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2 The Solow-Swan Growth Model

2.1 Basic structure

General structure of growth models: how to build a model (decentralized version)

Households:

• owners of all inputs and assets in economy ⇒ their decisions determine outcomes

• # of children + work (how many hours)/leisure decision ⇒ Lt (work force)

• consumption (Ct)/savings (=investment) decision ⇒ Kt (capital)

Firms:

• hire people (Lt) and capital (Kt) to produce good (Yt) by production technology

(F (·))

• have access to knowledge (At) that makes the production more e�ective

Other institutions: introduction depends on what issue we want to analyze=

• government (taxation, social security)

• central bank (monetary transmission)

All agents meet at the markets for goods and inputs (labor and capital market), where

equilibrium prices and quantities are determined.

Structure of Solow-Swan model: simpli�ed approach

• savings are constant fraction s ∈ [0, 1] of output

• labor force and knowledge grow at given (exogenous) rates (n and g, respectively)

⇒ all decisions of HHs and �rms are already made
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2.2 Neoclassical production function:

Y (t) = F (K(t), A(t)L(t))

• capital K(t) - durable physical inputs (machines, buildings, computers, etc.)

• labor L(t) - number of workers and the amount of time they work

• knowledge A(t) - the e�ectiveness of production

Properties:

1. Constant returns to scale (CRS) in capital and e�ective labor:

F (cK, cAL) = cF (K,AL) for all c ≥ 0

• no gains from further specialization

• other imputs (e.g. land, natural resources) are not important

• we can rewrite production function into intensive form (per e�ective worker):

if we denote k = K
AL
, y = Y

AL
, f(k) = F (k, 1) then we can rewrite production

function as

y =
Y

AL
=
F (K,AL)

AL
= F (

K

AL
, 1) = F (k, 1) = f(k)

2. Positive and diminishing returns to inputs:

∂F

∂K
> 0,

∂F

∂L
> 0;

∂2F

∂K2
< 0,

∂2F

∂L2
< 0

This also translates into conditions on intensive-form production function:

∂F

∂K
= AL

∂F ( K
AL
, 1)

∂K
= AL

df(k)

dK
= AL

1

AL
f ′(k) = f ′(k) > 0

∂2F

∂K2
=
df ′(k)

dK
=
f ′′(k)

AL
⇒ if AL > 0 then f ′′(k) < 0

3. Inada conditions and essentiality: marg. products at extremes

lim
K→0

∂F

∂K
= lim

L→0

∂F

∂L
=∞ ⇒ lim

k→0
f ′(k) =∞

lim
K→∞

∂F

∂K
= lim

L→∞

∂F

∂L
= 0 ⇒ lim

k→∞
f ′(k) = 0

F (K, 0) = F (0, L) = f(0) = 0
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Example 1: Cobb-Douglas production function

Y = F (K,AL) = Kα(AL)1−α, 0 < α < 1

Prop 1: F (cK, cAL) = (cK)α(cAL)1−α = cαc1−αF (K,AL) = cF (K,AL)

Intensive form: f(k) = F ( K
AL
, 1) =

(
K
AL

)α
= kα

Prop 2: f ′(k) = αkα−1 > 0; f ′′(k) = (α− 1)αkα−1 < 0

2.3 Dynamics and solution of the model:

Labor and technology: grow at exogenous (given) constant rates over time, de-

scribed by di�erential equations

L̇(t) = nL(t)

Ȧ(t) = gA(t)

Growth rate of a variable equals the rate of change of its natural logarithm, i.e.

d ln(X(t))

dt
=
d ln(X(t))

dX(t)

dX(t)

dt
=

1

X(t)
Ẋ(t)

Applied to our case

L̇(t)

L(t)
=

d ln(L(t))

dt
= n ⇒ lnL(t) = lnL(0) + nt ⇒ L(t) = L(0)ent

Ȧ(t)

A(t)
=

d ln(A(t))

dt
= g ⇒ lnA(t) = lnA(0) + gt ⇒ A(t) = A(0)egt

We thus assume that both labor and knowledge grow exponentially over time.

