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1 Classical Linear Regression Model

1.1 Introduction

General form of the multiple linear regression model is:

yi = �1xi1 + �2xi2 + :::+ �kxik + "i, i = 1; :::; n

y = X� + "

y =

0BB@
y1
...

yn

1CCA ; X =

0BB@
x11 � � � x1k

. . .

xn1 � � � xnk

1CCA ; � =
0BB@
�1
...

�k

1CCA ; " =
0BB@
"1
...

"n

1CCA :
Typically, the �rst column consists of ones, i.e., (x11; :::; xn1)0 = (1; :::; 1)0. This signi�es the

presence of an intercept in our regression.

1.2 Assumptions

(A.1) True model is y = X� + " (functional form)

(A.2) E(") = 0 (zero mean)

(A.3) V ar(") = E(""0) = �2In (homoskedasticity and non-autocorrelation)

(A.4) X is a non-stochastic n� k matrix, with rank k � n

(A.5) " � N(0; �2In)
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Note: Assumption (A.4) guarantees that X 0X is non-singular. It ensures that no exact

collinearity exists between the explanatory variables; i.e. there does not exist an ex-

act linear relationship between them that holds for all i:

This assumption rules out the following behaviour. Suppose k = 3, xi2 = 2xi3 and

xi1 = 1 for all i. Then

yi = �1 + �2xi2 + �3xi3 + "i

= �1 + �2(2xi3) + �3xi3 + "i

= �1 + �3xi3 + "i;

where �3 = 2�2 + �3: The parameter �3 can be easily estimated but we say that the

parameters �2 and �3 cannot be separately identi�ed.

2 OLS Estimation

An algebraic tool: Given a sample on yi and characteristics xi1; ::; xik we may ask: which

linear combination of the characteristics would give a good approximation of yi for all i:

We can consider any arbitrary linear combination, which can be written as

b1xi1 + b2xi2 + :::+ bkxik

Our aim is to minimise the di¤erence between an observed value yi and its linear approxi-

mation, that is

yi � b1xi1 � b2xi2 � :::� bkxik; or
yi � x0ib

where

xi = (xi1; :::; xik)
0 and b = (b1; :::; bk)

0 :

Thus, we would like to choose values for b1; b2; :::; bk such that these di¤erences are small

for all i. Although di¤erent measures can be used to de�ne what we mean by �small�, the

most common approach is to choose b such that the sum of squared di¤erences is as small

as possible. This approach is referred to as the ordinary least squares or OLS approach.
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Let xi1 = 1 for all i (8i) in the sequel (i.e., assume that the model contains an intercept)�b�1; :::; b�k�0 = argmin
�1;�2;:::;�k

nX
i=1

(yi � �1 � �2xi2 � :::� �kxik)2, or�b�1; :::; b�k�0 = argmin
�1;�2;:::;�k

(y �X�)0(y �X�)

The Normal equations (FOC) are given by:0BBBBBBBB@

nP
i=1

b"i
nP
i=1

xi2b"i
...
nP
i=1

xikb"i

1CCCCCCCCA
=

0BBBB@
1 � � � 1

x12 � � � xn2
...

x1k � � � xnk

1CCCCA
0BBBB@
b"1b"2
...b"n

1CCCCA =

0BBBB@
0

0
...

0

1CCCCA ;

where b"i = yi � b�1 � b�2xi2 � :::� b�kxik;
Or,

X 0b" = 0
(kxn) (nx1) (kx1)

(
k equations to determineb�1; b�2; :::; b�k

(residuals orthogonal to regressors)

The OLS estimator:

Since b" = y �X b�
X 0b" = 0 gives ) X 0(y �X b�) = 0

X 0y �X 0X b� = 0
X 0X b� = X 0y )b� = (X 0X)�1X 0y

provided X 0X is non-singular, i.e.det(X 0X) 6= 0.

If X 0X is singular, it cannot be inverted, so that the estimator b� cannot be computed. We
mentioned before that in this case the true parameter vector � is not identi�ed. (Analogy

in the simple linear regression model, where b� = Pn
i=1(xi�x)(yi�y)Pn

i=1(xi�x)2
as long as �(xi� x)2 6= 0)
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Derive normal equations directly using matrix algebra

b� = argmin
�

(y �X�)0(y �X�) = argmin
�

S(�)

argmin
�
fy0y � 2�0X 0y + �0X 0X�g (Note �0X 0y = y0X� (scalar))

FOC :
@S(b�)
@�

= �2X 0y + 2X 0X b� = 0 (See Problem Set 1 question 6)�
or � 2X 0b" = 0 since b" = y �X b��
) b� = (X 0X)�1X 0y

