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Abstract

We see how nested sequents, a natural generalisation of hypersequents, allow
us to develop a systematic proof theory for modal logics. As opposed to other
prominent formalisms, such as the display calculus and labelled sequents, nested
sequents stay inside the modal language and allow for proof systems which enjoy
the subformula property in the literal sense.

In the first part we study a systematic set of nested sequent systems for all
normal modal logics formed by some combination of the axioms for seriality,
reflexivity, symmetry, transitivity and euclideanness. We establish soundness
and completeness and some of their good properties, such as invertibility of all
rules, admissibility of the structural rules, termination of proof-search, as well
as syntactic cut-elimination.

In the second part we study the logic of common knowledge, a modal logic with
a fixpoint modality. We look at two infinitary proof systems for this logic: an
existing one based on ordinary sequents, for which no syntactic cut-elimination
procedure is known, and a new one based on nested sequents. We see how nested
sequents, in contrast to ordinary sequents, allow for syntactic cut-elimination
and thus allow us to obtain an ordinal upper bound on the length of proofs.
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Chapter 1

Introduction

The problem of the proof theory of modal logic. The proof theory of modal
logic as developed in Gentzen’s sequent calculus is widely recognised as unsat-
isfactory: it provides systems only for a few modal logics, and does so in a
non-systematic way. To solve this problem, many extensions of the sequent cal-
culus have been proposed. The survey by Wansing [53] discusses many of them.
The three most prominent formalisms seem to be the hypersequent calculus, due
to Avron [6], the display calculus due to Belnap [7, 52], and labelled sequent
systems, which have been introduced and studied by many researchers. The
book by Viganò [51] and the article by Negri [36] provide a recent account of
labelled sequent systems where more references can be found.

Hypersequents, display calculus, and labelled sequents. The relationship be-
tween these formalisms might be summarised as follows. The hypersequent cal-
culus is a comparatively gentle extension of the sequent calculus, in particular
it allows for a subformula property in the literal sense. Both the display cal-
culus and the labelled sequent calculus are departing further from the ordinary
sequent calculus, in particular they only satisfy weaker forms of the subformula
property. On the other hand, both the display calculus and labelled systems
are more expressive than hypersequents. They are known to capture all the
basic modal logics that we are going to consider here, which is not true for hy-
persequents. In fact, the only modal logic captured so far in the hypersequent
calculus, that has not been captured in the ordinary sequent calculus, is the
modal logic S5. In general, there seems to be a tension between the desire to
have a formalism which is expressive and the desire to have a formalism in which
cut-free proofs are simple objects with a true subformula property.

Staying inside the modal language. A hypersequent is a sequence of ordinary se-
quents and can be read as a formula of modal logic: it is a disjunction where all
disjuncts are prefixed by a box modality. A display sequent generally does not
correspond to a modal formula: it contains structural connectives which corre-
spond to backward-looking modalities, so connectives of tense logic. Similarly,
a labelled sequent does not correspond to a formula of modal logic: it contains
variables and an accessibility relation, so notions from predicate logic. In this
sense, hypersequents stay inside the modal language, while display calculus and
labelled sequents do not. In this work, we develop a proof theory for modal
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2 CHAPTER 1. INTRODUCTION

logic which aims to be as systematic and expressive as the display calculus and
labelled sequents, but stays within the modal language and allows for a true
subformula property, like hypersequents.

Nested sequents. To that end, we use nested sequents, which are essentially
trees of sequents. They naturally generalise both sequents (which are nested
sequents of depth zero) and hypersequents (which essentially are nested sequents
of depth one). The notion of nested sequent has been invented several times
independently. Bull [15] gives a proof system based on nested sequents for a
fragment of propositional dynamic logic with converse. Kashima [30] gives proof
systems for some tense logics and attributes the idea to Sato [43]. Unaware of
these works, the author introduced the same notion of nested sequent under
the name deep sequent in [10]. Poggiolesi introduced again the same notion but
with a rather different notation under the name tree-hypersequent [38]. Nested
sequents are also used by Goré et al. to give a proof system for bi-intuitionistic
logic which is suitable for proof-search [23].

Deep inference. Nested sequents are tree-like structures with formulas occurring
deeply inside of them. The proof systems introduced in this work crucially rely
on being able to apply inference rules to all formulas, including those deeply
inside. The general idea of applying rules deeply has been proposed several
times in different forms and for different purposes. Schütte already used it in the
1950s in order to obtain systems without contraction and weakening, which he
considered more elegant [44]. Guglielmi developed a formalism which is centered
around applying rules deeply and which replaces the traditional tree-format of
sequent calculus proofs by a linear format [26]. This solved the problem of
finding a proof-theoretic system for a certain substructural logic which cannot
be captured in the sequent calculus. The name of this formalism used to be
calculus of structures but is now simply deep inference. Deep inference systems
then have also been developed for some modal logics [28, 46, 47, 25]. The design
of the proof systems in this work is inspired by deep inference. We will see the
precise connection between nested sequent systems and deep inference systems
later.

The big picture. This work is a case study in designing proof-theoretic systems
for non-classical logics. It is an instance of the widely-known phenomenon that
the notion of sequent, so the structural level of the proof system, has to be
extended in order to accommodate certain logics. Our methodology here is that
the structural level is not extended by arbitrary structural connectives, but
only by those from the logic. As we do this, sequents become nested structures
and so more formula-like. It then turns out that we need to allow inference
rules to apply inside of these nested structures in order to obtain complete
cut-free proof systems. There are many other instances of this phenomenon.
The logic of bunched implications by Pym [41] is a substructural logic which
has both a multiplicative and an additive conjunction. The proof systems for
this logic have two corresponding structural connectives, which can be nested.
Logics with non-associative conjunction also naturally lead to sequents which are
nested structures, for example the non-associative Lambek calculus which can be
found in the handbook article by Moortgat [35]. Another example are the proof
systems for logics with adjoint modalities, certain epistemic logics for reasoning
about information in a multi-agent system, by Dyckhoff and Sadrzadeh [42].
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The plan. In the following there are two chapters which are independent. In
the first chapter we study nested sequent systems for all normal modal logics
formed by some combination of the axioms for seriality, reflexivity, symmetry,
transitivity and euclideanness. We establish soundness and completeness and
some of their good properties, such as invertibility, admissibility of the structural
rules, termination of proof-search, as well as syntactic cut-elimination. This
chapter contains work from [10, 11] and also from [13] which is joint work with
Lutz Straßburger.

In the second chapter we study the logic of common knowledge, a modal logic
with a fixpoint modality. We look at two infinitary proof systems for this
logic: an existing one based on ordinary sequents, for which no syntactic cut-
elimination procedure is known, and a new one based on nested sequents. We
see how nested sequents, in contrast to ordinary sequents, allow for syntactic
cut-elimination and thus allow us to obtain an ordinal upper bound on the
length of proofs. This chapter contains work from [8, 13] which are joint work
with Thomas Studer.

Acknowledgements. This work benefited from discussions with Roy Dyckhoff,
Rajeev Goré, Gerhard Jäger, Roman Kuznets, Richard McKinley, Dieter Probst,
Thomas Strahm, Lutz Straßburger, Thomas Studer and Alwen Tiu. Special
thanks go to Alessio Guglielmi for his constant support and for his LaTeX
macros.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Systems for Basic Normal
Modal Logics

In this chapter we consider modal logics formed from the least normal modal
logic K by adding axioms from the set {d, t, b, 4, 5} which is shown in Figure 2.1.
This gives rise to the modal logics shown in Figure 2.2. In the first section we
consider sequent systems in which modal axioms are turned into logical rules,
namely rules for the 3-connective. For each modal logic we find a corresponding
cut-free sequent system which is sound and complete for this logic. However,
some modal logics can be axiomatised in different ways, for example S5 can
be axiomatised as K + {t, b, 4} and as K + {t, 5}. Without cut, some of these
axiomatisations turn out to be incomplete. For those cut-free systems which
are complete we give a syntactic cut-elimination procedure, in the course of
which we discover certain structural modal rules. In the second section we then
study sequent systems where modal axioms are formalised not by using logical
rules, but by using the structural modal rules we just found. This turns out to
yield cut-free systems where each possible way of axiomatising a modal logic is
complete.

At the end of the chapter we discuss some related formalisms.

k: no condition ⊤ 2(A ∨ B) ⊃ (2A ∨ 3B)
d: serial ∀s∃t. s→ t 2A ⊃ 3A
t: reflexive ∀s. s→ s A ⊃ 3A
b: symmetric ∀st. s→ t ⊃ t→ s A ⊃ 23A
4: transitive ∀stu. s→ t ∧ t→ u ⊃ s→ u 2A ⊃ 22A
5: euclidean ∀stu. s→ t ∧ s→ u ⊃ t→ u 3A ⊃ 23A

Figure 2.1: Frame conditions and modal axioms

5
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K

◦
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Figure 2.2: The modal “cube” [21]

2.1 Modal Axioms as Logical Rules

The plan of this section is as follows: we first introduce the sequent systems
and then we see that they are sound and complete for the respective Kripke
semantics. After that we see the syntactic cut-elimination procedure.

2.1.1 The Sequent Systems

Formulas. Propositions p and their negations p̄ are atoms, with ¯̄p defined to be
p. Atoms are denoted by a, b, c, d. Formulas, denoted by A,B,C,D are given
by the grammar

A ::= p | p̄ | (A ∨ A) | (A ∧ A) | 3A | 2A .

