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1. Introduction

It is sometimes said that classical logic admits of a constructive interpretation if it
is assumed that every proposition is decidable, but this does not imply that classical
logic is constructive, and although classical logic has been called a (new) constructive
logic by Girard (Girard, 1991), there seems to be a broad agreement among logicians
that classical logic is not constructive. But what is a constructive logic? Sometimes
the term ‘constructive logic’ is used as a synonym for ‘intuitionistic logic’. However,
logics other than intuitionistic logic have also been said to be constructive, like, for in-
stance, Johansson’s minimal logic, Heyting-Brouwer logic, or David Nelsons’s logics
with strong negation. Whereas there exists the system of classical propositional and
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predicate logic, it is far from clear whether there exists exactly one system of construc-
tive logic. In a situation where there are no clear, agreed-upon, individually necessary
and jointly sufficient conditions for the constructiveness of a logical system, it seems
quite difficult or next to pointless to designate one particular logic as the correct con-
structive logic. Nevertheless, for some reasons certain logics may still be regarded as
constructive logics.

1.1. Positive constructive propositional logics

It is well known that the implicational fragments of intuitionistic and classical logic
differ, as Peirce’s law ((A → B) → A) → A is classically but not intuitionistically
valid, and it seems that there is a consensus among logicians that, among other things,
the failure of Peirce’s Law indicates that

(∗) Intuitionistic implicational logic is a constructive logic.

Intuitionistic logic and classical logic (understood as consequence relations) share
their conjunction-disjunction fragment, and the constructiveness of this fragment ap-
pears to be uncontroversial.1 In their disjunction-negation fragments, however, intu-
itionistic and classical logic differ. In particular, intuitionistic logic enjoys a construc-
tive feature which classical logic fails to have in its disjunction-negation fragment, the
disjunction property: If a disjunction (A ∨ B) is provable, then A is provable or B is
provable. In classical logic p ∨ ∼p is provable, but neither the atomic formula p nor
its classical negation ∼p is provable. Moreover, the conjunction-negation fragment
of intuitionistic logic lacks a constructive feature which Nelsons’s constructive logics
enjoy, namely the constructible falsity property: If ∼(A ∧ B) is provable, then ∼A
is provable or ∼B is provable. In intuitionistic logic ∼(p ∧ ∼p) is provable, but
neither the literal ∼p nor its negation ∼∼p is provable. Still, there appears to be an
agreement among logicians that

(∗ ∗) Positive intuitionistic propositional logic, IPL+, is a constructive logic.

This view is supported by the observation that IPL+ is a fragment not only of intu-
itionistic logic, but also of Johansson’s minimal logic, Heyting-Brouwer logic, and
Nelsons’s logics with strong negation.

Heyting-Brouwer logic adds to intuitionistic logic a binary connective which is a
natural companion to implication and which is often called co-implication. Whereas
intuitionistic implication,→, is the residual of conjunction in IPL+ in the sense that

A ∧B ` C iff A ` B → C, (1)

1. Gödel (Gödel, 1933) noticed that intuitionistic and classical propositional logic understood
as sets of formulas share their conjunction-negation fragment.
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co-implication (also referred to as ‘pseudo-difference’), −� 2, is the residual of dis-
junction in the {∧,∨,−� }-fragment of Heyting-Brouwer logic:

C ` A ∨B iff C−�B ` A.3 (2)

Let us refer to the {∧,∨,−� }-fragment of Heyting-Brouwer logic as HB+. Is HB+

a constructive logic?4 To justify (∗ ∗), one may point to the so-called proof (alias
Brouwer-Heyting-Kolmogorov) interpretation of IPL+, see, for instance (van Dalen,
2004). According to this interpretation, a (canonical) proof of an implication A→ B
is a construction that transforms any proof of A into a proof of B, and a proof of a
conjunction A ∧ B is a pair (π1, π2) consisting of a proof π1 of A and a proof π2 of
B. A proof of a disjunction A ∨ B is a pair (i, π) such that i = 0 and π is a proof
of A or i = 1 and π is a proof of B. One can then show that positive propositional
intuitionistic logic is sound with respect to its proof interpretation: For every formula
A provable (derivable from the empty set) in IPL+, there exists a construction of A.
That is, one possible criterion for the constructiveness of a logic is its correctness with
respect to an interpretation in terms of canonical proofs.5 For HB+ we may consider
dual proofs: reductiones ad absurdum. According to this interpretation, a (canonical)
reductio ad absurdum of a co-implication B−�A is a construction that transforms any
reductio of A into a reductio of B. A reductio of a disjunction A∨B is a pair (π1, π2)
consisting of a reductio π1 of A and a reductio π2 of B. A reductio of a conjunction
A ∧ B is a pair (i, π) such that i = 0 and π is a reductio of A or i = 1 and π is a
reductio of B. One can then show that HB+ is sound with respect to its dual proof
interpretation: For every formula A reducible to absurdity (formula A from which the
empty set can be derived) in HB+, there exists a construction of A, see the Appendix
(Section A). In view of this observation, we draw the conclusion that

2. I will use the symbol for co-implication suggested in (Goré, 2000). The more familiar sym-
bol used, for example, in (Rauszer, 1980) is .−. As Goré (Goré, 2000) explains, the left-right
symmetry of the more familiar symbol hides the asymmetry of the pseudo-difference opera-
tion. In C−�B, C is in a positive position and B in a negative position. This becomes clear,
for instance, if the Boolean understanding of B → C as ∼ B ∨ C is analogously applied to
co-implication by reading C−�B as C ∧ ∼ B. Wolter (Wolter, 1998) uses ϕ →̆ψ instead of
ψ−�ϕ. C−�B may be read as “B co-implies C” or as “C excludes B”.
Co-implication has been thoroughly investigated by Cecylia Rauszer (Rauszer, 1974), (Rauszer,
1977), (Rauszer, 1980), who added co-implication (and co-negation, see below) to intuitionistic
logic to obtain Heyting-Brouwer logic. See also (Urbas, 1996), (Goré, 2000), (Buisman et
al., 2007), and the references therein.
3. Classical implication is the residual of conjunction in classical logic. One may therefore ask
whether there exists a purely co-implicational formula which stands to the result of dropping
implication and intuitionistic negation from Heyting-Brouwer logic as Peirce’s Law stands to
intuitionistic logic. This co-implicative analogue of Peirce’s Law is stated in Section 3.
4. In Heyting-Brouwer logic, intuitionistic negation and the co-negation of Heyting-Brouwer
logic can be defined using→ and −� , see Observation 4. The addition of −� to IPL+ allows
one to define intuitionistic negation, and the addition of → to HB+ allows one to define co-
negation.
5. It turns out that for logics with strong negation disproofs naturally enter the picture in addition
to proofs, see (López-Escobar, 1972), (Wansing, 1993).
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(∗ ∗ ∗) HB+ is a constructive logic.

