2.65 2.36 2.19 
22 2.58 2.40 2.16 2.04 2.85 2.60 2.32 2.16 
23 2.52 2.36 2.13 2.01 2.79 2.55 2.28 2.12 
24 2.48 2.32 2.10 1.98 2.73 2.50 2.24 2.09 
25 2.43 2.28 2.06 1.95 2.68 2.46 2.21 2.06 
26 2.39 2.24 2.04 1.93 2.63 2.42 2.18 2.03 
27 2.36 2.21 2.01 1.90 2.59 2.38 2.15 2.01 
28 2.32 2.18 1.99 1.88 2.55 2.35 2.12 1.98 
29 2.29 2.15 1.96 1.86 2.51 2.31 2.09 1.96 
30 2.26 2.12 1.94 1.84 2.47 2.28 2.07 1.94 

 
See the notes to Table 1. 
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Table 4. 
Critical Values for the Weak Instrument Test Based on LIML Size 

Significance level is 5% 
 

 n = 1, r = n = 1, r = 
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25 
1 16.38 8.96 6.66 5.53 . . . . 
2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63 
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09 
4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79 
5 4.84 3.56 3.05 2.77 4.32 3.13 2.78 2.60 
6 4.45 3.34 2.87 2.61 4.06 2.95 2.63 2.46 
7 4.18 3.18 2.73 2.49 3.90 2.83 2.52 2.35 
8 3.97 3.04 2.63 2.39 3.78 2.73 2.43 2.27 
9 3.81 2.93 2.54 2.32 3.70 2.66 2.36 2.20 
10 3.68 2.84 2.46 2.25 3.64 2.60 2.30 2.14 
11 3.58 2.76 2.40 2.19 3.60 2.55 2.25 2.09 
12 3.50 2.69 2.34 2.14 3.58 2.52 2.21 2.05 
13 3.42 2.63 2.29 2.10 3.56 2.48 2.17 2.02 
14 3.36 2.57 2.25 2.06 3.55 2.46 2.14 1.99 
15 3.31 2.52 2.21 2.03 3.54 2.44 2.11 1.96 
16 3.27 2.48 2.18 2.00 3.55 2.42 2.09 1.93 
17 3.24 2.44 2.14 1.97 3.55 2.41 2.07 1.91 
18 3.20 2.41 2.11 1.94 3.56 2.40 2.05 1.89 
19 3.18 2.37 2.09 1.92 3.57 2.39 2.03 1.87 
20 3.21 2.34 2.06 1.90 3.58 2.38 2.02 1.86 
21 3.39 2.32 2.04 1.88 3.59 2.38 2.01 1.84 
22 3.57 2.29 2.02 1.86 3.60 2.37 1.99 1.83 
23 3.68 2.27 2.00 1.84 3.62 2.37 1.98 1.81 
24 3.75 2.25 1.98 1.83 3.64 2.37 1.98 1.80 
25 3.79 2.24 1.96 1.81 3.65 2.37 1.97 1.79 
26 3.82 2.22 1.95 1.80 3.67 2.38 1.96 1.78 
27 3.85 2.21 1.93 1.78 3.74 2.38 1.96 1.77 
28 3.86 2.20 1.92 1.77 3.87 2.38 1.95 1.77 
29 3.87 2.19 1.90 1.76 4.02 2.39 1.95 1.76 
30 3.88 2.18 1.89 1.75 4.12 2.39 1.95 1.75 

 
See the notes to Table 2. 



Figure 1: Weak Instrument Sets and Critical Values based on
Bias of TSLS Relative to OLS
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Boundary of weak instrument set (n  = 2)
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Figure 2: Weak Instrument Sets and Critical Values based on
Size of TSLS Wald Test
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Figure 3: Weak Instrument Sets and Critical Values based on
Bias of Fuller-k Relative to OLS
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Figure 4: Weak Instrument Sets and Critical Values based on
Size of LIML Wald Test
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Figure 5: Power Function for TSLS Bias Test (Relative Bias = 0.1, n = 2)
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