Given a formula A, its negation Ā is defined as usual using the De Morgan laws,
A ⊃ B is defined as Ā∨B and ⊥ and ⊤ are defined as p∧p̄ and p∨ p̄, respectively,
for some proposition p. Binary connectives are left-associative: A∨B∨C denotes
((A ∨ B) ∨ C), for example.

Nested sequents. The set of nested sequents is inductively defined as follows:

1. a finite multiset of formulas is a nested sequent,

2. the multiset union of two nested sequents is a nested sequent,

3. if Γ is a nested sequent then the singleton multiset containing [Γ] is a
nested sequent.

In the following a sequent is a nested sequent. Sequents are denoted by Γ,∆,Λ,Π
and Σ. We adopt the usual notational conventions for sequents, in particular
the comma in the expression Γ,∆ is multiset union and there is no distinction
between a singleton multiset and its element. A sequent of the form [Γ] is also
called a boxed sequent. Clearly, a sequent is always a multiset of formulas and
boxed sequents, so it is of the form

A1, . . . , Am, [∆1], . . . , [∆n] .
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We assume a fixed arbitrary linear order on formulas and another fixed arbitrary
linear order on boxed sequents. The corresponding formula of a sequent Γ,
denoted Γ

F
, is defined as follows: the corresponding formula of a sequent as

given above is ⊥ if m = n = 0 and otherwise it is

A1 ∨ . . . ∨ Am ∨ 2(∆1
F
) ∨ . . . ∨ 2(∆n

F
) ,

where formulas and boxed sequents are list according to the fixed orders. Of-
ten we do not distinguish between a sequent and its corresponding formula,
for example a model of a sequent is a model of its corresponding formula. A
sequent Γ has a corresponding tree, denoted tree(Γ), whose nodes are marked
with multisets of formulas. The corresponding tree of the above sequent is

{A1, . . . , Am}

tree(∆1) tree(∆2) . . . tree(∆n−1) tree(∆n)

.

Often we do not distinguish between a sequent and its corresponding tree, for
example the root of a sequent is the root of its corresponding tree.

Sequent contexts, unary. Informally, a context is a sequent with holes. We will
mostly encounter sequents with just one hole. To mark the place of a hole in a
sequent we use the symbol { }, called the hole. We inductively define the set of
unary contexts :

1. the multiset containing a single hole is a unary context,

2. the multiset union of a sequent and a unary context is a unary context,
and

3. given a unary context C, the multiset containing a single occurrence of [C]
is a unary context.

Unary contexts are denoted by Γ{ },∆{ } and so on. The multiset containing a
single hole is also called the empty context. Our conventions for writing sequents
also apply to sequent contexts, in particular comma denotes multiset union. The
depth of a unary context Γ{ }, denoted depth(Γ{ }) is defined as follows:

1. depth({ }) = 0

2. depth(Γ,∆{ }) = depth(∆{ })

3. depth([∆{ }]) = depth(∆{ }) + 1 .

Given a unary context Γ{ } and a sequent ∆ we can obtain the sequent Γ{∆}
by filling the hole in Γ{ } with ∆. Formally, Γ{∆} is defined inductively as
follows:

1. if Γ{ } = { } then Γ{∆} = ∆,

2. if Γ{ } = Γ1,Γ2{ } then Γ{∆} = Γ1,Γ2{∆} and
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3. if Γ{ } = [Γ1{ }] then Γ{∆} = [Γ1{∆}] .

Example 2.1 Given the unary context Γ{ } = A, [[B], { }] and the sequent
∆ = C, [D] we can obtain the sequent

Γ{∆} = A, [[B], C, [D]] .

Sequent contexts, generally. We want to allow multiple holes in a context and we
want to allow filling holes with contexts, not just sequents. This is conceptually
straightforward and formally somewhat technical, so the reader is invited to
skip to Example 2.2. To keep track of the order of holes we index them with
a number i > 0 as in { }i. Later the indices will never be shown since holes
in a context are of course naturally ordered when written down on paper. We
inductively define the set of precontexts :

1. a multiset containing a single hole { }i with i > 0 is a precontext,

2. a multiset containing a single formula is a precontext,

3. the multiset union of two precontexts is a precontext, and

4. given a precontext C, the multiset containing a single occurrence of [C] is
a precontext.

The arity of a context is the number of holes occurring in it. A sequent context,
or just context, is a precontext of arity n such that for each i ≤ n the hole { }i
occurs exactly once in it. Notice that sequents are exactly the contexts of arity
zero and, disregarding the index on the hole, unary contexts are exactly the
contexts of arity one. A context of arity n is denoted by

Γ { } . . . { }
︸ ︷︷ ︸

n−times

.

Given an n-ary context Γ{ } . . . { } and n contexts C1, . . . , Cn we can obtain the
context

Γ{C1} . . . {Cn}

by filling the holes in Γ{ } . . . { } with C1, . . . , Cn. Formally, to define this we
first need an auxiliary definition adjusting indices of holes. Given a precontext
C, let C+j be the precontext obtained from it by replacing each hole { }i by
{ }i+j . Given a precontext C and contexts C1, . . . , Cn we now inductively define
{C1} . . . {Cn} as follows, where aj is the arity of Cj:

1. if C = { }i then C{C1} . . . {Cn} = C
+

∑
j<i aj

i ,

2. if C = C′, C′′ then C{C1} . . . {Cn} = C′{C1} . . . {Cn}, C′′{C1} . . . {Cn} and

3. if C = [C′] then C{C1} . . . {Cn} = [C′{C1} . . . {Cn}] .

Clearly, C{C1} . . . {Cn} is a context if C and C1, . . . , Cn are contexts. We leave
out replacements of holes by holes, so by convention we write Γ{C1}{ } instead
of Γ{C1}{C2} if C2 is a hole.
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Example 2.2 Given the binary context Γ{ }{ } = A, [[B], { }], { } and the unary
context ∆{ } = C, [{ }] we can obtain the binary context

Γ{∆{ }}{ } = A, [[B], C, [{ }]], { } ,

where we omitted the indices of holes since in all contexts the holes are ordered
from left to right as shown.

Inference rules, derivations and proofs. In the following instance of an inference
rule ρ

ρ
Γ1 . . . Γn

∆

we call Γ1 . . .Γn its premises and ∆ its conclusion. We write ρn to denote n
instances of ρ and ρ∗ to denote an unspecified number of instances of ρ. A
system, denoted by S, is a set of inference rules. A derivation in a system S is a
finite tree whose nodes are labelled with sequents and which is built according
to the inference rules from S. The sequent at the root is the conclusion and
the sequents at the leaves are the premises of the derivation. Derivations are
denoted by D. A derivation D with conclusion Γ in system S is sometimes
shown as

D S

Γ

.

The depth of a derivation D is denoted by |D|. Note that the depth of a
derivation, which is a tree, has nothing to do with the depth of the sequents
in it, which are also trees. A proof of a sequent Γ in a system is a derivation
in this system with conclusion Γ where all premises are instances of the axiom
Γ{p, p̄}. Proofs are denoted by P .

The sequent systems. Figure 2.3 shows the set of rules from which we form our
deductive systems. System K is the set of rules {∧, ∨,2,3kc}. We will look at ex-
tensions of System K with any combination of the rules 3dc,3tc,3bc,34c,35c.
Each rule name 3ρc in X has a corresponding frame condition and modal
Hilbert-style axiom ρ as shown in Figure 2.1. The subscript c denotes that
a rule has a built-in contraction. We also consider rules without built-in con-
traction. They have the same names but without the subscript and are shown
in Figure 2.5. The purpose of the built-in contraction is to make all rules invert-
ible and to make contraction admissible. Given a set of names of modal axioms
X ⊆ {d, t, b, 4, 5}, 3X is the set of rule names {3ρ | ρ ∈ X}, and 3Xc is the set
of rule names {3ρc | ρ ∈ X}.

The 35c-rule is a bit special since it uses a binary context. It can actually be
decomposed into three rules that use unary contexts, as we will see. However, we
prefer the presentation as a single rule. The rule is best understood as allowing
to do the following: when going from premise to conclusion, take some formula
3A, which is not at the root, and copy it to any other place in the sequent.