1.2. Adding strong negation

The result of adding −� to IPL+ (alias the result of adding→ to HB+) is propo-
sitional Heyting-Brouwer logic HB (also called bi-intuitionistic logic (Goré, 2000)
or subtractive logic (Crolard, 2001)). As we will see, in this logic, intuitionistic
negation and co-negation are definable. Is HB a constructive logic? The status not
only of classical negation but also of intuitionistic negation and co-negation as a con-
structive connective is contentious. The addition of classical negation to the {∧,∨}-
fragment of intuitionistic logic results in a failure of the desirable disjunction prop-
erty, and so does the addition of co-negation (see Section 4), whereas the addition of
intuitionistic negation results in a failure of the desirable constructible falsity prop-
erty. Also, intuitionistic negation has been criticized, because it does not express
the idea of direct falsification. An intuitionistically negated formula ∼A is veri-
fied at a possible world (alias state) s in an intuitionistic Kripke model iff at ev-
ery state related to s by the pre-order of the model, A fails to be verified. There
is no way of falsifying A at s in the sense of verifying the negation of A by con-
sidering just s. In Nelson’s logics with strong negation (see, among many other
sources, (Almukdad et al., 1984), (Dunn, 2000), (Gurevich, 1977), (Kamide, 2002),
(Kamide, 2006), (Nelson, 1949), (Odintsov, 2003), (Odintsov, 2008), (Odintsov et
al., 2004) (Routley, 1974), (Thomason, 1969), (Vakarelov, 1977), (Vakarelov, 2005),
(Vakarelov, 2006), (Wansing, 1993), (Wansing, 2001), (Wansing, 2005b)) the situation
is different. In the relational semantics of these logics, support of truth and support
of falsity conditions are stated separately. A state s supports the truth of an atom p
iff p is verified at s, and s supports the falsity of p iff p is falsified at s. Verification
and falsification of atomic formulas may vary from model to model. Strong negation
is interpreted as leading from the support of truth to the support of falsity, and vice
versa: A state s supports the truth (falsity) of ∼A iff s supports the falsity (truth) of
A. In the relational semantics of intuitionistic logic and HB, only verification condi-
tions are specified for all kinds of formulas. If in addition to verification falsification
is acknowledged as a semantic category in its own right, and if falsity is expressed
in the object language by a unary negation operation, then the separate consideration
of support of falsity conditions for all kinds of formulas leads to separate support of
truth conditions for all kinds of negated formulas. This may well be interpreted as a
constructive treatment of negation. The following question thus arises:

What are the correct support of truth conditions for negated complex formulas?
(Or, equivalently, what are the support of falsity conditions for complex formulas?)

In intuitionistic logic the double-negation elimination law ∼∼A → A and the De-
Morgan law ∼(A∧B)→ (∼A∨ ∼B) fail to be valid. If one considers intuitionistic
logic as the correct system of constructive logic, these failures indicate that the double
negation law and the above DeMorgan law are not constructively valid. But we have
already seen that the constructive nature of intuitionistic negation is doubtful. If one
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Constructive negation, implication 345

is not prejudiced by the assumption that intuitionistic logic is the correct constructive
logic, then nothing stands in the way of accepting both double negation laws and all
the familiar DeMorgan laws. And indeed, in Nelson’s constructive logics with strong
negation, all these principles are valid. The view that a situation supports the falsity
of a conjunction (A∧B) (disjunction (A∨B)) iff it supports the falsity of A or (and)
it supports the falsity of B seems to be deeply rooted in our intuitive understanding of
conjunction, disjunction, truth, and falsity. Moreover, if negation as falsity is a bridge
from support of truth to support of falsity, and vice versa, then there is no way around
both double negation laws.

The picture is less clear when we consider the support of truth conditions of
negated implications, and it gets more complicated when we at the same time con-
sider the support of truth conditions for negated co-implications. On the classical
understanding of negated implications, a formula ∼(A→ B) is true iff A is true and
B is not true. On the intuitionistic reading, ∼(A → B) is verified at a state s iff for
every ‘later’ state t (every possible expansion t of s), there is a state t′ later than t
such that A is verified at t′, whereas B is not verified at t′. In Nelsons’s logic, support
of falsity of a formula A (support of truth of ∼A) is always a matter determined at
the state of evaluation, and a state s supports the truth of ∼(A → B) iff s supports
the truth of A and s supports the falsity of B. According to this view, ∼(A → B) is
equivalent to (A∧∼B), where ∼ expresses falsity and not the absence of truth. Since
the support of truth and the support of falsity are persistent along a model’s pre-order,
a state s supports the truth of ∼(A→ B) iff every possible expansion t of s supports
the truth of A and the falsity of B. If the semantics is set up such that the equivalence

∼(A→ B)↔ (A ∧ ∼B) (3)

is valid (and atomic formulas may not only be neither verified nor falsified at
some state but also both verified and falsified at some state), we obtain Nelson’s
constructive four-valued propositional logic N4 in the co-implication-free language
{∼ ,∧,∨,→}.6

This is not the end of the story concerning the language {∼ ,∧,∨,→}, however,
because another understanding of the relation between implication and negation has
been proposed already since ancient times. It turns out that a slight modification of
the support of truth conditions for negated implications leads from N4 to a system of
connexive logic in which the support of falsity of implications is not interpreted as fal-
sification at the world of evaluation, see (Wansing, 2006) for a survey and references.
Connexive logics have a standard logical vocabulary but contain certain non-theorems
of classical logic as theorems. Since classical propositional logic is Post-complete,
any additional axiom in its language gives rise to the trivial system, so that any non-
trivial system of connexive logic in this vocabulary must leave out some theorems of

6. Note that in N4 a truth constant > can be defined as p → p for some atom p, but no falsity
constant ⊥. Odintsov (Odintsov, 2008) investigates extensions of the system N4⊥ in the lan-
guage {∼ ,∧,∨,→,⊥}, which is axiomatized by adding the formulas ⊥ → A and A → ∼⊥
to the axioms of N4.
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classical logic. Among the characteristic theorems of connexive logics are Aristotle’s
Theses:

∼(∼A→ A), ∼(A→ ∼A), (4)

and Boethius’ Theses

(A→ B)→ ∼(A→ ∼B), (A→ ∼B)→ ∼(A→ B) (5)

which are not theorems of classical logic. A connective → that satisfies the above
theses is sometimes said to be a connexive implication.

1.3. Motivations of connexive logic

Since connexive logic is not a well-established area of non-classical logic, we will
briefly look at motivations of it. In addition to an appeal to certain intuitions about
meaning connections between the antecedent and the succedent of valid implications,
there exist at least two motivating ideas for connexive logic. The first comes from
Aristotle’s syllogistic. It is well known that the syllogistic contains inferences that are
not classically valid under the standard translation into predicate logic. One of the
most prominent examples is the inference from ‘Every P is Q’ to ‘Some P s are Qs’:

∀x(P (x)→ Q(x)) ` ∃x(P (x) ∧Q(x)) (6)

Normally, we do not quantify over the empty set. If we assume that the interpretation
of P is empty, there is hardly any reason to assume that every P is Q, but if the
interpretation of P is non-empty, (6) is a valid inference. Inference (6) cannot be
consistently added as a rule to a proof system for classical predicate logic, as is obvious
from the following instance of (6):

∀x((P (x) ∧ ∼P (x))→ Q(x)) ` ∃x((P (x) ∧ ∼P (x)) ∧Q(x)) (7)

The premise of (7) is classically valid, whereas the conclusion is classically unsatisfi-
able. Now, in classical logic, inference (6) is interchangeable with

∀x(P (x)→ Q(x)) ` ∃x∼(P (x)→ ∼Q(x)). (8)

Storrs McCall (McCall, 1967) pointed out that in a system of connexive logic (8) is a
valid inference. This is especially perspicuous in the quantified connexive logic QC
introduced in (Wansing, 2005a), because there

∼(A→ B)↔ (A→ ∼B) (9)

is an axiom. One might therefore suggest to translate statements of the form ‘Some P s
are Qs’ not as ∃x(P (x) ∧Q(x)) but as ∃x∼(P (x)→ ∼Q(x)), which in the system
QC is equivalent to ∃x(P (x)→ Q(x)).