SOC : is satis�ed since X 0X is positive de�nite (see Problem Set question 5)

3 Finite Sample Properties of b�
Using only A.1 through A.4, we can establish that the least squares estimators of the

unknown parameters �

b� = (X 0X)�1X 0y = � + (X 0X)�1X 0"

have the following exact, �nite sample properties

3.1 Unbiasedness of b�
This means that in repeated sampling, we can expect that our estimator is on average equal

to the true value �.

b� = (X 0X)�1X 0y

= � + (X 0X)�1X 0"

Take expectations (X is non-stochastic)

E(b�) = E(� + (X 0X)�1X 0")

= � + (X 0X)�1X 0E(") = � b/c E(") = 0
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3.2 Variance of b�
In addition to knowing that we are, on average, correct, we would also like to make state-

ments about how (un)likely it is to be far o¤ in a given sample. We would like to know the

sampling distribution of b�.
Var(b�) = E((b� � E(b�))(b� � E(b�))0)

= E((b� � �)(b� � �)0) ((k � k) matrix)

=

0BBBB@
Var(b�1) Cov(b�1; b�2) � � � Cov(b�1; b�k)

Var(b�2)
. . .

Var(b�k)

1CCCCA
b� � � = (X 0X)�1X 0"

(b� � �)(b� � �)0 = (X 0X)�1X 0""0X(X 0X)�1

Take expectations (X is non-stochastic)

E((b� � �)(b� � �)0) = E((X 0X)�1X 0""0X(X 0X)�1)

= (X 0X)�1X 0(E""0)X(X 0X)�1

= (X 0X)�1X 0(�2I)X(X 0X)�1

= �2(X 0X)�1

3.3 Best Linear Unbiased Estimator (BLUE) b�
Gauss-Markov Theorem: Given our assumptions (A.1)�(A.4) the OLS estimator b� is
the best linear unbiased estimator of �.

Proof of Gauss-Markov Theorem
Show b� = (X 0X)�1X 0y is BLUE

� Let e� = Cy
(k�1) =(k�n) (n�1)

be another linear unbiased estimator. For e� to be unbiased
E(e�) = E(Cy) = E(CX� + C") = CX� � �

which implies CX = I ) e� = CX� + C" = � + C"
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� Want to show: Var(b�) �Var(e�)
Var(e�) = E((e� � �)(e� � �)0) = E(C""0C 0)
Var(e�) = CE(""0)C 0 = �2CC 0 b/c E(""0) = �2In

Var(e�)�Var(b�) = �2(CC 0 � (X 0X)�1)

= �2(CC 0 � CX|{z}
=I

unbiasedness

(X 0X)�1 X 0C 0| {z }
=I

unbiasedness

)

= �2C(In �X(X 0X)�1X 0)C 0

= �2CMC 0 M idempotent and symmetric

= �2CMM 0C 0

= �2DD0 positive semi-de�nite matrix,

b/c 8a, a0DD0a = z0z =
X

z2i � 0, where z = D0a:

The result also applies to any linear combination of the elements of �, i.e.

Var(c0b�) � Var(c0e�)
where c = (c1; :::; ck)

0 is a k � 1 vector of arbitrary constants.

Corollary: For any vector of constants, c, the minimum variance linear unbiased estimator
of c0� in the classical regression model (given assumptions (A.1)�(A.4)) is c0b�, where b� is
the least squares estimator, e.g.

c =

0BBBBBBBBBB@

0
...

1

0
...

0

1CCCCCCCCCCA
 ith position

) c0� = �i

Var(b�i) � Var(e�i)
Each coe¢ cient is estimated at least as e¢ ciently by b� as by any other linear unbiased
estimator.
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3.4 Exact Sampling Distribution of b�
Recall: The precise way in which estimators re�ect the population values de�nes the Sam-
pling Distribution of the estimator. If another sample was drawn under identical con-
ditions, di¤erent values would be obtained. The sampling distribution is used to make

Inferences about the population.

Note that the estimator of b� is a linear combination of the errors, "b� = � + (X 0X)�1X 0":

Thus, assuming that the errors are normally distributed, b� will be normally distributed
as well (any linear combination of normal random variables is normal again). Above we

already showed that b� is unbiased (i.e. the mean of b� equals �), and that its variance equals
�2(X 0X)�1: So, b� � N(�; �2(X 0X)�1)

From this it also follows that each element in b� is normally distributedb�j � N(�j; �2cjj); where cjj = �(X 0X)�1
�
jj
;

i.e. cjj is the (j; j) element of the k � k matrix (X 0X)�1:

3.5 Minimum variance unbiased estimator of b�
We showed in the simple linear regression model that under normality, our OLS estimator

equals the Maximum Likelihood estimator. This holds for the multiple linear regression

model as well, b� = b�MLE. This implies that b� is not only the Best Linear Unbiased
Estimator (BLUE), but it is the best estimator in the class of all unbiased estimators

(MVU). ( E¢ ciency property of MLE.

