mechanics of computing the statistic are exactly as they were in Section 7.4. A heteroskedasticity-robust version is also available (see Section 8.2).

Example 13.2 suggests another way to compute the Chow test for two time periods by interacting each variable with a year dummy for one of the two years and testing for joint significance of the year dummy and all of the interaction terms. Since the intercept in a regression model often changes over time (due to, say, inflation in the housing price example), this full-blown Chow test can detect such changes. It is usually more interesting to allow for an intercept difference and then to test whether certain slope coefficients change over time (as we did in Example 13.2).

A Chow test can be computed for more than two time periods, but the calculations can be tedious. Usually, after an allowance for intercept difference, certain slope coefficients are tested for constancy by interacting the variable of interest with year dummies. (See Problems 13.7 and 13.8 for examples.)

13.2 POLICY ANALYSIS WITH POOLED CROSS SECTIONS

Pooled cross sections can be very useful for evaluating the impact of a certain event or policy. The following example of an event study shows how two cross-sectional data sets, collected before and after the occurrence of an event, can be used to determine the effect on economic outcomes.

EXAMPLE 13.3 (Effect of a Garbage Incinerator's Location on Housing Prices)

Kiel and McClain (1995) studied the effect that a new garbage incinerator had on housing values in North Andover, Massachusetts. They used many years of data and a fairly complicated econometric analysis. We will use two years of data and some simplified models, but our analysis is similar.

The rumors that a new incinerator would be built in North Andover began after 1978, and construction began in 1981. The incinerator was expected to be in operation soon after the start of construction; the incinerator actually began operating in 1985. We will use data on prices of houses that sold in 1978 and another sample on those that sold in 1981. The hypothesis is that the price of houses located near the incinerator would fall below the price of more distant houses.

For illustration, we define a house to be near the incinerator if it is within three miles. [In the problems, you are instead asked to use the actual distance from the house to the incinerator, as in Kiel and McClain (1995).] We will start by looking at the dollar effect on housing prices. This requires us to measure price in constant dollars. We measure all housing prices in 1978 dollars, using the Boston housing price index. Let *rprice* denote the house price in real terms.

A naive analyst would use only the 1981 data and estimate a very simple model:

$$rprice = \gamma_0 + \gamma_1 nearinc + u, \tag{13.3}$$

Chapter 13

where *nearinc* is a binary variable equal to one if the house is near the incinerator, and zero otherwise. Estimating this equation using the data in KIELMC.RAW gives

$$rprice = 101,307.5 - 30,688.27 \ nearinc$$
(3,093.0) (5,827.71)
$$n = 142, R^2 = .165.$$
(13.4)

Since this is a simple regression on a single dummy variable, the intercept is the average selling price for homes not near the incinerator, and the coefficient on *nearinc* is the difference in the average selling price between homes near the incinerator and those that are not. The estimate shows that the average selling price for the former group was 30,688.27 less than for the latter group. The *t* statistic is greater than five in absolute value, so we can strongly reject the hypothesis that the average value for homes near to and far from the incinerator are not the same.

Unfortunately, equation (13.4) does *not* imply that the siting of the incinerator is causing the lower housing values. In fact, if we run the same regression for 1978 (before the incinerator was even rumored), we obtain

$$\begin{aligned} rprice &= 82,517.23 - 18,824.37 \ nearinc \\ &(2,653.79) \quad (5,827.71) \\ &n &= 179, R^2 = .082. \end{aligned} \tag{13.5}$$

Therefore, even *before* there was any talk of an incinerator, the average value of a home near the site was \$18,824.37 less than the average value of a home not near the site (\$82,517.23); the difference is statistically significant, as well. This is consistent with the view that the incinerator was built in an area with lower housing values.

How, then, can we tell whether building a new incinerator depresses housing values? The key is to look at how the coefficient on *nearinc* changed between 1978 and 1981. The difference in average housing value was much larger in 1981 than in 1978 (\$30,688.27 versus \$18,824.37), even as a percentage of the average value of homes not near the incinerator site. The difference in the two coefficients on *nearinc* was

$$\hat{\delta}_1 = -30,688.27 - (-18,824.37) = -11,863.9.$$

This is our estimate of the effect of the incinerator on values of homes near the incinerator site. In empirical economics, $\hat{\delta}_1$ has become known as the **difference-in-differences estimator** because it can be expressed as

$$\hat{\delta}_1 = (\overline{rprice}_{81,nr} - \overline{rprice}_{81,fr}) - (\overline{rprice}_{78,nr} - \overline{rprice}_{78,fr}), \quad (13.6)$$

where "nr" stands for "near the incinerator site" and "fr" stands for "farther away from the site." In other words, $\hat{\delta}_1$ is the difference over time in the average difference of housing prices in the two locations.