Example 2.3 Here is an example of a proof in system K, namely of some instance
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Γ{p, p̄} ∧
Γ{A} Γ{B}
Γ{A ∧ B}

∨
Γ{A,B}
Γ{A ∨ B}

2
Γ{[A]}
Γ{2A}

3kc
Γ{3A, [∆, A]}
Γ{3A, [∆]}

3dc
Γ{3A, [A]}
Γ{3A}

3tc
Γ{3A,A}
Γ{3A}

3bc
Γ{[∆,3A], A}
Γ{[∆,3A]}

34c
Γ{3A, [∆,3A]}
Γ{3A, [∆]}

35c
Γ{3A}{3A}
Γ{3A}{∅}

depth(Γ{ }{∅}) > 0

Figure 2.3: System K+{3dc,3tc,3bc,34c,35c}

nec
Γ
[Γ]

wk
Γ{∅}
Γ{∆}

ctr
Γ{∆,∆}
Γ{∆}

cut
Γ{A} Γ{Ā}

Γ{∅}

Figure 2.4: Necessitation, weakening, contraction and cut

of the k-axiom:

3(ā ∧ b̄), [a, ā],3b

3(ā ∧ b̄), [a, b̄, b],3b
3kc

3(ā ∧ b̄), [a, b̄],3b
∧

3(ā ∧ b̄), [a, ā ∧ b̄],3b
3kc

3(ā ∧ b̄), [a],3b
2

3(ā ∧ b̄),2a,3b
∨
2

3(ā ∧ b̄) ∨ (2a ∨ 3b)
=

2(a ∨ b) ⊃ (2a ∨ 3b)

Admissibility, derivability and invertibility. We write S ⊢ Γ if there is a proof of
Γ in system S. An inference rule ρ is (depth-preserving) admissible for a system
S if for each proof in S ∪ {ρ} there is a proof of in S with the same conclusion
(and with at most the same depth). An inference rule ρ is derivable for a system
S if for each instance of ρ there is a derivation D in S with the same conclusion
and such that each premise of D is a premise of the given instance of ρ.

For each rule ρ there is its inverse, denoted by ρ, which is obtained by exchanging
premise and conclusion. The ∧-rule allows both Γ{A} and Γ{B} as conclusions
of Γ{A ∧ B}. An inference rule ρ is (depth-preserving) invertible for a system S
if ρ is (depth-preserving) admissible for S.

The rules shown in Figure 2.4 turn out to be admissible. We will now show this
for the first three rules, for the cut rule it will be shown later.

Lemma 2.4 (Admissibility of structural rules and invertibility) For each system
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K + 3Xc with X ⊆ {d, t, b, 4, 5} the following hold:
(i) The rules necessitation, weakening and contraction are depth-preserving ad-
missible.
(ii) All its rules are depth-preserving invertible.

Proof. The admissibility of necessitation and weakening follows from a routine
induction on the depth of the proof. The same works for the invertibility of the
∧, ∨ and 2-rules in (ii). The inverses of all other rules are just weakenings. For
the admissibility of contraction we also proceed by induction on the depth of
the proof tree, using depth-preserving invertibility of the rules. The cases are
easy for the propositional rules and for the 2,3dc,3tc-rules. For the 3kc-rule
we consider the formula 3A from its conclusion Γ{3A, [∆]} and its position
inside the premise of contraction Λ{Σ,Σ}. We have the cases 1) 3A is inside
Σ or 2) 3A is inside Λ{ }. We have three subcases for case 1: 1.1) [∆] inside
Λ{ }, 1.2) [∆] inside Σ, 1.3) Σ,Σ inside [∆]. There are two subcases of case 2:
2.1) [∆] inside Λ{ } and 2.2) [∆] inside Σ. All cases are either simpler than or
similar to case 1.2, which is as follows:

Λ′{3A,Σ′, [∆, A],Σ′, [∆]}
3kc

Λ′{3A,Σ′, [∆],Σ′, [∆]}
ctr

Λ′{3A,Σ′, [∆]}

;

Λ′{3A,Σ′, [∆, A],Σ′, [∆]}
3kc

Λ′{3A,Σ′, [∆, A],Σ′, [∆, A]}
ctr

Λ′{3A,Σ′, [∆, A]}
3kc

Λ′{3A,Σ′, [∆]}

,

where the instance of 3kc in the proof on the right is removed because it is
depth-preserving admissible and the instance of contraction is removed by the
induction hypothesis. The case for the 34c-rule works the same way.

For the 3bc-rule we make a case analysis based on the position of [∆,3A] from
its conclusion Γ{[∆,3A]} inside the premise of contraction Λ{Σ,Σ}. We have
three cases: 1) [∆,3A] inside Λ{ }, 2) [∆,3A] in Σ and 3) Σ,Σ inside [∆,3A].
Case 3 has two subcases: either 3A ∈ Σ or not. All cases are trivial except for
case 2 where invertibility of the 3bc-rule is used.

For the 35c rule we make a case analysis based on the positions of the sequent
occurrences 3A and ∅ from its conclusion Γ{3A}{∅} inside the premise of
contraction Λ{Σ,Σ}. We have two cases: 1) ∅ inside Λ{ }, 2) ∅ inside Σ.
The first case is trivial, in the second we have two subcases: 1) 3A inside Λ{ }
and 2) 3A inside Σ. Case 2.1 is similar to case 2.2 which is as follows:

Λ{Σ{3A}{∅},Σ{3A}{3A}}
35c

Λ{Σ{3A}{∅},Σ{3A}{∅}}
ctr

Λ{Σ{3A}{∅}}

;

Λ{Σ{3A}{∅},Σ{3A}{3A}}
35c

Λ{Σ{3A}{3A},Σ{3A}{3A}}
ctr

Λ{Σ{3A}{3A}}
35c

Λ{Σ{3A}{∅}}

.

By using weakening admissibility, we easily get the following proposition.

Proposition 2.5 (Relation between the 3-rules and the 3c-rules)
For each ρ ∈ {k, d, t, b, 4, 5} we have that
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3k
Γ{[A,∆]}
Γ{3A, [∆]}

3d
Γ{[A]}
Γ{3A}

3t
Γ{A}
Γ{3A}

3b
Γ{[∆], A}
Γ{[∆,3A]}

34
Γ{[∆,3A]}
Γ{3A, [∆]}

35
Γ{∅}{3A}
Γ{3A}{∅}

depth(Γ{ }{∅}) > 0

Figure 2.5: Diamond rules without built-in contraction

(i) the rule 3ρ is derivable for {3ρc,wk} and admissible for system K+ 3ρc,
(ii) the rule 3ρc is derivable for {3ρ, ctr}.

2.1.2 Soundness

To prove soundness, we first need some standard definitions for Kripke seman-
tics.

Definition 2.6 (frames, models, validity) A frame is a pair (S,→) of a nonempty
set S of states and a binary relation → on it. A model M is a triple (S,→, V )
where (S,→) is a frame and V is a a mapping which assigns a subset of S to
each proposition, and which is called valuation. A model M as given above
induces a relation |= between states and formulas which is defined as usual. In
particular we have s |= p iff s ∈ V (p), s |= p̄ iff s 6∈ V (p), s |= A ∨ B iff s |= A
or s |= B, s |= A ∧ B iff s |= A and s |= B, s |= 3A iff there is a state t such
that s→ t and t |= A, and s |= 2A iff for all t if s → t then t |= A. Further, a
formula A is valid in a model M, denotedM |= A, if for all states s ofM we
have s |= A. A formula A is valid in a frame (S,→), denoted (S,→) |= A, if for
all valuations V we have (S,→, V ) |= A. A formula is valid if it is valid in all
frames. For a set of X of rule names or names of modal axioms we call a frame
an X-frame if it satisfies all the frame conditions corresponding to the names in
X. A formula is X-valid if it is valid in all X-frames.

The 35c-rule requires some care when proving its soundness because it is de-
fined in terms of a binary context. We first show how it is derivable for three
rules which, modulo built-in contraction, are special cases of the 35c-rule. The
soundness of these rules is then easy to establish.

Lemma 2.7 (Decompose 35c) The 35c-rule is derivable for {351,352,353, ctr},
where 351, 352, 353 are the rules

351
Γ{[∆],3A}
Γ{[∆,3A]}

, 352
Γ{[∆], [Λ,3A]}
Γ{[∆,3A], [Λ]}

, 353
Γ{[∆, [Λ,3A]]}
Γ{[∆,3A, [Λ]]}

.

Proof. Seen bottom-up, the 35c-rule allows to put a formula 3A which occurs
at a node different from the root into an arbitrary node. We can use contraction
to duplicate 3A and move one copy to the root and also to some child of the
root by 351. By 352 we can move it to any child of the root and by 353 into
any descendant of a child of the root.
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Lemma 2.8 (Deep inference is sound) Let X ⊆ {d, t, b, 4, 5}, Γ{ } be a context
and A,B be formulas. If the formula A ⊃ B is X-valid then Γ{A} ⊃ Γ{B} is
X-valid.

Proof. By induction on the depth of Γ{ }. We use the soundness of some
Hilbert-style axiomatisation of K+X. To show the validity of

(Γ1, [Γ2{A}]) ⊃ (Γ1, [Γ2{B}])

we use the induction hypothesis to get Γ2{A} ⊃ Γ2{B}, necessitation to get
2(Γ2{A} ⊃ Γ2{B}), the k-axiom to get 2(Γ2{A}) ⊃ 2(Γ2{B}), and finally
propositional reasoning to get Γ1, [Γ2{A}] ⊃ Γ1, [Γ2{B}].

Theorem 2.9 (Soundness) Let Γ,∆ and Γ1, . . . ,Γn be sequents. Then the fol-
lowing hold:

(i) For any rule ρ ∈ K if ρ
Γ1 . . . Γn

∆
then Γ1 ∧ . . . ∧ Γn ⊃ ∆ is valid.

(ii) For any rule ρ ∈ {d, t, b, 4, 5} if 3ρc
Γ
∆

then Γ ⊃ ∆ is {ρ}-valid.

(iii) For any X ⊆ {d, t, b, 4, 5} if K+ 3Xc ⊢ Γ then Γ is X-valid.