4 Algebraic Aspects of the Solution

Model y = X� + "

Estimator b� = (X 0X)�1X 0y

Residual b" = y �X b� = y �X(X 0X)�1X 0y

= (In �X(X 0X)�1X 0)y

Fitted values by = X b� = X(X 0X)�1X 0y
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We introduce the following two matrices

P = X(X 0X)�1X 0

M = In �X(X 0X)�1X 0 = In � P

Properties of the P and M matrices

1) Symmetry P 0 = P;M 0 =M

2) Idempotent PP = P;MM =M

3) Eigenvalues are 0 or 1

4) Rank (P ) = tr(P ) = tr(X(X 0X)�1X 0) = tr(X 0X(X 0X)�1) = tr(Ik) = k

Rank (M) = tr(M) = tr(I � P ) = tr(In)� tr(P ) = n� k

5) PX = X(X 0X)�1X 0X = X The P matrix is also called theProjection
matrix

)MX = 0 (M is orthogonal to X)

6) PM = 0

Therefore, we can write

Residuals: b" =My
Fitted values: by = Py
Residual sum of squares: RSS = b"0b" = "0M"

RSS = b"0b" = y0MMy|{z}b" (M symmetric)

= (X� + ")0MM(X� + ") (plug in y = X� + ")

= "0MM" (since MX = 0; X 0M = 0)

= "0M" (since M is idempotent)

5 Finite Sample Properties of s2

Similarly as in the simple linear regression, we can propose the following estimator of �2

s2 =
b"0b"
n� k

Using only A.1 through A.4, we can establish the following exact, �nite sample properties:
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5.1 Unbiasedness of s2

Proof that E(s2) = �2;

E(b"0b") = E("0M")
= E(tr("0M")) trace of a scalar is the scalar itself

= E(tr(M""0))

= tr(ME(""0)) X non-stochastic, tr and E are linear operators

= tr(M � �2I)
= �2tr(M) = �2(n� k)

s is the estimated standard error of the regression. b�2MLE =
b"0b"
n
biased, but more

e¢ cient.

The variance of b� can thus be estimated by
dVar(b�) = s2(X 0X)�1:

The estimated variance of an element b�j is the jth diagonal element of this estimated
variance-covariance matrix. The square root of this estimated variance is usually referred

to as the estimated standard error of b�j, (cSE(b�j)).
5.2 Exact Sampling Distribution of s2

It can be shown that the unbiased estimator s2 (rescaled) has a �2 distribution with n� k
degrees of freedom

(n� k)��2s2 � �2n�k

Technical Aside: Quadratic Form Distributions: Q = x0Ax

x � N(0; Ip)

Q � �2(k) k =rank(A), Aidempotent

x � N(0; �2Ip)

Q

�2
� �2(k) k =rank(A), Aidempotent

x � N(0; V )

Q � �2(k) k =rank(AV ), AV idempotent
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Proof:

(n� k)��2s2 = (n� k)��2 � b"0b"
n� k

=
b"0b"
�2
=
"0M"

�2

This is a quadratic form of a N(0; �2In) vector, M idempotent with rank equal to n� k )

"0M"

�2
� �2n�k

(See Problem Set 2, last question)

5.3 Zero-covariance between b� and b"
For testing purposes it is useful to note that b� and b" have no correlation: under the
additional assumption of normality (A.5) it implies that b� and s2 independent (causality
does not go the other way).

Proof:

b� = � + (X 0X)�1X 0"b" =M"
Cov(b�; b") = E h(b� � �)(b"� 0)0i

= E
�
(X 0X)�1X 0"(M")0

�
= E

�
(X 0X)�1X 0""0M

�
= (X 0X)�1X 0E(""0)M

= �2(X 0X)�1X 0M = 0:

Both b� and b" are linear in " and therefore normaly distributed under (A.5). Because of this
normality, the zero covariance implies that all the elements of the vector b� are independent
of the elements of the vector b" =M". This implies that the elements of b� are independent
of any function of the elements of M", for example of "0M 0M" = "0M". Thus, b� and s2 are
independent under the normality assumption.
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6 Goodness of Fit

R2 = 1� RSS
TSS

= 1� b"0b"
y0M0y

where M0 = In � �(�0�)�1�0

where � =

0BBBB@
1

1
...