Another motivation comes from Categorial Grammar, see (Wansing, 2007). In the
Lambek Calculus, there are two implications, \ and /, which are the residuals of a
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Constructive negation, implication 347

non-commutative, so-called multiplicative (intensional) conjunction, ·. In one version
of the calculus, · is assumed to be associative; in another version, it is non-associative.
The formulas of the Lambek Calculus stand for syntactic types, and a derivability
statement (sequent) x ` y is to be understood as ‘every expression of type x is also
of type y’. An expression e is of type x \ y iff for every expression e′ of type x, the
string e′e is of type y, and e is of type y/x iff for every expression e′ of type x, the
string ee′ is of type y. A transitive verb like loves, for example, may be syntactically
typed as ((n \ s)/n), because it combines with any name of syntactic type n from the
right to an expression of type (n \ s) that looks to the left for a name to result in an
expression of type s, a sentence. It then makes sense to introduce a negation ∼x to
designate the class of expressions that are definitely not of type x. An expression e is
of type ∼(x \ y) iff for every expression e′ of type x, the string e′e is of type ∼y, and
e is of type ∼(y/x) iff for every expression e′ of type x, the string ee′ is of type ∼y.
These definitions validate the sequents ∼(x \ y) ` x \ ∼y, ∼(y/x) ` (∼y/x), and
their converses. The expression loves Mary, for example, is of type ∼(n \ (n \ s)),
because in combination with any name from the left it results in an expression which is
definitely not an intransitive verb, namely in a sentence. Clearly, the suggested reading
of ∼ also justifies the double negation laws. As a result of these considerations, we
obtain directional versions Boethius’ Theses (as sequents) such as:7

(x \ y) ` ∼(x \ ∼y). (10)

1.4. Completing the picture

Not only the equivalences (3) and (9) are serious candidates for expressing the
support of truth conditions for negated implications. If we think of the classical under-
standing of a co-implication (A−�B) as (A ∧ ∼B), the following equivalence must
also be taken into account:

∼(A→ B)↔ (A−�B), (11)

and classical DeMorgan duality then suggests yet another equivalence:8

∼(A→ B)↔ (∼B−� ∼A) (12)

Eventually, we have to specify the support of truth conditions for constructively
negated co-implications. In analogy to what we have done for negated implications,
we may consider the classical (or rather Nelson-like) reading of negated co-implica-
tions, the connexive understanding of negated co-implications, the reading of negated
co-implications as implications, and the understanding of negated co-implications as

7. In Categorial Grammar, the left-hand side of a sequent may not be empty, because the empty
string has no syntactic type.
8. This equivalence was pointed out to me by Greg Restall.
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contraposed implications. Altogether, this range of readings will give us sixteen sys-
tems of constructive propositional logic. For want of a better terminology and nota-
tion, in Table 1 the characteristic equivalences in question are listed as equivalences
I1 – I4 and C1 – C4. For convenience, the constructive propositional logics in the
language {∧,∨,→,−� , ∼} that differ from each other only with respect to validating
a certain pair of these equivalences (one from the I-equivalences and one from the
C-equivalences) will be referred to as systems (Ii, Cj), i, j ∈ {1, 2, 3, 4}.

Table 1. Constructively negated implications and co-implications

I1 ∼(A→ B) ↔ (A ∧ ∼B) negated implication, classical reading

I2 ∼(A→ B) ↔ (A→ ∼B) negated implication, connexive reading

I3 ∼(A→ B) ↔ (A−�B) negated implication as co-implication

I4 ∼(A→ B) ↔ (∼B−� ∼A) negated implication as contraposed co-impl.

C1 ∼(A−�B) ↔ (∼A ∨B) negated co-implication, classical reading

C2 ∼(A−�B) ↔ (∼A−�B) negated co-implication, connexive reading

C3 ∼(A−�B) ↔ (A→ B) negated co-implication as implication

C4 ∼(A−�B) ↔ (∼B → ∼A) negated co-implication as contraposed impl.

2. Syntax and relational semantics

We will consider a propositional language L defined in Backus–Naur form as fol-
lows:

atomic formulas: p ∈ Atom
formulas: A ∈ Form(Atom)

A ::= p | ∼A | (A ∧A) | (A ∨A) | (A→ A) | (A−�A).

The intended reading of the logical operations is familiar, except, possibly, for the
less well-known connective −� : ∼ (negation), ∧ (conjunction), ∨ (disjunction), →
(implication), −� (co-implication). The language without −� is the language of intu-
itionistic propositional logic, IPL, of David Nelson’s propositional logics with strong
negation, and of connexive propositional logic (if we do not use distinct symbols for
the ‘corresponding’ connectives from distinct logics). In L, where both→ and−� are
present, two distinct unary negation connectives can be defined: intuitionistic nega-
tion, which we now denote as ¬, and co-negation, −. We will focus, however, on
the single primitive strong negation ∼ . Equivalence,↔, is defined as usual, and co-
equivalence, �−� , is defined as expected, by setting A�−�B := (A−�B)∨ (B−�A).

In this section, we will introduce the sixteen constructive logics (Ii, Cj), i, j ∈
{1, 2, 3, 4}, semantically. Since all these logics are interpreted in models based on

D
ow

nl
oa

de
d 

by
 [

N
or

th
 D

ak
ot

a 
St

at
e 

U
ni

ve
rs

ity
] 

at
 1

1:
06

 2
8 

A
ug

us
t 2

01
3 



Constructive negation, implication 349

(Kripke) frames, the semantic presentation admits of a transparent comparison be-
tween the logics under consideration.

DEFINITION 1. — A frame is a pre-order 〈I,≤〉. Intuitively, I is a non-empty set of
information states, and≤ is a reflexive transitive binary relation of possible expansion
of states on I .

Instead of w ≤ w′, we also write w′ ≥ w.

DEFINITION 2. — A model is a structure 〈I,≤, v+, v−〉, where 〈I,≤〉 is a frame and
v+ (v−) is a function that maps every p ∈Atom to a subset of I (namely the states that
support the truth (falsity) of p). It is assumed that the functions v+ and v− satisfy the
following persistence conditions for atoms: if w ≤ w′, then w ∈ v+(p) implies w′ ∈
v+(p); if w ≤ w′, then w ∈ v−(p) implies w′ ∈ v−(p). The relationsM, w |=+ A
(‘state w supports the truth of L-formula A in modelM’) andM, w |=− A (‘state w
supports the falsity of L-formula A in modelM’) are inductively defined as follows:

M, w |=+ p iff w ∈ v+(p)
M, w |=− p iff w ∈ v−(p)
M, w |=+ ∼A iff M, w |=− A
M, w |=− ∼A iff M, w |=+ A

M, w |=+ (A ∧B) iff M, w |=+ A andM, w |=+ B
M, w |=− (A ∧B) iff M, w |=− A orM, w |=− B
M, w |=+ (A ∨B) iff M, w |=+ A orM, w |=+ B
M, w |=− (A ∨B) iff M, w |=− A andM, w |=− B
M, w |=+ (A→ B) iff for every w′ ≥ w :M, w′ 6|=+ A orM, w′ |=+ B
M, w |=+ (A−�B) iff there exists w′ ≤ w :M, w′ |=+ A and

M, w′ 6|=+ B

whereM, w 6|=+ A is the classical negation ofM, w |=+ A.