Proof. The axiom is valid in all frames which follows from an induction on the
depth of Γ{ } where necessitation is used in the induction step. Thus (i) and (ii)
imply (iii). Most cases of (i) are trivial, for the ∧-rule it follows from an induction
on the context and uses the implication 2A∧2B ⊃ 2(A∧B). Lemma 2.8 (Deep
inference is sound) used together with the k-axiom yields that the premise of the
3kc-rule implies its conclusion. The cases from (ii) for the {3dc,3tc,3bc,34c}-
rules are similar to the 3kc-rule, using the corresponding modal axiom.

For the soundness of the 35c-rule we use Lemma 2.7 (Decompose 35c) and
show soundness of the rules 351,352,353. For 353 we show that a euclidean
countermodel for the conclusion is also a countermodel for the premise, the
other cases are similar. A countermodel for [∆,3A, [Λ]] has to contain states
s→ t→ u such that t 6|= ∆, u 6|= Λ and v 6|= A for any v with t→ v. We need to
show that for any w with u→ w we have w 6|= A. By euclideanness we obtain,
in this order: t→ t, u→ t, t→ w. Thus w 6|= A.

2.1.3 Completeness

The current set of modal rules does not allow for a modular completeness result
of the form “if Γ is X-valid then K+3Xc ⊢ Γ”. It is easy to check that some of
our systems are incomplete.

Fact 2.10 (Incompleteness) For any propositional variable p we have that the
formula 2p⊃ 22p holds in any {t, 5}-frame and the formula 3p⊃23p holds in
any {b, 4}-frame, but:
(i) K+ {3tc,35c} 0 2p ⊃ 22p and
(ii) K+ {3bc,34c} 0 3p ⊃ 23p .
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However, while not every combination of modal rules is sound and complete
for the respective set of frames, we can define a condition on rule combinations
which ensures that they are complete.

Definition 2.11 (45-closed) Let X ⊆ {d, t, b, 4, 5}. The set X is 45-closed if for
ρ ∈ {4, 5} we have that if all X-frames satisfy ρ then ρ ∈ X. Both of the sets
{t, 5} and {b, 4} are not 45-closed, for example, while both {t, 4, 5} and {b, 4, 5}
are. A set of modal rules is 45-closed if its underlying set of names of modal
axioms is 45-closed.

The completeness result we are about to prove holds for 45-closed X. It is easy to
check that for each set of frames which can be characterised by our five axioms
there is a combination of modal rules which is 45-closed and thus is also sound
and complete. In order to prove our completeness result, we first need some
preliminary definitions which will help us to extract a tree-like Kripke model
from a sequent.

Definition 2.12 (subtree of a sequent) A sequent ∆ is an immediate subtree of
a sequent Γ if there is a sequent Λ such that Γ = Λ, [∆]. It is a proper subtree
if it is an immediate subtree either of Γ or of a proper subtree of Γ, and it is a
subtree if it is either a proper subtree of Γ or ∆ = Γ. The set of all subtrees of
Γ is denoted by st(Γ). A formula A is in a sequent Γ if A ∈ Γ and it is inside
Γ if there is a subtree ∆ of Γ such that A ∈ ∆.

Our sequents are based on multisets. We need a way to stop proof search once
their underlying sets remain the same, so we need the following notion:

Definition 2.13 (set sequent) The set sequent of the sequent

A1, . . . , Am, [∆1], . . . , [∆n]

is the underlying set of

A1, . . . , Am, [Λ1], . . . , [Λn] ,

where Λ1 . . .Λn are the set sequents of ∆1 . . .∆n. Clearly the set sequent of a
given sequent is again a sequent since a set is a multiset.

We will not directly prove completeness of the systems K+3Xc, but of different,
equivalent systems (K + 3Xc)

◦ that we define now. For each rule ρ we define
a rule ρ◦ which keeps the main formula from the conclusion. For most rules
ρ = ρ◦ except for the following rules:

∧◦ Γ{A ∧ B,A} Γ{A ∧ B,B}
Γ{A ∧ B}

∨◦ Γ{A ∨ B,A,B}
Γ{A ∨ B}

2
◦ Γ{2A, [A]}

Γ{2A}
where in the conclusion the node of the active formula
does not have a child node which contains A

3d◦c
Γ{3A, [A]}
Γ{3A}

where in the conclusion the node of the active formula
does not have a child node.
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In addition, each rule ρ◦ carries the proviso that for all of its premises the set
sequent is different from the set sequent of the conclusion. Given a system S
the system S◦ is obtained by replacing each rule ρ ∈ S by ρ◦. Systems S and S◦

will turn out to be equivalent, as we will know after the completeness theorem.
For now we just prove one direction of the equivalence.

Lemma 2.14 (S◦ into S) For all X ⊆ {d, t, b, 4, 5} and for all sequents Γ we have
that (K + 3Xc)

◦ ⊢ Γ implies K+ 3Xc ⊢ Γ.

Proof. By a standard induction on the proof tree, using contraction and weak-
ening admissibility for K+ 3Xc.

In order to prove completeness we need some closures of relations.

Definition 2.15 (some closures of relations) Let → be a binary relation on a
set S. Then ← denotes its inverse, ↔ its symmetric closure, →+ its transitive
closure and →∗ its reflexive-transitive closure. For X ⊆ {t, b, 4, 5} →X denotes
the smallest relation that includes → and has the properties in X. The same
conventions are used for different arrows that denote relations, such as ⇒, the
inverse of which is ⇐, and so on.

We will see shortly that →X is well-defined. First we need to characterise the
euclidean and the transitive-euclidean closure of a relation.

Definition 2.16 ((transitive-)euclidean connection) Let → be a binary relation
on a set S and let s, t ∈ S. A euclidean connection for → from s to t is a
nonempty sequence s1 . . . sn of elements of S such that we have

s← s1 ↔ s2 ↔ · · · ↔ sn → t .

A transitive-euclidean connection is defined likewise but such that

s = s1 ↔ s2 ↔ · · · ↔ sn → t .

We write s →(4)5 t if there is a (transitive-)euclidean connection for → from s
to t.

Lemma 2.17 (→X is well-defined) Let → be a binary relation on a set S. Then
the following hold:
(i) For all X ⊆ {t, b, 4, 5} the relation →X is well-defined.
(ii) The relation → ∪ →5 is the least euclidean relation that contains →.
(iii) The relation→45 is the least transitive and euclidean relation that contains
→.

Proof. (i) is easy to check except for the cases for {5} and {4, 5}, which follow
from (ii) and (iii).

(ii) Euclideanness is easy to check. For leastness we show that any euclidean
relation ⇒ that includes → also includes →5. If s →5 t then s⇒5t. We show
s⇒5t for a euclidean connection of length n implies s⇒t by induction on n.
Assume there is an si in the euclidean connection such that si−1⇒si⇐si+1.
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Then we have two smaller euclidean connections to which we apply the induction
hypothesis and obtain s⇒t by euclideanness. If there is no such si then the
euclidean connection looks as follows:

s = s0⇐s1⇐ . . .⇐sj⇒ . . .⇒sn⇒sn+1 = t ,

and by euclideanness we have sj−1⇒sj+1 and thus removing sj yields a smaller
euclidean connection from s to t which by induction hypothesis implies s⇒t.

(iii) Euclideanness and transitivity are easy to check. For leastness we show
that any transitive-euclidean relation ⇒ that includes → also includes →45.
If s →45 t then s⇒45t. If there is no si in the transitive-euclidean such that
si⇐si+1, then s⇒t follows by transitivity. Otherwise, choose the first such si.
We have a euclidean connection from si to t, thus similarly to (ii) obtain si⇒t
and by transitivity s⇒si and s⇒t.

Definition 2.18 (serial closure) Let → be a binary relation on a set S. Its serial
closure, denoted →d, is obtained from→ by adding s→ s for each s ∈ S which
violates seriality. For X ⊆ {t, b, 4, 5} the relation →X∪{d} is defined as (→X)d.

Lemma 2.19 (Serial closure preserves frame conditions) Let → be a binary
relation on a set S. If → satisfies a frame condition in {t, b, 4, 5} then →d also
satisfies that frame condition.

Proof. For reflexivity this is clear since a reflexive relation is its own serial
closure. For symmetry this is clear since only loops are added, which are their
own inverses. For transitivity, assume that we have s→d t and t→d u. If either
s = t or t = u then we have s →d u. So assume s 6= t and t 6= u. Then s → t
and t→ u and by transitivity of → we get s→ u and thus s→d u.

For euclideanness, assume that s →d t and s →d u. We need to show that
t →d u. If s = t then we are done, so assume s 6= t which implies s → t. Since
s →d u and since s does not violate seriality we have s → u. By euclideanness
of → we obtain t→ u and thus t→d u.

Definition 2.20 (cyclic, finished, prove(Γ,X)) A leaf of a sequent is cyclic if there
is an inner node in the sequent that carries the same set of formulas. A node
in a sequent is finished for a system S if no rule from S applies to a formula in
this node. A sequent is finished for a system S if all its nodes are either finished
for S or cyclic. We define a procedure prove(Γ,X), which takes a sequent Γ and
a set X ⊆ {d, t, b, 4, 5} and builds a derivation tree for Γ by applying rules from
(K + 3Xc)

◦ to non-axiomatic and unfinished derivation leaves in a bottom-up
fashion. It is shown in Figure 2.6. If prove(Γ,X) terminates and all derivation
leaves are axiomatic then it succeeds and if it terminates and there is a non-
axiomatic derivation leaf then it fails.