1

1CCCCA
n�1

, or M0 = In �
1

n
��0 (See Problem Set 1, question 7)

If the regression does not include an intercept we use instead:

R2 = 1� b"0b"
y0y
:

Problem: R2 can be made arbitrarily large (R2 does not decline with k, see Problem Set)

) Adjusted R2 = R
2
= 1� RSS=(n� k)

TSS=(n� 1)

7 Partitioning the Linear Regression Model

Say we partition the matrix (X) with the k explanatory variables into X1 (n� k1) and X2

(n� k2), X = [X1 : X2], where k1 + k2 = k.

y = X� + " = X1�1 +X2�2 + "

=

"
X1

(n�k1)

... X2
(n�k2)

#"
�1

�2

#
(k1�1)

(k2�1)
+ "

Then, from the FOC

X 0X b� = X 0y )
 
X 0
1X1 X 0

1X2

X
0
2X1 X

0
2X2

! b�1b�2
!
=

 
X 0
1y

X 0
2y

!
or

X 0
1X1

b�1 +X 0
1X2

b�2 = X 0
1y (1)

X 0
2X1

b�1 +X 0
2X2

b�2 = X 0
2y (2)

Solve (2) for b�2 : b�2 = (X 0
2X2)

�1X 0
2y � (X 0

2X2)
�1X 0

2X1
b�1

11



Substitute out in (1)

(X 0
1X1 �X 0

1X2(X
0
2X2)

�1X 0
2X1)b�1 = X 0

1y �X 0
1X2(X

0
2X2)

�1X 0
2y

or

(X 0
1M2X1)b�1 = X 0

1M2y where M2 = In �X2(X
0
2X2)

�1X 0
2 = I � P2

) b�1 = (X 0
1M2X1)

�1X 0
1M2y

subvector of b� = (X 0X)�1X 0y

Similarly, we can derive

b�2 = (X 0
2M1X2)

�1X 0
2M1y

Compare P2 with P = X(X 0X)�1X 0

� Recall Py = by; or Py gives the �tted values from a regression of y on X: We called

P the projection matrix. The �tted value by is the projection of y on the X space.

� Then P2X1 gives the projection of X1 on the X2 space, or the �tted values of a

regression of X1 on X2.

Compare M2 with M = In �X(X 0X)�1X 0

� Recall My = b", or My gives the residual vector from a regression of y on X:

� Then M2X1 (matrix n� k1) contains the residuals from the regression of X1 on X2

Example of the partitioned regression result:

In the simple linear regression model,

y = �1�+ �2x+ ", so X1 � � =

0BBBB@
1

1
...

1

1CCCCA
n�1

, X2 � x =

0BBBB@
x1

x2
...

xn

1CCCCA
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or

yi = �1 + �2xi + "i:

Thus b�2 = (x0M1x)
�1x0M1y = ((M1x)

0(M1x))
�1
(M1x)

0(M1y)

where

M1 = In � �(�0�)�1�0 = In �
1

n
��0:

Recall from Problem Set 1 that for any n� 1 vector z

M1z = z � z� =

0BBBB@
z1 � z
z2 � z
...

zn � z

1CCCCA , where z = 1

n

nX
i=1

zi:

Thus b�1 = ((x� x�)0(x� x�))�1(x� x�)0(y � y�)
=

nP
i=1

(xi � x) (yi � y)
nP
i=1

(xi � x)2
, as expected

Finally, let�s consider some properties of b�1b�1 = (X 0
1M2X1)

�1X 0
1M2y

= (X 0
1M2X1)

�1X 0
1M2(X1�1 +X2�2 + ")

= (X 0
1M2X1)

�1X 0
1M2X1�1 + (X

0
1M2X1)

�1X 0
1M2X2�2

+ (X 0
1M2X1)

�1X 0
1M2"

= �1 + (X
0
1M2X1)

�1X 0
1M2"

as M2X2 = 0. Thus

E(b�1) = E(�1 + (X 0
1M2X1)

�1X 0
1M2") = �1

V ar(b�1) = E �(b�1 � �1)(b�1 � �1)0�
= E

�
(X 0

1M2X1)
�1X 0

1M2""
0M2X1(X

0
1M2X1)

�1�
= (X 0

1M2X1)
�1X 0

1M2E(""
0)M2X1(X

0
1M2X1)

�1, X nonstochastic

= �2(X 0
1M2X1)

�1:
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