In Table 2, we list the support of falsity conditions corresponding to the equiva-
lences I1 – I4 and C1 – C4 from Table 1. No matter which equivalences we choose,
support of truth and support of falsity is persistent for arbitrary formulas.

OBSERVATION 3 (PERSISTENCE). — For every L-formulaA, model 〈I,≤, v+, v−〉,
and w, w′ ∈ I: if w ≤ w′, then w ∈ v+(A) implies w′ ∈ v+(A); if w ≤ w′, then w
∈ v−(A) implies w′ ∈ v−(A). �

We can make the following simple but important observation concerning the expres-
sive power of the logics we are about to define.

OBSERVATION 4. — Let p be a certain atomic formula, let > := p → p, and let
⊥ := p−� p. For every model M and every state w from M, M, w |=+ > and
M, w 6|=+ ⊥. Thus, we can define the co-negation ‘−’ of Heyting-Brouwer logic by
setting −A := >−�A and intuitionistic negation ¬, by setting ¬A := A→ ⊥. �
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Table 2. Support of falsity conditions for negated implications and co-implications

cI1 M, w |=− (A→ B) iff M, w |=+ A andM, w |=− B

cI2 M, w |=− (A→ B) iff for every w′ ≥ w :M, w′ 6|=+ A orM, w′ |=− B

cI3 M, w |=− (A→ B) iff there is w′ ≤ w :M, w′ |=+ A andM, w′ 6|=+ B

cI4 M, w |=− (A→ B) iff there is w′ ≤ w :M, w′ 6|=− A andM, w′ |=− B

cC1 M, w |=− (A−�B) iff M, w |=− A orM, w |=+ B

cC2 M, w |=− (A−�B) iff there is w′ ≤ w :M, w′ |=− A andM, w′ 6|=+ B

cC3 M, w |=− (A−�B) iff for every w′ ≥ w :M, w′ 6|=+ A orM, w′ |=+ B

cC4 M, w |=− (A−�B) iff for every w′ ≥ w :M, w′ |=− A orM, w′ 6|=− B

The support of truth clause for co-negation then is:

M, w |=+ −A iff there exists w′ ≤ w andM, w′ 6|=+ A,

whereas the support of truth conditions for intuitionistic negation are the familiar ones:

M, w |=+ ¬A iff for every w′ ≥ w,M, w′ 6|=+ A.

Note that ifM = 〈I,≤〉 is a frame, v is a function from Atom to subsets of I , and
M, w |= A is defined exactly asM, w |=+ A, except thatM, w |= p iff w ∈ v(p),
then 〈I,≤, v〉 is a model for HB. The logic HB, understood as a set of formulas, is the
set of all ∼ -free L-formulas A such that for every modelM = 〈I,≤, v〉, and every
w ∈ I ,M, w |= A.

DEFINITION 5. — The logics (Ii, Cj) are defined as the triples (L, |=+
Ii,Cj

, |=−Ii,Cj
),

where the entailment relations |=+
Ii,Cj

, |=−Ii,Cj
⊆ P(L)×P(L) are defined as follows:

∆ |=+
Ii,Cj

Γ iff for every modelM = 〈I,≤, v+, v−〉 defined with clauses cIi and cCj

and every w ∈ I , if M, w |=+ A for every A ∈ ∆, then M, w |=+ B for some
B ∈ Γ, and
∆ |= −Ii,Cj Γ iff for every model M = 〈I,≤, v+, v−〉 defined with clauses cIi and
cCj and every w ∈ I , ifM, w |=− A for every A ∈ Γ, thenM, w |=− B for some
B ∈ ∆.
For singleton sets {A} and {B}, we write A |=+

Ii,Cj
B (A |=−Ii,Cj

B) instead of
{A} |=+

Ii,Cj
{B} ({A} |=−Ii,Cj

{B}). If the context is clear, we shall sometimes omit
the subscript Ii,Cj

.

This definition of a logic as comprising two entailment relations instead of just one
is unusual but not at all unnatural, see, for instance, (Shramko et al., 2005), (Wansing
et al., 2008a), (Wansing et al., 2008b). The set of all constructively false sentences is
not the complement of the set of all constructively true sentences, and we can make
the following observation.
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Constructive negation, implication 351

OBSERVATION 6. — If (Ii, Cj) 6= (I4, C4), then |=+
Ii,Cj
6= |=−Ii,Cj

. �

PROOF. — For every logic (Ii, Cj), it holds that (p ∧ (p → q)) |=+ q. However,
for no logic (I1, Cj) and for no logic (I3, Cj), we have ∼q |=+ ∼(p ∧ (p → q)).
To see this, a one-element countermodel suffices, where the following holds for the
single state w: w ∈ v−(q), w 6∈ v+(p), and w 6∈ v−(p). Other counterexamples
work for the logics (I2, Cj) and (I4, C1) – (I4, C3). For every logic (Ii, Cj), it holds
that p |=+ (q → p). But in a singleton model where w 6∈ v−(p) and w 6∈ v+(q),
we have w |=+ (q → ∼p) and w 6|=+ ∼p, which shows for the logics (I2, Cj) that
∼(q → p) 6|=+ ∼p. For every logic (Ii, Cj), it holds that r ∧ (r → (p−� p)) |=+ q.
Consider a singleton model with w |=− q, w 6|=− r, w 6|=− p, and w 6|=+ p. This
model shows that ∼q 6|=+ ∼r ∨ ((∼p ∨ p)−� ∼r) in the case of logic (I4, C1) and
that ∼p 6|=+ ∼r ∨ ((∼p−� p)−� ∼r) in the case of logic (I4, C2). In (I4, C3) we
have ∼ (p−� q) |=+ p → q. A singleton model in which w 6|=+ p, w |=− q and
w 6|=− p shows that ∼q−� ∼p 6|=+ p−� q. �

We do not require that for atomic formulas p, v+(p) ∩ v−(p) = ∅. Therefore,
the logics under consideration are paraconsistent. Neither is it the case that for any
formula B, {p, ∼p} |=+

Ii,Cj
B nor is it the case that B |=−Ii,Cj

{p, ∼p}.9

The next observation on negation normal forms will be used in the completeness
proof of Section 3. A formula is in negation normal form if it contains ∼ only in
front of atoms. The following translations ρIi,Cj send every formula A to a formula
in negation normal form, where p ∈ Atom and � ∈ {∨,∧,→,−� }:

ρIi,Cj
(p) = p

ρIi,Cj
(∼p) = ∼p

ρIi,Cj
(∼∼ A) = ρIi,Cj

(A)
ρIi,Cj (A�B) = ρIi,Cj (A)� ρIi,Cj (B)
ρIi,Cj (∼(A ∨B)) = ρIi,Cj (∼A) ∧ ρIi,Cj (∼B)
ρIi,Cj