Definition 2.21 (size of a sequent, sf (Γ)) The size of a sequent is the number of
nodes of its corresponding tree. The set of subformulas of a sequent Γ, denoted
sf (Γ) is the set of all subformulas of all formulas which are element of some
node of the sequent.
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Repeat

(step 1) Apply the rules in ((K + 3Xc) \ {2,3dc})◦ as long as possible.

(step 2) Wherever possible, apply the rules in ({2}∪(3Xc∩{3dc}))◦ once.

Until each non-axiomatic derivation leaf is finished.

Figure 2.6: The algorithm prove(Γ,X)

Lemma 2.22 (Termination) For all sets X ⊆ {d, t, b, 4, 5} and for all sequents
Γ the procedure prove(Γ,X) terminates after at most 2|sf (Γ)| iterations (of the
repeat-until-loop).

Proof. Consider a sequence of sequents along a given branch of the derivation
starting from the root. A rule application in step 1 does not create new nodes
in the sequent and causes the set of formulas at some node in the sequent to
strictly grow. By the subformula property only finitely many formulas can occur
in a node, so step 1 terminates. If after step 1 there is an unfinished leaf in a
sequent then the size of the sequent strictly grows in step 2. Since there are
only 2|sf (Γ)| different sets of formulas that can occur each unfinished sequent
leaf has to be cyclic before 2|sf (Γ)| iterations. Then the sequent will be finished
if it is not axiomatic, and thus the algorithm terminates.

Theorem 2.23 (Completeness) For all 45-closed sets X ⊆ {d, t, b, 4, 5} and for all
sequents Γ the following hold:
(i) If Γ is X-valid then K+ 3Xc ⊢ Γ.
(ii) If prove(Γ,X) fails then there is a finite X-frame in which Γ is not valid.

Proof. The contrapositive of (i) follows from (ii): if K + 3Xc 0 Γ then by
Lemma 2.14 (S◦ into S) also (K+3Xc)

◦
0 Γ and thus in particular prove(Γ,X)

cannot yield a proof and by Lemma 2.22 (Termination) has to fail. Thus by
(ii) Γ is not X-valid. For (ii) we define a modelM on an X-frame for which we
prove that it is a countermodel for Γ. Let Γ∗ be the set sequent of the non-
axiomatic finished sequent obtained. Let Y be the set of all cyclic leaves in Γ∗.
Let S = st(Γ∗) \ Y . Let f : Y → S be some function which maps a cyclic leaf
to a sequent in S whose root carries the same set of formulas and extend f to
st(Γ∗) by the identity on S. Define a binary relation → on S such that ∆→ Λ
iff either 1) Λ is an immediate subtree of ∆ or 2) ∆ has an immediate subtree
Σ ∈ Y and f(Σ) = Λ. Let V (p) = {∆ ∈ S | p̄ ∈ ∆}. LetM = (S,→X, V ). We
prove three claims aboutM, each claim depending on the next. Since all rules
seen top-down preserve countermodels Claim 1 implies thatM 6|= Γ.

Claim 1 For each sequent ∆ ∈ st(Γ∗) we have thatM, f(∆) 6|= ∆.

By induction on the depth of ∆. For depth zero this follows from Claim 2 and
the fact that a formula is in ∆ iff it is in f(∆). So let

∆ = A1, . . . , Am, [∆1], . . . , [∆n] and n > 0 .
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Then f(∆) = ∆. We have M, f(∆) 6|= Ai for all i ≤ m by Claim 2 and
M,∆ 6|= [∆i] because ∆→ f(∆i) and by induction hypothesisM, f(∆i) 6|= ∆i.

Claim 2 For each sequent ∆ ∈ S and for each formula A ∈ ∆ we have that
M,∆ 6|= A.

By induction on the depth of A. For atoms it is clear from the definition ofM
and the fact that Γ∗ is not axiomatic. For the propositional connectives it is
clear from the shape of the ∧, ∨-rules. If A = 2B then by the 2-rule we have
some [Λ] ∈ ∆ with B ∈ Λ. By induction hypothesis we have M,Λ 6|= B and
thus M,∆ 6|= 2B. If A = 3B then by Claim 3 we have B ∈ Λ for all Λ with
∆→X Λ, and thusM,Λ 6|= B. ThusM,∆ 6|= 3B.

Claim 3 For all sequents ∆,Λ ∈ S with ∆ →X Λ and for each formula A it
holds that if 3A ∈ ∆ then A ∈ Λ.

We make a case analysis on X. Note that each modal logic has exactly one
45-complete axiomatisation, with the exception of S5, which has two.

K X = ∅ : By the definition of→ there is an immediate subtree of ∆ whose root
node carries the same set of formulas as the root node of Λ. By the 3kc-rule
we have A in (the root node of) all immediate subtrees of ∆.

T X = {t} : ∆ →{t} Λ iff ∆ → Λ or ∆ = Λ. In the second case A ∈ Λ follows
from the 3tc-rule.

KB X = {b}: ∆→{b} Λ iff ∆→ Λ or Λ→ ∆. In the second case A ∈ Λ follows
by the 3bc-rule.

K4 X = {4}: ∆→{4} Λ iff there is a sequence

∆ = ∆0 → ∆1 → ∆2 → · · · → ∆n = Λ ,

with n ≥ 1. An induction on i gives us that 3A ∈ ∆i for 0 ≤ i ≤ n by using
the 34c-rule. By the 3kc-rule it follows that A ∈ ∆n.

K5 X = {5}: By Lemma 2.17 (→X is well-defined) we have ∆→{5} Λ iff ∆→ Λ
or there is a euclidean connection from ∆ to Λ. In the second case there are
sequents Π,Σ such that ∆← Π and Σ→ Λ. Thus there is an immediate subtree
∆′ of Π with the same formulas as ∆ and an immediate subtree Λ′ of Σ with
the same formulas as Λ. Since 3A ∈ ∆ we have 3A ∈ ∆′ and since ∆′ 6= Γ∗ by
the 35c-rule we have 3A ∈ Σ. Thus by the 3kc-rule we have A in Λ′ and thus
in Λ.

K45 X = {4, 5}: By Lemma 2.17 (→X is well-defined) we have ∆ →{4,5} Λ iff
∆→ Λ or there is a transitive-euclidean connection from ∆ to Λ. In the second
case there is a sequent Σ such that Σ → Λ and thus an immediate subtree Λ′

of Σ with the same formulas as Λ. Since 3A ∈ ∆, by the 35c- and 34c-rules
we have 3A in every subtree of Γ∗ and thus also in Σ, and by the 3kc-rule we
have A in Λ′ and thus in Λ. (It is sufficient to have the 351c-rule instead of the
35c-rule for all X which contain 4.)

KB5 X = {b, 4, 5}: ∆ →{b,4,5} Λ iff ∆ ↔+ Λ. Thus there is a sequent Σ such
that either Σ→ Λ or Σ← Λ. Rule 4, 5 imply that 3A is in every subtree of Γ∗

and thus in particular in Σ. We have A ∈ Λ in the first case by the 3kc-rule
and in the second case by the 3bc-rule.

KTB X = {b, t}: ∆ →{b,t} Λ iff ∆ → Λ or ∆ ← Λ or ∆ = Λ. In these cases
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A ∈ Λ respectively follows from the 3kc- or 3bc- or 3tc-rule.

S4 X = {t, 4}: ∆→{t,4} Λ iff ∆→+ Λ or ∆ = Λ. In the first case A ∈ Λ follows
from the rules 34c and 3kc and in the second case from the 3tc-rule.

S5(1) X = {t, 4, 5}: ∆→{t,4,5} Λ iff ∆↔∗ Λ. We have 3A in all subtrees of Γ∗

by the rules 34c,35c and thus also A by the 3tc-rule.

S5(2) X = {d, b, 4, 5}: ∆→{d,b,4,5} Λ iff ∆↔∗ Λ. We have 3A in all subtrees of
Γ∗ by the rules 34c,35c and thus also 3A ∈ Λ. By the 3dc-rule the root of Λ
has a child node. By the 34c-rule 3A is in this child node and by the 3bc-rule
A ∈ Λ.

KD,KDB,KD4,KD5,KD45 The argument for all these cases is similar to the
same system without d. Take the corresponding X, then ∆→X∪{d} Λ iff ∆→X Λ
or (∆ = Λ and there is no ∆′ with ∆ →X ∆′). In the second case, due to the
3dc-rule, there is no formula 3A in ∆ and thus our claim is trivially true.

Notice that each class of frames that can be characterised by our modal axioms
can also be characterised by a 45-closed set of axioms. The restriction to 45-
complete sets of rule names in the completeness theorem is thus irrelevant for
the two following corollaries.

Corollary 2.24 (Finite Model Property) For all X ⊆ {d, t, b, 4, 5} it holds that if
a formula is not X-valid then there is a finite X-frame in which it is not valid.

Proof. Immediate from part (ii) of the completeness theorem.

Corollary 2.25 (Decidability) For all X ⊆ {d, t, b, 4, 5} it is decidable whether a
formula is X-valid.

Proof. By the termination lemma and part (ii) of the completeness theorem.

