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1 Classical Linear Regression Model

1.1 Introduction

General form of the multiple linear regression model is:

Yi = 611’,‘1 + 621’,’2 + ...+ kazk + Eiy 1= 1, . n

y=Xp+¢

Y1 11 0 Tk B €1
Yy = 7X: 7/6: , € =

Yn Tp1 - Tnk Br En

Typically, the first column consists of ones, i.e., (11, ..., 2,1)" = (1, ..., 1)". This signifies the

presence of an intercept in our regression.

1.2 Assumptions

(A.1) True model is y = X5+ ¢ (functional form)
(A2) E(e) =0 (zero mean)
(A.3) Var(e) = E(ee’) = 021, (homoskedasticity and non-autocorrelation)

(A.4) X is a non-stochastic n x k matrix, with rank £ <n

(A5) &~ N(0,021,)



Note: Assumption (A.4) guarantees that X’X is non-singular. It ensures that no exact
collinearity exists between the explanatory variables; i.e. there does not exist an ex-

act linear relationship between them that holds for all 7.

This assumption rules out the following behaviour. Suppose k = 3, z;5 = 2x;3 and

z;1 = 1 for all 4. Then

Yi = 1+ Baxio + B3xis + €
= [1 + Pa(2xs3) + Paxiz + &
= 1+ Bywis + &5,

where 35 = 283, + 3. The parameter (35 can be easily estimated but we say that the

parameters 35 and (3 cannot be separately identified.

2 OLS Estimation

An algebraic tool: Given a sample on y; and characteristics z;1, .., r;, we may ask: which
linear combination of the characteristics would give a good approximation of y; for all .

We can consider any arbitrary linear combination, which can be written as
blxil + bgl’ig + ...+ bkxzk

Our aim is to minimise the difference between an observed value y; and its linear approxi-

mation, that is

Yi — bixin — bawie — ... — by, or

Yi — l’gb

where

2 = (T, ., zig) and b= (by, ..., b) .

Thus, we would like to choose values for by, bs, ..., by such that these differences are small
for all 7. Although different measures can be used to define what we mean by ‘small’, the
most common approach is to choose b such that the sum of squared differences is as small

as possible. This approach is referred to as the ordinary least squares or OLS approach.



Let x;; = 1 for all ¢ (Vi) in the sequel (i.e., assume that the model contains an intercept)
—~ ~\/ i
(517 "'7Bk> = argmin Z(yz — 1 = Boia — ... — Bra)?, or
B1,B2,-:Bk 5=

(B\l, ...,Bk>/ = ;rﬂgmi;l (y—XB)(y— XpB)

The Normal equations (FOC) are given by:

n ~
E :51'
i=1

1 1 €1
n o~ ~
Zxﬁgi 12 *° Tp2 E9
=1 = . = ;
n ~ Tk " Tpk gn 0
Zwik&'
i=1
where
Ei =i — b1 — Pazia — ... — BTk,
Or,
X'eE=0 k equations to determine
(kxn) (nX1) (le) Blv ﬁQa ceey 616

(residuals orthogonal to regressors)

The OLS estimator:
Since e =y — X E

X'e=0 gives = X’(y—XB\) =0
X'y—X'XB=0

X'XB=Xy=
=N
provided X'X is non-singular, i.e. det(X'X) # 0.

If X'X is singular, it cannot be inverted, so that the estimator E cannot be computed. We
mentioned before that in this case the true parameter vector § is not identified. (Analogy

in the simple linear regression model, where B = % as long as X(x; —T)? #0)
i=1\"1
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Derive normal equations directly using matrix algebra

~

g = arggnin(y — XpB)(y— XpB) = argﬁminS(b’)
argmin {y'y — 26’ X'y + ' X’ X3} (Note ' X'y = y/ X (scalar))
B

AS(5)

(or _2X'E=0 since =y — XB)

—2X"y + 9X'XB =0/ (See Problem Set 1 question 6)