(∼(A ∧B)) = ρIi,Cj
(∼A) ∨ ρIi,Cj

(∼B)
ρI1,Cj

(∼(A→ B)) = ρI1,Cj
(A) ∧ ρI1,Cj

(∼B)
ρI2,Cj

(∼(A→ B)) = ρI2,Cj
(A)→ ρI2,Cj

(∼B)
ρI3,Cj (∼(A→ B)) = ρI3,Cj (A)−� ρI3,Cj (B)
ρI4,Cj (∼(A→ B)) = ρI4,Cj (∼B)−� ρI4,Cj (∼A)
ρIi,C1(∼(A−�B)) = ρIi,C1(∼A) ∨ ρIi,C1(B)
ρIi,C2(∼(A−�B)) = ρIi,C2(∼A)−� ρIi,C2(B)
ρIi,C3(∼(A−�B)) = ρIi,C3(A)→ ρIi,C3(B)
ρIi,C4(∼(A−�B)) = ρIi,C4(∼B)→ ρIi,C4(∼A)

LEMMA 7. — For every formula A, ρIi,Cj (A) is in negation normal form and A
|=+

Ii,Cj
ρIi,Cj

(A), ρIi,Cj
(A) |=+

Ii,Cj
A, A |=−Ii,Cj

ρIi,Cj
(A), ρIi,Cj

(A) |=−Ii,Cj
A.

9. Co-negation is, of course, also a paraconsistent negation, see (Urbas, 1996), (Brunner et
al., 2005), whereas intuitionistic negation is ‘paracomplete’.
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3. Display calculi

Developing a proof system for logics with both intuitionistic implication and co-
implication encounters some problems. The standard sequent calculus for intuitionis-
tic logic is asymmetric; it uses sequents with multiple antecedents and (at most) single
conclusions in order to avoid the provability of Peirce’s Law. If one admits symmetric
sequents (with multiple antecedents and succedents) and just adds the natural and ob-
vious sequent rules for introducing co-implication (in the style of Gentzen’s sequent
calculus for classical logic, LK), namely:

Γ, B ` A,∆
Γ, (B−�A) ` ∆

Γ ` B,∆ Σ, A ` Π
Σ,Γ ` (B−�A),∆,Π (13)

one can not only prove Peirce’s Law, but also a sequent which contains just one co-
implicative formula and is an analogue of the sequent expressing the provability of
Peirce’s Law:10

A ` A

A ` A
A,B ` A

A,B−�A ` ∅
A,A ` A−� (B−�A)
A ` A−� (B−�A)

A−� (A−� (B−�A)) ` ∅

The formula A−� (A−� (B−�A)) may be called Peirce’s Co-Law.

The sequent calculus for Heyting-Brouwer logic in (Crolard, 2001) uses single-
conclusion sequents but imposes a ‘singleton on the left’ constraint on the left intro-
duction rule for co-implication (and a ‘singleton on the right’ constraint on the right
introduction rule for implication). This sequent calculus is thus asymmetric, but it does
not enjoy cut-elimination. Nor does the sequent system for HB in (Rauszer, 1974) al-
low cut-elimination. A counterexample due to T. Uustalu is presented in (Buisman et
al., 2007). These problems can be overcome in display logic.11 We will employ this

10. The corresponding proof of Peirce’s Law in the multiple-conclusion sequent calculus is:

A ` A
A ` A,B

∅ ` (A→ B), A A ` A
(A→ B)→ A ` A,A

(A→ B)→ A ` A
∅ ` ((A→ B)→ A)→ A

11. Buisman and Goré (Buisman et al., 2007) have presented a non-standard cut-free sequent
calculus for Heyting-Brouwer logic. In this calculus, the sequent rule for implications in succe-
dent position of a sequent and the rule for co-implications in antecedent position of a sequent
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Constructive negation, implication 353

very general and flexible sequent-style proof-theoretical framework and present dis-
play sequent calculi for the logics (Ii, Cj), which add strong negation ∼ to HB. We
may then apply a very general cut-elimination theorem stating that every ‘properly dis-
playable’ logic enjoys cut-elimination, a theorem due to Nuel Belnap (Belnap, 1982),
see Theorem 17.

One fundamental idea of display calculi is to exploit the fact that certain logical
operations are residuated pairs to specify rules for introducing these operations on the
left and the right side of the derivability sign `, that is, in antecedent and in succedent
position. Moreover, it is characteristic of display logic to associate a single structural
connective � in the language of sequents with a pair (�1, �2) of connectives from the
logical object language, so that in antecedent position � is interpreted as �1 and in
succedent position as �2. The left introduction rule for �1 and the right introduction
rule for �2 may then be stated as follows:

A �B ` X
A �1 B ` X

X ` A �B
X ` A �2 B,

where X is a structure, a term in the language of sequents. The connectives �1 and �2
may be said to be Gentzen duals of each other.

A cut-free sound and complete display calculus for Heyting-Brouwer logic has
been presented by Goré (Goré, 2000). In this section, I will develop a variant of
Goré’s system and extend it by rules for constructively negated formulas. Whereas
Goré treats the pair of commutative operations ∧ and ∨ as Gentzen duals and the non-
commutative operations→ and−� , we here will treat the residuated pairs (∧,→) and
(−� , ∨) as pairs of Gentzen duals.

In Gentzen’s sequents, the comma, ‘,’, may bee seen as a context sensitive struc-
tural connective to be understood as conjunction in antecedent position and as disjunc-
tion in succedent position of a sequent. In our display calculi, we will use the binary
operations ◦ and • as structural connectives. In antecedent position, ◦ is to be inter-
preted as conjunction and in succedent position as implication. In antecedent position,
• is to be read as co-implication and in succedent position as disjunction. A sequent is
an expression of the shape X ` Y , where X and Y are structures. We also assume the
empty structure I, and the set of structures is defined in the obvious way as follows:

formulas: A ∈ Form(Atom)
structures X ∈ Struc(Form)

X ::= A | I | (X ◦X) | (X •X).

The intuitive interpretation of the structural connectives justifies certain ‘display pos-
tulates’ (dp) (we omit outer brackets):

come with side conditions on variables for families of sets of formulas. Two other, cut-free
sequent calculi for Heyting-Brouwer logic are presented in (Goré et al., 2008). The first calcu-
lus is intermediate between display calculi and standard sequent systems. From this system a
variant is defined, which is amenable to automated proof-search.
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Y ` X ◦ Z
X ◦ Y ` Z
X ` Y ◦ Z

X ` Y ◦ Z
X ◦ Y ` Z
Y ` X ◦ Z

X • Z ` Y
X ` Y • Z
X • Y ` Z

X • Y ` Z
X ` Y • Z
X • Z ` Y

Moreover, we assume certain rules (Ir) which govern the empty structure:

X ◦ I ` Y
X ` Y

I ◦X ` Y

I ◦X ` Y
X ` Y

X ◦ I ` Y

X ` Y • I
X ` Y

X ` I • Y

X ` I • Y
X ` Y

X ` Y • I

certain ‘logical’ structural rules:

p ` p (id) ∼p ` ∼p (id∼) X ` A A ` Y
X ` Y (cut)

and versions of the standard structural rules from ordinary Gentzen calculi for classical
logic, monotonicity (alias thinning or weakening), exchange (alias permutation), and
contraction, together with associativity (presented in Table 3). Note that the failure of
left (right) monotonicity for • (◦) blocks the provability of Peirce’s Co-Law (Peirce’s
Law).