2.1.4 Syntactic Cut-Elimination

While cut admissibility is an easy corollary of the completeness theorem, it
is still interesting to provide a nontrivial procedure which removes cuts from a
proof. The existence of a step-by-step cut elimination procedure shows a certain
symmetry, a certain good design of the inference rules. Also, it can serve as a
starting point for a computational interpretation, maybe along the lines of [32].

We now see a cut-elimination procedure which follows the lines of the one for
system G3 for first-order predicate logic, see for example [50]. The interesting
twist is that the modalities require some form of multicut, similar to Gentzen’s
original procedure, even though contraction is admissible. We first need some
standard definitions.

Definition 2.26 (depth of a formula) The depth of a formula A, denoted by
depth(A), is defined as usual:

depth(p) = depth(p̄) = 0
depth(2A) = depth(3A) = depth(A) + 1
depth(A ∧ B) = depth(A ∨ B) = max(depth(A), depth(B)) + 1 .
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Definition 2.27 (cut rank, cut-rank-preserving) Given an instance of the cut rule
as shown in Figure 2.4, its cut formula is A and its cut rank is one plus the
depth of its cut formula. For r ≥ 0 we define the rule cutr which is cut with
at most rank r. The cut rank of a derivation is the supremum of the cut ranks
of its cuts. A rule is cut-rank (and depth-) preserving admissible for a system
S if for all r ≥ 0 the rule is (depth-preserving) admissible for S + cutr. A rule
is cut-rank (and depth-) preserving invertible for a system S if its inverse is
cut-rank (and depth-) preserving admissible for S.

The problem with proving cut-elimination in the presence of the rules 34c and
35c is that these rules, seen upwards, do not decompose their main formula
3A. If that formula happens to be the cut formula, then we cannot form a new
derivation by appealing to an induction hypothesis based on a lower rank. We
thus generalise the cut-rule to incorporate instances of rules 34c and 35c. This
leads to the following definition.

Definition 2.28 (Y-cut) Let {∆}n denote {∆} . . . {∆}
︸ ︷︷ ︸

n−times

. For Y ⊆ {4, 5} and n ≥ 0

we define the rule
Γ{2A}{∅}n Γ{3Ā}{3Ā}

n

Y-cut

Γ{∅}{∅}n

with the proviso that there is a derivation from Γ{3Ā}{3Ā}
n
to Γ{3Ā}{∅}n

in system Y.

Fact 2.29 (Properties of Y-cut) Consider an instance of Y-cut as above.
If Y = ∅ then it is an instance of cut, so n = 0.
If Y = {4} then Γ{ }{ }n is of the form Γ1{{ },Γ2{ }n}.
If Y = {5} and n > 0 then the first hole is inside a box, so depth(Γ{ }{∅}n) > 0.
(If Y = {4, 5} then nothing can be said about the context since the proviso is
trivially fulfilled.)

Structural modal rules. The rules which are shown in Figure 2.7 are called
structural modal rules. They are structural in the sense of not affecting connec-
tives of formulas. The modal rules 3Xc are all 3-rules, in the sense that the
active formula in the conclusion has 3 as main connective. Given a set X of
names of modal axioms, [X] is defined as {[ρ] | ρ ∈ X}. The structural modal
rules have the obvious corresponding frame conditions.

We need the admissibility of these structural modal rules for our cut-elimination
procedure. In some sense, they are the result of “reflecting” the corresponding
diamond-rule at the cut. This comment will hopefully become more clear af-
ter the reduction lemma. The structural modal rules are cut-rank preserving
admissible, as we will see.

The case of the seriality is a bit different from the other rules. The rule [d]
is admissible, but we cannot show this in the presence of cut. Consider the
problematic case where [d] cannot be pushed above cut:

Γ{[A]} Γ{[Ā]}
cut

Γ{[∅]}
[d]

Γ{∅}
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[d]
Γ{[∅]}
Γ{∅}

[t]
Γ{[∆]}
Γ{∆}

[b]
Γ{[∆, [Σ]]}
Γ{[∆],Σ}

[4]
Γ{[∆], [Σ]}
Γ{[[∆],Σ]}

[5]
Γ{[∆]}{∅}
Γ{∅}{[∆]}

depth(Γ{ }{∅}) > 0

Figure 2.7: Modal structural rules

So we cannot use [d]-admissibility in the cut-elimination proof. Our solution
is to eliminate cut in the presence of [d] and only afterwards replace [d] by
3dc. This means that in the following we always have to consider the possible
presence of the [d]-rule.

Before we eliminate the cut we need to make sure that contraction and weak-
ening can be eliminated without increasing the cut rank. We just strengthen
Lemma 2.4 (Admissibility of structural rules and invertibility) accordingly to
get the following lemma.

Lemma 2.30 (Cut-rank preserving admissibility of structural rules, invertibility)
Let X = {d, t, b, 4, 5}. For each system K+Y with Y ⊆ 3Xc∪{[d]} the following
hold:
(i) The rules nec,wk and ctr are depth- and cut-rank preserving admissible.
(ii) All its rules are depth- and cut-rank preserving invertible.

Proof. The proof is just like the one for Lemma 2.4 (Admissibility of structural
rules and invertibility) except that we also consider cutr and [d]. In proving
contraction admissibility there is one more case which is mildly interesting and
which is handled as follows:

Γ{∆{A},∆{∅}} Γ{∆{Ā},∆{∅}}
cutr

Γ{∆{∅},∆{∅}}
ctr

Γ{∆{∅}}

;

Γ{∆{A},∆{∅}}
wk

Γ{∆{A},∆{A}}
ctr

Γ{∆{A}}

Γ{∆{Ā},∆{∅}}
wk

Γ{∆{Ā},∆{Ā}}
ctr

Γ{∆{Ā}}
cutr

Γ{∆{∅}}

.

Lemma 2.31 (Admissibility of the modal structural rules)
(i) Let X be a 45-closed subset of {t, b, 4, 5} and let ρ ∈ X. Then the rule
[ρ] is cut-rank preserving admissible for system K + 3Xc and also for system
K + 3Xc + [d].
(ii) Let X be a 45-closed subset of {d, t, b, 4, 5} and let d ∈ X. Then the rule [d]
is admissible for system K+ 3Xc.
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Proof. For (i) the proof works by an outer induction on the number of instances
of [ρ] in a given proof, eliminating topmost instances first, and an inner induction
on the depth of the proof above such a topmost instance. For each rule [ρ] with
ρ ∈ X we make a case analysis on the rule σ above [ρ]. The induction base and
the cases where σ is among the rules ∨, ∧,2, cutr, [d] and 3tc are trivial. We use
cut-rank preserving admissibility of contraction and weakening provided by the
previous lemma without explicitly mentioning it.

[ρ] = [t] :

Γ{3A, [A,∆]}
3kc

Γ{3A, [∆]}
[t]

Γ{3A,∆}

;

Γ{3A, [A,∆]}
[t]

Γ{3A,A,∆}
3tc

Γ{3A,∆}

The case for σ = 3bc is similar.

Γ{3A, [3A,∆]}
34c

Γ{3A, [∆]}
[t]

Γ{3A,∆}

;

Γ{3A, [3A,∆]}
[t]

Γ{3A,3A,∆}
ctr

Γ{3A,∆}

For σ = 35c the case is trivial unless the diamond formula in its conclusion is
at depth 1. Then there are two cases, either the 35c-rule moves the formula to
somewhere outside the box that is removed by [t] or somewhere inside it. The
second case is similar to the first, which is as follows, where ρ∗ denotes several
applications of ρ:

[3A],∆,Σ{3A}
35c

[3A],∆,Σ{∅}
[t]

3A,∆,Σ{∅}

;

[3A],∆,Σ{3A}
[t]

3A,∆,Σ{3A}
34c

∗,wk∗,ctr∗

3A,∆,Σ{∅}

[ρ] = [b] :

Γ{[∆,3A, [A,Σ]]}
3kc

Γ{[∆,3A, [Σ]]}
[b]

Γ{Σ, [∆,3A]}

;

Γ{[∆,3A, [A,Σ]]}
[b]

Γ{Σ, A, [∆,3A]}
3bc

Γ{Σ, [∆,3A]}

Γ{[∆, A, [3A,Σ]]}
3bc

Γ{[∆, [3A,Σ]]}
[b]

Γ{3A,Σ, [∆]}

;

Γ{[∆, A, [3A,Σ]]}
[b]

Γ{3A,Σ, [A,∆]}
3kc

Γ{3A,Σ, [∆]}

Γ{[3A,∆, [3A,Σ]]}
34c

Γ{[3A,∆, [Σ]]}
[b]

Γ{Σ, [3A,∆]}

;

Γ{[3A,∆, [3A,Σ]]}
[b]

Γ{Σ,3A, [3A,∆]}
35c

Γ{Σ, [3A,∆]}

For σ = 35c the case is trivial unless the diamond formula in its conclusion is at
depth 2 and in the inner box in the premise of [b]. Then there are three similar
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cases of which we just see the following one:

[Σ, [3A,∆]],Γ{3A}
35c

[Σ, [3A,∆]],Γ{∅}
[b]

3A,∆, [Σ],Γ{∅}

;

[Σ, [3A,∆]],Γ{3A}
[b]

3A,∆, [Σ],Γ{3A}
34c

∗,wk∗,ctr∗

3A,∆, [Σ],Γ{∅}

[ρ] = [4] :

Γ{3A, [A,∆], [Σ]}
3kc

Γ{3A, [∆], [Σ]}
[4]

Γ{3A, [[∆],Σ]}

;

Γ{3A, [A,∆], [Σ]}
[4]

Γ{3A, [[A,∆],Σ]}
wk,3kc

Γ{3A, [3A, [∆],Σ]}
34c

Γ{3A, [[∆],Σ]}

The case for σ = 34c is similar and the case for σ = 35c is trivial.