= B=(X'X)"'X"y

SOC : is satisfied since | X'X is positive definite | (see Problem Set question 5)

3 Finite Sample Properties of 3

Using only A.1 through A.4, we can establish that the least squares estimators of the

unknown parameters (3

B=(X'X)'X'y = B+ (X'X) X

have the following exact, finite sample properties

3.1 Unbiasedness of 3

This means that in repeated sampling, we can expect that our estimator is on average equal

to the true value f3.
B\ — (X/X)lely
=B+ (X' X)X
Take expectations (X is non-stochastic)

E(B) = E(B+ (X'X) ' Xe)
=B+ (X'X)'X'E(e) =B bjc E(c) =0



3.2 Variance of B

In addition to knowing that we are, on average, correct, we would also like to make state-
ments about how (un)likely it is to be far off in a given sample. We would like to know the

sampling distribution of B .

Var(3) = E((B — E(B))(B — E(B))")
= B( 5 B) ﬂ B)) ((k x k) matrix)

Var 61 Cov(ﬁl/,\gg) COV(B\l,Bk)
Var(ﬁz)

-~

Var(Gx)

~

B—B=(X'X)"X"
(B—B)(B—p) = (X'X) ' X'ee' X(X'X)!

Take expectations (X is non-stochastic)

E((B—B)(B—B)) = E(X'X)"' X'ee' X(X'X) ™)
= (X'X)'X'(Fee) X (X'X) ™!
= (X'X)" ' X'(*NHX(X'X)!
=?(X'X)7!

3.3 Best Linear Unbiased Estimator (BLUE) B

Gauss-Markov Theorem: Given our assumptions (A.1)—(A.4) the OLS estimator B is

the best linear unbiased estimator of .

Proof of Gauss-Markov Theorem
Show 3 = (X'X)~1X"y is BLUE

o Let B =Cy be another linear unbiased estimator. For B to be unbiased
(kx1) =(kxn) (nx1)

E(B)=E(Cy)=E(CX5+Ce)=CXE=0
which implies CX =1 = B: CXp+Ce=p+Ce
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e Want to show: Var(3) <Var(3)

Var(5) = E((5 ~ 8)(5 — B)) = E(Cee'C')
Var(B) = CE(ee')C" = 62CC" b/c E(ee') = 021,

~ ~

Var(f3) — Var(p) = o?(CC" — (X'X)™Y)

_ 2 r_ / -1 1
= o¥(CC' — X (X'X) c)

unbissedness unbissedness
=0’C(I, - X(X'X) ' X"’
= o?CMC’ M idempotent and symmetric
= ?CMM'C’
=o’DD’ positive semi-definite matrix,

b/cVa,d'DD'a =22 = sz > 0, where z = D'a.

The result also applies to any linear combination of the elements of (3, i.e.

~ ~

Var(¢'8) < Var(d )
where ¢ = (cy,...,c) is a k x 1 vector of arbitrary constants.
Corollary: For any vector of constants, ¢, the minimum variance linear unbiased estimator

of ¢ in the classical regression model (given assumptions (A.1)—(A.4)) is ¢ 3, where f is

the least squares estimator, e.g.

0
1
c= 0 — i position
0
= dB =0

Var(ﬁi) < Var(gi)

Each coefficient is estimated at least as efficiently by B as by any other linear unbiased

estimator.



3.4 Exact Sampling Distribution of 3

Recall: The precise way in which estimators reflect the population values defines the Sam-
pling Distribution of the estimator. If another sample was drawn under identical con-
ditions, different values would be obtained. The sampling distribution is used to make

Inferences about the population.
Note that the estimator of B is a linear combination of the errors,

B=pB+(X'X)"Xk.
Thus, assuming that the errors are normally distributed, B will be normally distributed
as well (any linear combination of normal random variables is normal again). Above we
already showed that 5 is unbiased (i.e. the mean of B\ equals (3), and that its variance equals
o?(X'X)~1. So,

B~ N(B,0*(X'X)™)
From this it also follows that each element in 5 is normally distributed

B; ~ N(B;,0%cj;), where ¢;; = [(X’X)’l]jj,

i.e. ¢j; is the (j, j) element of the & X k matrix (X'X)~t.