Table 3. Structural sequent rules

X ` Y
X ` Y • Z (rm) X ` Y

X ◦ Z ` Y (lm)

X ` Y • Z
X ` Z • Y (re) X ◦ Z ` Y

Z ◦X ` Y (le)

X ` Y • Y
X ` Y (rc) X ◦X ` Y

X ` Y (lc)

X ` (Y • Z) •X ′

X ` Y • (Z •X ′)
(ra)

(X ◦ Y ) ◦ Z ` X ′

X ◦ (Y ◦ Z) ` X ′
(la)

The display sequent calculi δ(Ii, Cj), i, j ∈ {1, 2, 3, 4}, for the constructive logics
(Ii, Cj) share these rules and the introduction rules stated in Table 4. The particular
display calculus δ(Ii, Cj) then is the proof system obtained by adding the rules rIi
and rCj from Table 5.

A derivation of a sequent s from a set of sequents {s1, . . . , sn} in δ(Ii, Cj) is
defined as a tree with root s such that every leaf is an instantiation of (id), (id∼), or a
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Constructive negation, implication 355

Table 4. Introduction rules shared by all logics (Ii, Cj)

X ` A Y ` B
X ◦ Y ` (A ∧B)

(` ∧) A ◦B ` X
(A ∧B) ` X

(∧ `)

X ` A •B
X ` (A ∨B)

(` ∨) A ` X B ` Y
(A ∨B) ` X • Y

(∨ `)

X ` A ◦B
X ` (A→ B)

(` →) X ` A B ` Y
(A→ B) ` X ◦ Y

(→ `)

X ` B A ` Y
X • Y ` B−�A (` −� ) B •A ` X

B−�A ` X (−� `)

X ` ∼A • ∼B
X ` ∼(A ∧B)

(` ∼∧) ∼A ` X ∼B ` Y
∼(A ∧B) ` X • Y

(∼∧ `)

X ` ∼A Y ` ∼B
X ◦ Y ` ∼(A ∨B)

(` ∼∨) ∼A ◦ ∼B ` X
∼(A ∨B) ` X

(∼∨ `)

X ` A
X ` ∼ ∼A (` ∼ ∼) A ` X

∼∼A ` X (∼∼ `)

sequent from {s1, . . . , sn}, and every other node is obtained by an application of one
of the remaining rules. A proof of a sequent s in δ(Ii, Cj) is a derivation of s from
∅. Sequents s and s’ are said to be interderivable iff s is derivable from {s′} and s′ is
derivable from {s}.

Two sequents s and s’ are said to be structurally equivalent if they are interderiv-
able by means of display postulates only. It is characteristic for display calculi that
any substructure of a given sequent s may be displayed as the entire antecedent or
succedent of a structurally equivalent sequent s′.

If s = X ` Y is a sequent, then the displayed occurrence of X (Y ) is an ante-
cedent (succedent) part of s. If an occurrence of (Z ◦W ) is an antecedent part of s,
then the displayed occurrences of Z and W are antecedent parts of s. If an occurrence
of (Z •W ) is an antecedent part of s, then the displayed occurrence of Z (W ) is an
antecedent (succedent) part of s. If an occurrence of (Z ◦W ) is a succedent part of s,
then the displayed occurrence of Z (W ) is an antecedent (succedent) part of s. If an
occurrence of (Z •W ) is a succedent part of s, then the displayed occurrences of Z
and W are succedent parts of s.

THEOREM 8 (CF. (BELNAP 1982)). — For every sequent s and every antecedent
(succedent) part X of s, there exists a sequent s′ structurally equivalent to s such that
X is the entire antecedent (succedent) of s′.
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Table 5. Sequent rules for negated implications and co-implications

rI1

X ` A Y ` ∼B
X ◦ Y ` ∼(A→ B)

A ◦ ∼B ` X
∼(A→ B) ` X

rI2

X ` A ◦ ∼B
X ` ∼(A→ B)

X ` A ∼B ` Y
∼(A→ B) ` X ◦ Y

rI3

X ` A B ` Y
X • Y ` ∼(A→ B)

A •B ` X
∼(A→ B) ` X

rI4

X ` ∼B ∼A ` Y
X • Y ` ∼(A→ B)

∼B • ∼A ` X
∼(A→ B) ` X

rC1

X ` ∼A •B
X ` ∼(A−�B)

∼A ` X B ` Y
∼(A−�B) ` X • Y

rC2

X ` ∼A B ` Y
X • Y ` ∼(A−�B)

∼A •B ` X
∼(A−�B) ` X

rC3

X ` A ◦B
X ` ∼(A−�B)

Y ` A B ` X
∼(A−�B) ` Y ◦X

rC4

X ` ∼B ◦ ∼A
X ` ∼(A−�B)

Y ` ∼B ∼A ` X
∼(A−�B) ` Y ◦X

OBSERVATION 9. — For every L-formula A and every display calculus δ(Ii, Cj),
A ` A is provable (and hence I ` A→ A and A−�A ` I are provable). �

PROOF. — The proof is by induction on the number of occurrences of connectives in
A. We here display two cases for δ(I4, C3):

∼B ` ∼B ∼A ` ∼A
∼B • ∼A ` ∼(A→ B)
∼(A→ B) ` ∼(A→ B)

A ` A B ` B
∼(A−�B) ` A ◦B

∼(A−�B) ` ∼(A−�B)

The remaining cases are equally simple. �

One can define translations τ1 and τ2 from structures into formulas such that these
translations reflect the intuitive, context-sensitive interpretation of the structural con-
nectives: τ1 translates structures which are antecedent parts of a sequent, whereas τ2
translates structures which are succedent parts of a sequent.
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Constructive negation, implication 357

DEFINITION 10. — The translations τ1 and τ2 from structures into formulas are in-
ductively defined as follows, where A is a formula and p is a certain atom:

τ1(A) = A τ2(A) = A
τ1(I) = p→ p τ2(I) = p−� p

τ1(X ◦ Y ) = τ1(X) ∧ τ1(Y ) τ2(X ◦ Y ) = τ1(X)→ τ2(Y )
τ1(X • Y ) = τ1(X)−� τ2(Y ) τ2(X • Y ) = τ2(X) ∨ τ2(Y )

THEOREM 11 (SOUNDNESS). — (1) If the sequent X ` Y is provable in δ(Ii, Cj),
then τ1(X) |=+

Ii,Cj
τ2(Y ). (2) IfX ` Y is provable in δ(Ii, Cj), then ∼τ2(Y ) |=−Ii,Cj

∼τ1(X).