To test whether $\hat{\delta}_1$ is statistically different from zero, we need to find its standard error by using a regression analysis. In fact, $\hat{\delta}_1$ can be obtained by estimating

$$rprice = \beta_0 + \delta_0 y 8l + \beta_1 nearinc + \delta_1 y 8l \cdot nearinc + u,$$
(13.7)

Part 3

using the data pooled over both years. The intercept, β_0 , is the average price of a home not near the incinerator in 1978. The parameter, δ_0 captures changes in *all* housing values in North Andover from 1978 to 1981. [A comparison of equations (13.4) and (13.5) showed that housing values in North Andover, relative to the Boston housing price index, increased sharply over this period.] The coefficient on *nearinc*, β_1 , measures the location effect that is *not* due to the presence of the incinerator: as we saw in equation (13.5), even in 1978, homes near the incinerator site sold for less than homes farther away from the site.

The parameter of interest is on the interaction term y81·nearinc: δ_1 measures the decline in housing values due to the new incinerator, provided we assume that houses both near and far from the site did not appreciate at different rates for other reasons.

The estimates of equation (13.7) are given in column (1) of Table 13.2.

Table 13.2

Independent Variable	(1)	(2)	(3)
constant	82,517.23	89,116.54	13,807.67
	(2,726.91)	(2,406.05)	(11,166.59)
y81	18,790.29	21,321.04	13,928.48
	(4,050.07)	(3,443.63)	(2,798.75)
nearinc	-18,824.37	9,397.94	3,780.34
	(4,875.32)	(4,812.22)	(4,453.42)
y81•nearinc	-11,863.90	-21,920.27	-14,177.93
	(7,456.65)	(6,359.75)	(4,987.27)
Other Controls	No	age, age^2	Full Set
Observations	321	321	321
<i>R</i> -Squared	.174	.414	.660

Dependent Variable: rprice

The only number we could not obtain from equations (13.4) and (13.5) is the standard error of $\hat{\delta}_1$. The *t* statistic on $\hat{\delta}_1$ is about -1.59, which is marginally significant against a one-sided alternative (*p*-value \approx .057).

Kiel and McClain (1995) included various housing characteristics in their analysis of the incinerator siting. There are two good reasons for doing this. First, the kinds of houses selling in 1981 might have been systematically different than those selling in 1978; if so, it is important to control for characteristics that might have been different. But just as important, even if the average housing characteristics are the same for both years, including them can greatly reduce the error variance, which can then shrink the standard error of $\hat{\delta}_1$. (See Section 6.3 for discussion.) In column (2), we control for the age of the houses, using a qua-

Chapter 13

dratic. This substantially increases the *R*-squared (by reducing the residual variance). The coefficient on *y*81·*nearinc* is now much larger in magnitude, and its standard error is lower.

In addition to the age variables in column (2), column (3) controls for distance to the interstate in feet (*intst*), land area in feet (*land*), house area in feet (*area*), number of rooms (*rooms*), and number of baths (*baths*). This produces an estimate on *y*81·*nearinc* closer to that without any controls, but it yields a much smaller standard error: the *t* statistic for $\hat{\delta}_1$ is about –2.84. Therefore, we find a much more significant effect in column (3) than in column (1). The column (3) estimates are preferred because they control for the most factors and have the smallest standard errors (except in the constant, which is not important here). The fact that *nearinc* has a much smaller coefficient and is insignificant in column (3) indicates that the characteristics included in column (3) largely capture the housing characteristics that are most important for determining housing prices.

For the purpose of introducing the method, we used the level of real housing prices in Table 13.2. It makes more sense to use log(*price*) [or log(*rprice*)] in the analysis in order to get an approximate percentage effect. The basic model becomes

$$\log(price) = \beta_0 + \delta_0 y 8l + \beta_1 nearinc + \delta_1 y 8l \cdot nearinc + u.$$
 (13.8)

Now, $100 \cdot \delta_1$ is the approximate percentage reduction in housing value due to the incinerator. [Just as in Example 13.2, using log(*price*) versus log(*rprice*) only affects the coefficient on *y*81.] Using the same 321 pooled observations gives

$$log(p\hat{r}ice) = 11.29 + .457 \ y81 - .340 \ nearinc - .063 \ y81 \cdot nearinc (0.31) (.045) (.055) (.083) (13.9) n = 321, R2 = .409.$$

The coefficient on the interaction term implies that, because of the new incinerator, houses near the incinerator lost about 6.3% in value. However, this estimate is not statistically different from zero. But when we use a full set of controls, as in column (3) of Table 13.2 (but with *intst, land*, and *area* appearing in logarithmic form), the coefficient on *y*81·*nearinc* becomes -.132 with a *t* statistic of about -2.53. Again, controlling for other factors turns out to be important. Using the logarithmic form, we estimate that houses near the incinerator were devalued by about 13.2%.

The methodology applied to the previous example has numerous applications, especially when the data arise from a **natural experiment** (or a **quasi-experiment**). A natural experiment occurs when some exogenous event—often a change in government policy—changes the environment in which individuals, families, firms, or cities operate. A natural experiment always has a control group, which is not affected by the policy change, and a treatment group, which is thought to be affected by the policy change. Unlike with a true experiment, where treatment and control groups are randomly and explicitly chosen, the control and treatment groups in natural experiments arise from the particular policy change. In order to control for systematic differences between the control and treatment groups, we need two years of data, one before the policy change