3.5 Minimum variance unbiased estimator of

We showed in the simple linear regression model that under normality, our OLS estimator
equals the Maximum Likelihood estimator. This holds for the multiple linear regression
model as well, E = BMLE. This implies that B\ is not only the Best Linear Unbiased
Estimator (BLUE), but it is the best estimator in the class of all unbiased estimators
(MVU). < Efficiency property of MLE.

4 Algebraic Aspects of the Solution

Model y=Xpf+e¢

Estimator B=(X'X)"'X"y

Residual é\:y—XB\:y—X(X’X)*lX'y
=, - X(X'X)"'X")y

Fitted values T=XB=X(X'X)"'X"y



We introduce the following two matrices

P=X(X'X)'X'
M=1I,-X(X'X)'X'=I,- P

Properties of the P and M matrices
1) Symmetry P=PM=M
2) Idempotent PP=P MM=M
3) Eigenvalues are 0 or 1

4) Rank (P) =tr(P) =tr(X(X'X) ' X") = tr( X'X(X'X) ™) =tr(Iy) = k
Rank (M) =tr(M)=tr(I — P)=tr(I,) —tr(P) =n—k

5 PX=XX'X)'X'X =X The P matrix is also called the Projection

matrix

= MX=0 (M is orthogonal to X)
6) PM =0

Therefore, we can write

Residuals: €= My
Fitted values: iy = Py

Residual sum of squares: RSS =&¢ =¢'Me

RSS =¢&&=y'M My (M symmetric)
—~
= (XB+¢e)MM(X5+e¢) (pluginy = X5 +¢)
=& MMe (since MX =0, X'M =0)

=¢'Me (since M is idempotent)

5 Finite Sample Properties of s>

Similarly as in the simple linear regression, we can propose the following estimator of o2
ge
s =
n—=k

Using only A.1 through A.4, we can establish the following exact, finite sample properties:

8



5.1 Unbiasedness of s?

Proof that F(s*) = o2,

E(€g) = E(¢'Me)
= E(tr(¢'Me)) trace of a scalar is the scalar itself
= E(tr(Mee'))
=tr(ME(ee")) X non-stochastic, tr and E are linear operators
=tr(M - o?I)

. . . ~ g .
s is the estimated standard error of the regression. 73, , = =5 biased, but more

efficient.

The variance of B can thus be estimated by
Var(3) = s*(X'X) L.

The estimated variance of an element //B\j is the j¥ diagonal element of this estimated
variance-covariance matrix. The square root of this estimated variance is usually referred
to as the estimated standard error of Bj, (§\E (Bj))

5.2 Exact Sampling Distribution of s>

It can be shown that the unbiased estimator s? (rescaled) has a x? distribution with n — k
degrees of freedom

(n—k)o™2s* ~ X

Technical Aside: Quadratic Form Distributions: @) = 2’ Ax
T~ N(O7 Ip)

Q ~ (k) k =rank(A) < Aidempotent
z ~ N(0,0%I,)

~~ 2 (k) k =rank(A) < Aidempotent

Q ~ (k) k =rank(AV) < AVidempotent



Proof:

ge
ko222 =(n—k)o 2. ——
(n—k)o=s*=(n—k)o —
g8 €Me
“a T o

This is a quadratic form of a N (0, 021I,,) vector, M idempotent with rank equal to n — k =

e'Me 9
~ Xn—k

o2

(See Problem Set 2, last question)

5.3 Zero-covariance between [ and &

For testing purposes it is useful to note that B\ and £ have no correlation: under the
additional assumption of normality (A.5) it implies that B and s? independent (causality

does not go the other way).

Proof:
B=p+(X'X)" X'
£= Me
Cov(3, ) E[ﬂ B)E—-0 ]
= E ((X'X)"'X'e(Me)')
=E((X 1X’ggM)

= (X'X)'X'E(ee')M
= (X'X)'X'M = 0.