Γ{A, [3A,∆], [Σ]}
3bc

Γ{[3A,∆], [Σ]}
[4]

Γ{[[3A,∆],Σ]}

;

Γ{A, [3A,∆], [Σ]}
[4]

Γ{A, [[3A,∆],Σ]}
wk,3bc

Γ{[3A, [3A,∆],Σ]}
35c

Γ{[[3A,∆],Σ]}

[ρ] = [5] :

Γ{3A, [A,∆]}{∅}
3kc

Γ{3A, [∆]}{∅}
[5]

Γ{3A}{[∆]}

;

Γ{3A, [A,∆]}{∅}
[5]

Γ{3A}{[A,∆]}
wk,3kc

Γ{3A}{3A, [∆]}
35c

Γ{3A}{[∆]}

The case for σ = 34c is similar and the case for σ = 35c is trivial. For σ = 3bc
we have:

Γ{[A, [3A,∆],Σ]}{∅}
3bc

Γ{[[3A,∆],Σ]}{∅}
[5]

Γ{[Σ]}{[3A,∆]}

;

Γ{[A, [3A,∆],Σ]}{∅}
[5]

Γ{[A,Σ]}{[3A,∆]}
wk,3kc

Γ{3A, [Σ]}{[3A,∆]}
35c

Γ{[Σ]}{[3A,∆]}

The proof for (ii) is similar to the one for (i), except that we exclude σ = cutr.
The case σ = 3bc is trivial.

[ρ] = [d] :

Γ{3A, [A]}
3kc

Γ{3A, [∅]}
[d]

Γ{3A}

;
Γ{3A, [A]}

3dc
Γ{3A}

Γ{3A, [3A]}
34c

Γ{3A, [∅]}
[d]

Γ{3A}

;

Γ{3A, [3A]}
wk

Γ{3A, [3A,A]}
34c

Γ{3A, [A]}
3dc

Γ{3A}
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Γ{3A}{[3A]}
35c

Γ{3A}{[∅]}
[d]

Γ{3A}{∅}

;

Γ{3A}{[3A]}
wk2

Γ{3A}{3A, [3A,A]}
35c

Γ{3A}{3A, [A]}
3dc

Γ{3A}{3A}
35c

Γ{3A}{∅}

To keep the cut-elimination procedure short and uniform, we define a structural
rule which moves a box inside a sequent from one place to another. Notice that
the conditions on the context in the proviso exactly match the conditions in the
Y-cut-rule:

Definition 2.32 (Y-str-rule) For Y ⊆ {4, 5} we define a rule

Y-str
Γ{[∆]}{∅}
Γ{∅}{[∆]}

with the proviso that:
if Y = ∅ then Γ{ }{ } is of the form Γ′{{ }, { }},
if Y = {4} then Γ{ }{ } is of the form Γ1{{ },Γ2{ }}, and
if Y = {5} then depth(Γ{ }{∅}) > 0.
(This means there is no proviso for the case Y = {4, 5}.)

Lemma 2.33 (Admissibility of Y-str) For 45-closed X ⊆ {[d], t, b, 4, 5} and for
Y ⊆ {4, 5} the rule Y-str is cut-rank preserving admissible for system K + X if
Y ⊆ X.

Proof. For Y = ∅ that is trivial. For Y = {4} the rule is derivable as follows:

Γ{[∆],Σ{∅}}
[4]∗

Γ{[. . . [∆] . . . ],Σ{∅}}
wk∗

Γ{Σ{[∆]},Σ{∅}}
wk

Γ{Σ{[∆]},Σ{[∆]}}
ctr

Γ{Σ{[∆]}}

,

and thus admissible by Lemma 2.30 (Cut-rank preserving admissibility of struc-
tural rules) and Lemma 2.31 (Admissibility of the modal structural rules). For
Y = {5} the rule coincides with [5] and is thus admissible by Lemma 2.31. For
Y = {4, 5} an instance of the rule is either an instance of the Y-str-rule for
Y = {4} or Y = {5} and thus admissible as in the previous two cases.

Lemma 2.34 (Reduction Lemma) Let X be a 45-closed subset of {t, b, 4, 5}, let
Y be a subset of {4, 5} ∩ X and let either Z = 3Xc or Z = 3Xc + [d]. Further,
let r > 0 and n ≥ 0.
(i) If there is a proof

P1

Γ{A}

P2

Γ{Ā}
cutr+1

Γ{∅}
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with P1 and P2 in K+ Z+ cutr then K+ Z+ cutr ⊢ Γ{∅} .
(ii) If there is a proof

P1

Γ{2A}{∅}n

P2

Γ{3Ā}{3Ā}
n

Y-cutr+1

Γ{∅}{∅}n

with P1 and P2 in K+ Z+ cutr then K+ Z+ cutr ⊢ Γ{∅}{∅}n .

Proof. We prove (i) and (ii) simultaneously by induction on |P1| + |P2|. We
perform a case analysis on the two lowermost rules in P1 and P2. If one of the
two rules is passive and an axiom then Γ{∅} is axiomatic as well. If one is active
and an axiom then we have

Γ{a, ā}

P2

Γ{ā, ā}
cutr+1

Γ{ā}

;
P2

Γ{ā, ā}
ctr

Γ{ā}

.

If one rule is passive then we have

P1

Γ{A}

P2

Γ′{Ā}
ρ

Γ{Ā}
cutr+1

Γ{∅}

;

P1

Γ{A}
ρ̄

Γ′{A}

P2

Γ′{Ā}
cutr+1

Γ′{∅}
ρ

Γ{∅}

for case (i) and similarly for (ii). This leaves the case that both rules are active
and not axioms. For (i) we have:

P1

Γ{B}

P2

Γ{C}
∧

Γ{B ∧ C}

P3

Γ′{B̄, C̄}
ρ

Γ{B̄ ∨ C̄}
cutr+1

Γ{∅}

;

P1

Γ{B}

P2

Γ{C}
wk

Γ{B̄, C}

P3

Γ{B̄, C̄}
cutr

Γ{B̄}
cutr

Γ{∅}

.
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Notice that (i) is a special case of (ii) if A has a modality as its main connective.
The remaining case is thus (ii) with both rules active and not axioms, and thus
on one side the 2-rule and on the other side either 3kc,3tc or 3bc (the cases
for 34c and 35c are trivial). The case for the 3kc-rule is as follows:

P1

Γ{[A]}{[∆]}
2

Γ{2A}{[∆]}

P2

Γ′{3Ā}{3Ā, [Ā,∆′]}
3kc

Γ′{3Ā}{3Ā, [∆′]}
Y-cutr+1

Γ{∅}{[∆]}

;

P1

Γ{[A]}{[∆]}
Y-str

Γ{∅}{[A], [∆]}
wk2

Γ{∅}{[A,∆], [A,∆]}
ctr

Γ{∅}{[A,∆]}

P1

Γ{[A]}{[∆]}
2,wk

Γ{2A}{[Ā,∆]}

P2

Γ′{3Ā}{3Ā, [Ā,∆′]}
Y-cutr+1

Γ{∅}{[Ā,∆]}
cutr

Γ{∅}{[∆]}

,

where the Y-str-rule is applicable since its condition on the context matches the
condition in the Y-cut-rule. The Y-str-rule can be removed by Lemma 2.33 (Ad-
missibility of Y-str), weakening and contraction can be removed by Lemma 2.30
(Cut-rank preserving admissibility of structural rules) and the instance of Y-cut
can be removed by induction hypothesis. The cases for 3tc and 3bc are as
follows:

P1

Γ{[A]}{∅}
2

Γ{2A}{∅}

P2

Γ′{3Ā}{Ā}
3tc

Γ′{3Ā}{3Ā}
Y-cutr+1

Γ{∅}{∅}

;

P1

Γ{[A]}{∅}
Y-str

Γ{∅}{[A]}
[t]

Γ{∅}{A}

P1

Γ{[A]}{∅}
2,wk

Γ{2A}{Ā}

P2

Γ′{3Ā}{Ā}
Y-cutr+1

Γ{∅}{Ā}
cutr

Γ{∅}{∅}

and

P1

Γ{[A]}{[∆]}
2

Γ{2A}{[∆]}

P2

Γ′{3Ā}{Ā, [3Ā,∆′]}
3bc

Γ′{3Ā}{[3Ā,∆′]}
Y-cutr+1

Γ{∅}{[∆]}

;
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P1

Γ{[A]}{[∆]}
Y-str

Γ{∅}{[[A],∆]}
[b]

Γ{∅}{A, [∆]}

P1

Γ{[A]}{[∆]}
2,wk

Γ{2A}{Ā, [∆]}

P2

Γ′{3Ā}{Ā, [3Ā,∆′]}
Y-cutr+1

Γ{∅}{Ā, [∆]}
cutr

Γ{∅}{[∆]}

,

In general the Y-cut, seen upwards, introduces several diamond formulas. One
of them is special in being in the same position as its dual cut formula in the
other premise. In the transformations given above, the active formula of the
diamond-rule above the cut is different from that special formula. That is not
always the case, of course, but if the two coincide, then the transformations are
simpler.