PROOF. — (1) can be proved by induction on derivations in the display calculi
δ(Ii, Cj). We present here just two cases and omit some subscripts. (a) rC2 right-hand
side of `. Suppose (*) τ1(X) |=+ τ2(∼A) and τ1(B) |=+ τ2(Y ). To show: τ1(X •
Y ) |=+ τ2(∼(A−�B)). τ1(X • Y ) = τ1(X)−� τ2(Y ). Let w |=+ τ1(X)−� τ2(Y ).
Then ∃w′ with w′ ≤ w, w′ |=+ τ1(X), and w′ 6|=+ τ2(Y ). By (*), w′ |=+ τ2(∼A)
(i.e., w′ |=− A) and w′ 6|=+ τ1(B). Thus, w |=+ τ2(∼(A−�B)). (b) rC4 left-
hand side of `. Suppose (*) τ1(Y ) |=+ τ2(∼B) and τ1(∼A) |=+ τ2(X). To
show: τ1(∼(A−�B)) |=+ τ2(Y ◦ X). τ2(Y ◦ X) = τ1(Y ) → τ2(X). Let w |=+

τ1(∼(A−�B)). Then, by cC4, ∀w′ ≥ w: w′ |=− A or w′ 6|=− B. By (*), ∀w′ ≥ w:
w′ |=+ τ2(X) or w′ 6|=+ τ1(Y ). Thus, w |=+ τ1(Y ) → τ2(X). (2) follows from
(1), the definition of |=−Ii,Cj

and the fact that w |=+ ∼A iff w |=− A. (Indeed, the
succedents of the two claims are equivalent.) �

In order to prove completeness, we will apply some lemmata. We add to the lan-
guage L for every atomic formula p a new atom p∗ to obtain the language L∗. If A is
an L-formula, (A)∗ is the result of replacing every strongly negated atom ∼p in A by
p∗.

LEMMA 12. — For every L-formula A, if ∅ |=+
Ii,Cj

A, then (ρIi,Cj (A))∗ is valid in
HB.

PROOF. — Let ∅ |=+
Ii,Cj

A. By Lemma 7, this is the case iff ∅ |=+
Ii,Cj

ρIi,Cj (A).
If (ρIi,Cj (A))∗ is not valid in HB, then there is a model M = 〈I,≤, v〉 and w ∈ I
with M, w 6|= (ρIi,Cj

(A))∗. Define the structure M′ = 〈I ′,≤′, v+, v−〉 by setting
I ′ := I , ≤′ := ≤, v+ := v and w ∈ v−(p) iff w ∈ v(p∗), for every atomic L-formula
p. Clearly,M′ is a model. By induction on L-formulasA, one can show thatM, w 6|=
(ρIi,Cj

(A))∗ iffM′, w 6|=+ ρIi,Cj
(A), which contradicts ∅ |=+

Ii,Cj
ρIi,Cj

(A). �

LEMMA 13. — For every ∼ -free L-formula A, if A is provable in HB, then I ` A is
provable in δ(Ii, Cj) without using any sequent rules for strongly negated formulas.

PROOF. — It is enough to show that the axiom schemata for HB stated in (Rauszer,
1974, p. 24) and (Rauszer, 1980, p. 18) are provable in δ(Ii, Cj) and that modus
ponens and the rule

A
¬ −A
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preserve provability in δ(Ii, Cj) without making appeal to sequent rules for strongly
negated formulas. For the latter and for Axiom (A11) from (Rauszer, 1980), for exam-
ple, see:

I ` A
I ` A • (p−� p)

I ◦ (p→ p) ` A • (p−� p)
(p→ p) ` A • (p−� p)

((p→ p) •A) ` (p−� p)
((p→ p)−�A) ` (p−� p)

I ◦ ((p→ p)−�A) ` (p−� p)
I ` ((p→ p)−�A) ◦ (p−� p)
I ` ((p→ p)−�A)→ (p−� p)

A ` A B ` B
A •B ` (A−�B)
A ` B • (A−�B)

A ◦ I ` B • (A−�B)
A ◦ I ` B ∨ (A−�B)

I ` A ◦ (B ∨ (A−�B))
I ` A→ (B ∨ (A−�B))

�

LEMMA 14. — For every L-formula A, the sequents A ` ρIi,Cj
(A) and ρIi,Cj

(A)
` A are provable in δ(Ii, Cj).

LEMMA 15. — Every sequent X ` τ1(X) and τ2(X) ` X is provable in δ(Ii, Cj),
for all i, j ∈ {1, 2, 3, 4}.

PROOF. — By simultaneous induction on X . For instance, we have:

X ` τ1(X) τ2(Y ) ` Y
X • Y ` τ1(X)−� τ2(Y )

�

THEOREM 16 (COMPLETENESS). — (1) If ρIi,Cj
(τ1(X)) |=+

Ii,Cj
ρIi,Cj

(τ2(Y )),
then X ` Y is provable in δ(Ii, Cj). (2) If ρIi,Cj

(∼τ2(Y )) |=−Ii,Cj
ρIi,Cj

(∼τ1(X)),
then X ` Y is provable in δ(Ii, Cj).

PROOF. — (1) Suppose ρIi,Cj (τ1(X)) |=+
Ii,Cj

ρIi,Cj (τ2(Y )). Then,

∅ |=+
Ii,Cj

ρIi,Cj
(τ1(X))→ ρIi,Cj

(τ2(Y )).

Using Lemma 12, we obtain that (ρIi,Cj
(τ1(X)))∗ → (ρIi,Cj

(τ2(Y )))∗ is valid in
HB. By completeness of Rauszer’s axiomatization of HB, it follows that

(ρIi,Cj (τ1(X)))∗ → (ρIi,Cj (τ2(Y )))∗

is provable in this axiom system. By Lemma 13, we obtain a proof of the sequent
I ` (ρIi,Cj

(τ1(X)))∗ → (ρIi,Cj
(τ2(Y )))∗. By applying (cut) to this sequent and the

provable sequent

(ρIi,Cj (τ1(X)))∗ → (ρIi,Cj (τ2(Y )))∗ ` (ρIi,Cj (τ1(X)))∗ ◦ (ρIi,Cj (τ2(Y )))∗,
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we may see that (ρIi,Cj
(τ1(X)))∗ ` (ρIi,Cj

(τ2(Y )))∗ is provable in δ(Ii, Cj). Since
(ρIi,Cj (τ1(X)))∗ ` (ρIi,Cj (τ2(Y )))∗ is provable without any appeal to sequent rules
for strongly negated formulas, the sequent ρIi,Cj (τ1(X)) ` ρIi,Cj (τ2(Y )) is provable
in δ(Ii, Cj), and then, by Lemma 14, τ1(X) ` τ2(Y ) is provable in δ(Ii, Cj). Finally,
by Lemma 15, X ` Y is provable in δ(Ii, Cj). (2): Obvious. �

Belnap (Belnap, 1982) presents a very general cut-elimination theorem covering
all ‘properly displayable’ logics, which are logics satisfying a number of conditions
(C1) – (C8). Condition (C8) is the requirement of eliminability of principal cuts,
i.e., applications of (cut) in which the two premise sequents have been obtained by
introducing the main connective of the cut-formulaA. The display calculi δ(Ii, Cj) do
not satisfy condition (C1), which says that each formula which is a constituent of some
premise of a sequent rule is a subformula of the conclusion sequent. We may note,
however, thatX ` Y is provable in δ(Ii, Cj) iff (ρIi,Cj (τ1(X)))∗ ` (ρIi,Cj (τ2(Y )))∗

is provable in δ(Ii, Cj) without any appeal to rules involving ∼ . Let δ(Ii, Cj)+ denote
the result of dropping all sequent rules exhibiting ∼ from δ(Ii, Cj).