Capital:

• output is divided between consumption C(t) and savings S(t) - in this model, sav-

ings are constant fraction s of output and they are immediately used as investment

I(t) into new capital, i.e. S(t) = sY (t) = I(t)

• existing capital depreciates over time at rate δ

Change in capital stock is therefore di�erence between new investment and depreciation

K̇(t) = I(t)− δK(t) = sY (t)− δK(t)

Now, let us rewrite it intensive units (for simpler analysis). First, divide the equation

by A(t)L(t).

K̇(t)

A(t)L(t)
= sy(t)− δk(t) = sf(k(t))− δk(t)

3



Now, the only problem is LHS. We would like to express it in terms of a change in

intensive variable, i.e. k̇. How does that look like?

k̇(t) =
˙( K(t)

A(t)L(t)

)
=

K̇(t)

A(t)L(t)
− K(t)

[A(t)L(t)]2
[A(t)L̇(t) + L(t)Ȧ(t)]

=
K̇(t)

A(t)L(t)
− k(t)[n+ g]

Which implies the key equation of the Solow-Swan model

k̇(t)︸︷︷︸
change in capital per e�ective worker

= sf(k(t))︸ ︷︷ ︸
actual investment

− [δ + n+ g]k(t)︸ ︷︷ ︸
break-even investment

.

• sf(k(t)) - savings from output per e�ective worker

• [δ+n+ g]k(t) - investment needed to keep the level of capital per e�ective worker

that decreases due to

� depreciation (δ)

� growing quantity of e�ective labor (n+ g)

Figure 1a) depicts the two terms of the expression for k̇ as a function of k; while

actual investment sf(k) is a concave function of k due to the properties of produc-

tion function, break-even investment is linear in k. Therefore, there exist certain k∗

at which actual investment equals break-even investment (i.e. the lines cross), which is

called stationary equilibrium.

Let us analyze the dynamics of the model. If the economy starts with k0 < k∗ (to

the "left"), we save and invest more than is needed for the covering of depreciation and

growth, i.e. the net investment k̇, depicted on Figure 1b), is positive and the stock of

capital per e�ective worker is increasing up to the point when it is equal k∗. However, if

the economy starts with k0 > k∗ (to the "right"), our savings do not cover the losses and

the stock of capital per e�ective worker is decreasing. In any case, regardless where the

level of capital per e�ective worker initially starts, in time it converges to k∗, which is

then called stable equilibrium.

Balanced growth path: In the equilibrium, the level of capital per e�ective worker

converges to k∗ - it remains constant with no growth. However, how do the original

variables behave?

• By assumption, labor L grows at rate n and technology A grows at rate g.

• Capital stock K = ALk ; as k is constant K grows at rate (n+ g)

• Output Y = F (K,AL). As F (·) is CRS and K and AL both grow at rate (n+ g),

also Y grows at rate (n+ g)
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• Output per worker Y/L as well as capital per worker K/L grow at rate g

Economy thus converges to a balanced growth path, where every variable of the

model is growing at a constant rate.

Moreover, the above-stated results prove that very simple Solow model is able to

mimic Kaldor's (1963) stylized facts:

• Fact 1: Output per worker Y/L grows over time and the growth rate does not

tend to diminish. �> Y/L grows at constant rate g.

• Fact 2: Physical capital per worker K/L grows over time. �> K/L grows at

constant rate g.

• Fact 3: The capital to output ratio K/Y is nearly constant. �> Yes, because

capital K and output Y grow at the same rate n+ g.

2.4 E�ect of the change in the saving rate

• Saving rate can be a�ected by the government policies and decisions.

• In further analysis we assume Solow economy initially on a balanced growth path,

which experiences a permanent increase in the saving rate at time t0.

Qualitative e�ect on output:

Figure 2 shows the e�ect on investment. As s increases, line of actual investment

shifts upward, which means that actual investment is now greater than break-even in-

vestment and the net investment k̇ is positive. However, level of k does not jump at

time t0, but rise continuosly to its new equilibrium level k∗new.

Figure 3 in its �ve panels summarizes the qualitative e�ect on capital and output

in the economy. Panel 1 depicts the sudden permanent jump (increase) in saving rate

s at time t0. Panel 2 shows corresponding jump in net investment k̇, which in turn

gradually increases k towards the new balanced growth path level (Panel 3). Panel 4

depicts the evolution of the growth rate of output per capita Y/L. As Y/L = Af(k), in

steady state, when the capital per e�ective worker has zero growth rate, Y/L grows at

rate g. However, in transition to new steady state, the growth rate of k is positive and

therefore also growth rate of Y/K jumps up, afterwards gradually returning to g. This

translates in permanently higher level of logarithm of output per capita lnY/K, which

now settles on the higher growth path parallel to the original one1.