Both 3 and € are linear in € and therefore normaly distributed under (A.5). Because of this
normality, the zero covariance implies that all the elements of the vector B are independent
of the elements of the vector € = Me. This implies that the elements of 3 are independent
of any function of the elements of Me, for example of &’ M'Me = ¢’ Me. Thus, B and s? are

independent under the normality assumption.
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6 Goodness of Fit

RSS ge
2 -1
R :1_T—S'S:1_y’M0y where Mo = I, — o(/v) ™/
1
1 1, :
where | = , or My =1, — —u (See Problem Set 1, question 7)
n
1
nx1
If the regression does not include an intercept we use instead:
g~
R=1-"
vy

Problem: R? can be made arbitrarily large (R? does not decline with k, see Problem Set)

2 RSS/(n — k)

Adj =R =1-——""~— 7
= Adjusted R* =R 735/ (n = 1)

7 Partitioning the Linear Regression Model
Say we partition the matrix (X) with the k explanatory variables into X; (n X k1) and X,
(n X kg), X = [X; : Xy|, where ky + ko = k.

y=Xp+e=X101+Xofs+¢

(k‘1><].)
= X1 X5 61 +e
(nxk1) (nxks) Bo | (kex1)

Then, from the FOC

X,XB: X/y i X:/[X]- X:,le //8\1 — X{y
XX XX, Ba Xby

XiXiB+ XiXofo = X1y (1)
XoX\B1+ Xy XaBo = Xpy  (2)

or

Solve (2) for B, :
By = (X3 X5) ' Xy — (X5X) 7' X5X1 3
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Substitute out in (1)
(X{X1 = X1X(X300) ' X5 X0) By = Xy — X[ Xa(X5Xa) ' Xy
or

XIM2X1 B\l = X/ng where M2 = In —XQ X/X2 71X/ =71 — P2
1 1 2 2

= 31 = (XM X1) ' X Moy

subvector of 3 = (X'X) ' X'y

Similarly, we can derive

By = (X, My X2) " X4 Myy

Compare P, with P = X(X'X)"1X’

e Recall Py =y, or Py gives the fitted values from a regression of y on X. We called
P the projection matrix. The fitted value ¥ is the projection of y on the X space.

e Then P, X; gives the projection of X; on the X, space, or the fitted values of a

regression of X; on Xos.
Compare M, with M =1, — X(X'X)™'X’
e Recall My =&, or My gives the residual vector from a regression of y on X.

e Then M, X; (matrix n x k;) contains the residuals from the regression of X; on X5

Example of the partitioned regression result:

In the simple linear regression model,

1 T
1 T2
y=pit+Br+e,s0Xi=1=1| , Xo=ax= |
1 Tnp
nx1
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or
Yi = b1+ Paxi + &
Thus

o~

By = (' Myz) "2’ Myy = (M) (Myz)) ™" (M) (Miy)
where .
My =1, — /)y =1, - =u

n

Recall from Problem Set 1 that for any n x 1 vector z

21—2
29 —Z 1 n
Myz=2z—%1= here 7 = —
1% z zZl ,W ere 2z nlzlz
Zn — 2
Thus
B = ((z —m)(x — 7)) Yo —70)' (y — 1)

Finally, let’s consider some properties of Bl
Bi = (XI My X))~ X My
= (X{MyX1) ' X Mo (X151 + Xofo +€)
= (XTMoX1) ' XM X0 By + (X Mo X1) 7' XM X5
+ (X My X)) P X Mye
=1+ (X Mo X1) ' X | Mae
as My X5 = 0. Thus

E(By) = (B + (X{MyXy) ' X Mae) = By
Var(p) = E <(Bl — BB — 51)')
= B ((X{M>X1) ' X Maee' Mo X1 (X1 M X1) ™)
= (X My X1) ' X | MyE(ee") My X1 (X[ M X 1), X nonstochastic
= o?( X My X)L
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