THEOREM 17. — If X ` Y is provable in system δ(Ii, Cj), then (ρIi,Cj (τ1(X)))∗

` (ρIi,Cj
(τ2(Y )))∗ is provable in δ(Ii, Cj)+ without any applications of (cut).

PROOF. — The system δ(Ii, Cj)+ satisfies Belnap’s conditions (C1)–(C8). The prin-
cipal cut-elimination step for −� is:

X ` B A ` Y
X • Y ` B−�A

B •A ` Z
B−�A ` Z

X • Y ` Z

is replaced by

X ` B
B •A ` Z
B ` A • Z

X ` A • Z
X • Z ` A A ` Y

X • Z ` Y
X ` Z • Y
X • Y ` Z

�

4. Summary

We noted above that intuitionistic logic enjoys the disjunction property but does
not enjoy the constructible falsity property with respect to intuitionistic negation. In
Heyting-Brouwer logic, the disjunction property fails. If we take co-negation as prim-
itive, the disjunction property already fails in the {−,∧,∨,−� }-fragment of HB (alias
dual intuitionistic logic), since for every atom p, p∨−p is valid, but obviously neither
p nor −p is valid. However,

OBSERVATION 18. — If −(A ∧B) is valid in HB, then so are −A or −B. �
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PROOF. — By ‘gluing’ of models. Suppose there are modelsM1 andM2 and states
w1, w2 with M1, w1 6|= −A and M2, w2 6|= −B. We add a new state w such that
no atom is verified at w and consider the relation ≤′, which is the reflexive, transi-
tive closure of ≤ ∪ {〈w,w1〉, 〈w,w2〉}. The resulting structure is a model, and at w
it verifies the valid −(A ∧ B), which contradicts the fact that M1, w1 6|= −A and
M2, w2 6|= −B. �

We may now summarize our results. We have motivated and defined the sixteen
logics (Ii, Cj), i, j ∈ {1, 2, 3, 4},12 which comprise both intuitionistic implication and
co-implication. These logics enrich the combination of the constructive logics IPL+

and HB+ by a strong negation operation ∼ , which may be regarded as a constructive
negation. Its conservative addition to IPL+ in the systems of Nelson does not lead to a
violation of the disjunction property and gives rise to the constructible falsity property.
The logics (Ii, Cj) may be viewed as constructive logics, if one is not disturbed by the
fact that these logics fail to enjoy the constructible falsity property for the definable
intuitionistic negation and the disjunction property for the definable co-negation. The
constructiveness of the logics (Ii, Cj) would have to be further justified by showing
them correct with respect to an interpretation in terms of canonical proofs, dual proofs,
disproofs, and dual disproofs, where a disproof (dual disproof) of A is a derivation of
∼A from the empty set (derivation of the empty set from ∼A). Moreover, we have
presented strongly sound and complete display sequent calculi for the logics (Ii, Cj).
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A. Appendix

We refer to the result of dropping the sequent rules for→ from (Ii, Cj)+ as δHB+.
δHB+ is a display sequent calculus for HB+ in the language {∧,∨,−� }. If X ` Y is
provable in δHB+, then it follows from Theorem 11 that τ1(X) entails τ2(Y ) in HB+;
the converse follows by Theorem 16. Since the structural connective ◦ is interpreted
as implication in succedent position, the proof of Theorem 19 refers to both proofs
and dual proofs. In particular, we must say what is a canonical reductio (dual proof)
of an implication (A → B), namely a pair (π1, π2), where π1 is a proof of A and π2

is a reductio of B.13 Moreover, we require that for no formula A, there exists both a
proof and a reductio.

THEOREM 19. — If A ` I is provable in δHB+, then there exists a construction π
which is a reductio ad absurdum of A.

PROOF. — We prove a more general claim by induction on proofs in δHB+, namely:
If X ` Y is provable in δHB+, then there exists a construction π such that π(π′) is a
reductio ad absurdum of τ1(X) whenever π′ is a reductio ad absurdum of τ2(Y ). Note
that any reductio of τ2(I) = (p−� p) is the identity function.
The cases of the rules (−� `), (∧ `), and (` ∨) are trivial.
(` −� ): Suppose π1(π1

′) is a reductio of τ1(X) whenever π1
′ is a reductio of B,

and π2(π2
′) is a reductio of A whenever π2

′ is a reductio of τ2(Y ). We define a
construction π∗ such that π∗(π∗′) is a reductio of τ1(X)−� τ2(Y ) whenever π∗′ is a
reductio of B−�A. Let π∗′ be a reductio of B−�A. Then for every reductio θ of A,
π∗′(θ) is a reductio of B. Therefore, π∗′(π2) is a reductio of B−� τ2(Y ), and π∗ :=
π1(π∗′(π2)) is a reductio of τ1(X)−� τ2(Y ).
(` ∧): Suppose π1(π1

′) is a reductio of τ1(X) whenever π1
′ is a reductio of A,

and π2(π2
′) is a reductio of τ1(Y ) whenever π2

′ is a reductio of B. We define a
construction π∗ such that π∗(π∗′) is a reductio of τ1(X) ∧ τ1(Y ) whenever π∗′ is a
reductio of A ∧ B. Let π∗′ be a reductio of A ∧ B. Then π∗′ is a pair (i, π), such
that i = 0 and π is reductio of A or i = 1 and π is a reductio of B. Clearly, π∗ =
(0, π1(π)) or π∗ = (1, π2(π)) is a reductio of τ1(X) ∧ τ1(Y ).
The display postulate: X • Z ` Y /X ` Y • Z: Suppose π(π′) is a reductio of
τ1(X • Z) (= τ1(X)−� τ2(Z)) whenever π′ is a reductio of τ2(Y ). We define a
construction π∗ such that π∗(π∗′) is a reductio of τ1(X) whenever π∗′ is a reductio
of τ2(Y • Z) (= τ2(Y ) ∨ τ2(Z)). Thus, let π∗′ = (π1, π2), where π1 is a reductio of
τ2(Y ) and π2 is a reductio of τ2(Z). Then π(π1) is a reductio of τ1(X)−� τ2(Z), and
π(π1)(π2) is a reductio of τ1(X).
The display postulate: X ◦ Y ` Z /X ` Y ◦ Z: Suppose π(π′) is a reductio of
τ1(X) ∧ τ1(Y ) whenever π′ is a reductio of τ2(Z). That is, π(π′) is a pair (i, π′′)
such that i = 0 and π′′ is a reductio of τ1(X) or i = 1 and π′′ is a reductio of τ1(Y ).
Suppose π∗ is a pair (π1, π2), where π1 is a proof of τ1(Y ) and π2 is a reductio of
τ2(Z). Then π(π2) is a pair (0, π′′) and π′′ is a reductio of τ1(X). That π(π2) is a
pair (1, π′′) where π′′ is a reductio of τ1(Y ) is impossible, because π1 is a proof of

13. A proof of (A−�B) then is a reductio of (A→ B).
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τ1(Y ).
The structural rule (lm): X ` Y /X ◦ Z ` Y . Suppose π(π′) is a reductio of τ1(X)
whenever π′ is a reductio of τ2(Y ). Let π∗ be a reductio of τ2(Y ). Then (0, π(π∗)) is
a reductio of τ1(X) ∧ τ1(Z).
The remaining cases are left to the reader. �
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