1If a variable grows at constant rate, e.g. Y/L growing at rate g, it grows exponentially and its

graph in time would be a parabola. However, the graph of its natural logarithm in time is a straight

line.
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E�ect on consumption:

In the world of Solow model with no opportunity of storage everything that is not

invested should be consumed, i.e. c∗ = (1 − s)f(k∗). As at t0 saving rate s jumps

but k remains constant, consumption reacts by initial jump downward. Later, when k

increases to its new equilibrium level k∗, also consumption increases. BUT, is new level

c∗new larger or smaller than original c∗old?

That depends on the initial steady state of the economy. On the balanced growth

path

c∗ = f(k∗)− (n+ g + δ)k∗

Thus

∂c∗

∂s
= f ′(k∗)

dk∗

ds
− (n+ g + δ)

dk∗

ds
= [f ′(k∗)− (n+ g + δ)]

dk∗

ds
.

As we know that dk∗

ds
is positive, therefore the e�ect on consumption is determined by the

sign of the expression [f ′(k∗)− (n+ g+ δ)], which can be both positive and negative. In

other words, the question is whether the marginal product of additional capital created

by increased saving rate is larger than its natural depreciation. If yes, there is output

left for the increase in consumption. If not, we have to sacri�ce consumption in order

to keep the level of capital stable.

Figure 4 depicts both situations. In the panel 4a, the saving rate is relatively high

and at the original equilibrium point, the slope of production function (f ′(k)) is �atter

than the slope of break-even investment (i.e. f ′(k) < (n+ g + δ)). We see that further

increase in s would lead to a lower level of consumption, measured as the gap between

f(k) and (n+ g + δ)k. On the other hand, in the panel 4b the saving rate is relatively

small and marg. product is bigger than depreciation. Therefore, increase in saving rate

implies also increase in consumption.

Finally, panel 4c present situation where f ′(k) = (n+ g+ δ). In this point consump-

tion is at its maximum possible level and saving rate is optimal. Therefore, steady state

level of k∗ that is consistent with this equilibrium is called golden rule level of capital.
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2.5 Quantitative implications of the model:

Elasticity of output w.r.t. saving rate: How much does it adjust?

∂y∗

∂s

/y∗
s

=
k∗f ′(k∗)

f(k∗)

/(
1− k∗f ′(k∗)

f(k∗)

)
In competitive economy with no externalities, production inputs earn their marginal

products - 1 additional unit of capital earns f ′(k) units of output. Therefore, expression
k∗f ′(k∗)
f(k∗)

can be understood as the share of total income (f(k∗)) that goes to capital,

denoted as αk(k
∗). Note that this share is constant, because k∗ is constant (Fact 5 from

Kaldor's stylized facts).

Ex.: If αk(k
∗) = 1

3
(as in most developed countries), then elasticity of output at

steady state value of k∗ is 0.5 - i.e. 10% increase in saving rate translates into 5% in-

crease in output (little less, in fact, due to concavity of f(k)).

Signi�cant changes in saving rate have only moderate e�ect on the level of

output at the balanced growth path.

Speed of convergence of capital and output: How fast do they adjust?

k̇ ∼= −λ(k − k∗) or k(t)− k∗ ∼= e−λt[k(0)− k∗]
ẏ = −λ(y − y∗) or y(t)− y∗ ∼= e−λt[y(0)− y∗]

where λ = (n+ g + δ)[1− αk(k∗)]

That means that both output and capital move by a constant share of the remaining

distance toward their new equilibrium values.

Ex.: If αk(k
∗) = 1

3
and (n + g + δ) = 0.06 per year then λ = 0.04, i.e. output and

capital move 4% of the remaining distance toward k∗ and y∗ each year - halftime of

convergence is 17 years.

Not only is the long run e�ect of a change in saving rate modest, but it does not

occur very quickly.
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Figure 1: Dynamics and phase diagram for k in the Solow model.
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Figure 2: The e�ects of an increase in the saving rate on investment.
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Figure 3: The e�ects of an increase in the saving rate.
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Figure 4: Consumption and changes in saving rate.
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