Theorem 2.35 (Cut-Elimination) Let X be a 45-closed subset of {d, t, b, 4, 5}.
Then we have:

If K+ 3Xc + cut ⊢ Γ then K + 3Xc ⊢ Γ .

Proof. We first prove the theorem in case that d /∈ X. Then it follows from a
routine induction on the cut-rank of the given proof. The induction step follows
by another induction, on the depth of the proof. It uses the reduction lemma
in the case of a maximal-rank cut. In case d ∈ X we first replace instances of
the rule 3dc by instances of the rules 3kc and [d], then proceed as before, and
finally apply Lemma 2.31 (Admissibility of modal structural rules) to replace
[d] by 3dc.

This finishes the section of sequent systems where modal axioms are represented
as logical rules. The systems cover the entire modal cube and are systematic
in the sense that there is a one-to-one correspondence between the modal rules
and the frame conditions. However, unlike Hilbert systems and labelled sequent
systems, they are not modular in the sense that each combination of modal rules
is complete for the corresponding class of frames. This forced us to resort to
formulating the condition of 45-closed systems and proving completeness only
for those. It is hard to see how to achieving modularity using these systems.

However, during the cut-elimination procedure we discovered the possibility of
forming proof systems not using 3-rules but using the structural rules shown in
Figure 2.7 on page 21.

In particular, the examples from Fact 2.10 (Incompleteness) which showed that
systems K + {3tc,35c} and K + {3bc,34c} are incomplete are provable in
systems K+ {[t], [5]} and K + {[b], [4]}, respectively:

[3p̄, [p, p̄], [∅]]
k

[3p̄, [p], [∅]]
[5]

[3p̄, [[p]]]
[t]

3p̄, [[p]]
2

2

3p̄,22p

and

[[p̄, p],3p]
k

[[p̄],3p]
[4]

[[[p̄]],3p]
[b]

[p̄], [3p]
2

2

2p̄,23p

.
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Γ{p, p̄} ∧
Γ{A} Γ{B}
Γ{A ∧ B}

∨
Γ{A,B}
Γ{A ∨ B}

2
Γ{[A]}
Γ{2A}

k
Γ{[A,∆]}
Γ{3A, [∆]}

ctr
Γ{∆,∆}
Γ{∆}

[d]
Γ{[∅]}
Γ{∅}

[t]
Γ{[∆]}
Γ{∆}

[b]
Γ{[∆, [Σ]]}
Γ{[∆],Σ}

[4]
Γ{[∆], [Σ]}
Γ{[[∆],Σ]}

[5]
Γ{[∆]}{∅}
Γ{∅}{[∆]}

depth(Γ{ }{∅}) > 0

Figure 2.8: System Kc+{[d],[t],[b],[4],[5]}

We consider such proof systems in the next section.

2.2 Modal Axioms as Structural Rules

The plan of this section is as follows: we first introduce the sequent systems and
state soundness, cut-elimination and completeness, which we prove by embed-
ding a Hilbert system and using cut-elimination. The remainder of the section
is devoted to proving cut-elimination. The cut-elimination proof is interesting:
it relies on a decomposition of the contraction rule, similar to what has been
observed in deep inference systems for propositional logic, where contraction is
decomposed into an atomic version and a local medial rule [14].

2.2.1 The Sequent Systems

System Kc + [X]. Figure 2.8 shows the set of rules from which we form our
deductive systems. System Kc is the set of rules {∧, ∨,2, k, ctr}. We will look at
extensions of System Kc with the structural modal rules [X] ⊆ {[d], [t], [b], [4], [5]}
that we have encountered previously and that are shown in Figure 2.8 for con-
venience. Contrary to systems considered in the last section, the systems we
consider now are not fully invertible and contraction is not admissible for the
contraction-free systems. Of course it is easy to obtain equivalent systems which
are fully invertible and for which contraction is admissible by using system K

instead of Kc and by absorbing contraction into the modal structural rules.
However, we choose not to do this because our cut-elimination technique, which
relies on decomposing contraction, is more natural in a system with an explicit
contraction rule.

Soundness of our systems is easily established similarly to soundness of the
systems in the previous section.

Theorem 2.36 (Soundness) Let X ⊆ {d, t, b, 4, 5}. If a sequent is provable in
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Kc + [X] then its corresponding formula is provable in a Hilbert system for the
modal logic K extended by the axioms in X.

Our main result is cut-elimination, which we prove in the next subsection.

Theorem 2.37 (Cut-Elimination) Let X ⊆ {d, t, b, 4, 5}. If Kc + [X] + cut ⊢ Γ
then Kc + [X] ⊢ Γ.

By using cut-elimination we obtain the completeness theorem:

Theorem 2.38 (Completeness) Let X ⊆ {d, t, b, 4, 5}. If a formula is provable in
a Hilbert system for the modal logic K extended by the modal axioms in X then
it is provable in system Kc + [X].

Proof. Given a proof in the Hilbert system we construct a proof in Kc+[X]+cut

as usual, and then apply Theorem 2.37 (Cut-elimination). We show proofs for
the modal axioms:

[Ā, A]
k2

3Ā,3A, [∅]
[d]

3Ā,3A
∨

2A ⊃ 3A

[A, Ā]
k

[Ā],3A
[t]

Ā,3A
∨

A ⊃ 3A

[[A, Ā]]
k

[[Ā],3A]
[b]

Ā, [3A]
2

Ā,23A
∨

A ⊃ 23A

[Ā, A], [∅]
k

3Ā, [A], [∅]
[4]

3Ā, [[A]]
2

2

3Ā,22A
∨

2A ⊃ 22A

[[Ā, A]]
k

[[Ā],3A]
[5]

[Ā], [3A]
2

2

2Ā,23A
∨

3A ⊃ 23A

.

2.2.2 Syntactic Cut-Elimination

We first show that weakening and necessitation are admissible.

Lemma 2.39 (Weakening and necessitation admissibility) Let X ⊆ {d, t, b, 4, 5}.
The wk-rule and the nec-rule are depth- and cut-rank-preserving admissible for
Kc + [X].

Proof. A routine induction shows that a single nec or wk-rule can be eliminated
from a given proof, a second induction on the number of nec or wk-rules yields
our lemma.

Similarly to the 3dc-rule in the previous section, the [d]-rule is different from
the other rules: it trivially permutes below the cut. So we can get it out of the
way and then we need to prove cut-elimination only for the systems without it.

Lemma 2.40 (Push down seriality) Let X ⊆ {d, t, b, 4, 5} and d ∈ X. For each
proof as shown on the left there is a proof as shown on the right:

Kc+[X]+cut

Γ

;

Kc+[X]−[d]+cut

Γ′

‖
‖ [d]

Γ

.
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Γ{[A, . . . , A]}
m2

Γ{2A}

Γ{A, . . . , A} Γ{B, . . . , B]}
m∧

Γ{A ∧ B}

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcut

Γ{∅}

Γ{[∆], [Σ]}
med

Γ{[∆,Σ]}

Γ{A,A}
fctr

Γ{A}

Figure 2.9: Multi-rules, medial, and formula contraction

Proof. By an easy permutation argument, making use of weakening admissibil-
ity.

We also get contraction out of the way in order to eliminate the cut. First,
we decompose contraction into the fctr-rule, which is contraction on formulas,
and the med-rule, shown in Figure 2.9. We permute down the fctr-rule. It
does not permute down below the rules cut,2 and ∧, so we generalise these
rules as in Figure 2.9. We define a contraction-free system Km as Km = Kc −
ctr + {med,m2,m∧} and will show cut-elimination for that system. But first
we develop the machinery to show that cut-elimination for Km leads to cut-
elimination for Kc (with any [X]).

Lemma 2.41 (Decompose contraction) The ctr-rule is derivable for {fctr,med}.

Proof. By induction the depth of a sequent which is contracted, we show the
inductive step:

Γ{A1, . . . , Am, [∆1], . . . , [∆n], A1, . . . , Am, [∆1], . . . , [∆n]}
ctr

Γ{A1, . . . , Am, [∆1], . . . , [∆n]}

;

Γ{A1, . . . , Am, [∆1], . . . , [∆n], A1, . . . , Am, [∆1], . . . , [∆n]}
medn

Γ{A1, . . . , Am, A1, . . . , Am, [∆1,∆1], . . . , [∆n,∆n]}
ctrn

Γ{A1, . . . , Am, A1, . . . , Am, [∆1], . . . , [∆n]}
fctrm

Γ{A1, . . . , Am, [∆1], . . . , [∆n]}

Lemma 2.42 (Weakening and necessitation admissibility for Km)
Let X ⊆ {d, t, b, 4, 5}. The wk-rule and the nec-rule are depth- and cut-rank-
preserving admissible for Km + [X].

Lemma 2.43 (From mcut to cut) The rule mcutr is derivable for {cutr,wk}.

Proof. We define the rule mcutm,n
r with m,n > 0 as

Γ{

m−times
︷ ︸︸ ︷

A, . . . , A} Γ{

n−times
︷ ︸︸ ︷

Ā, . . . , Ā}

Γ{∅}

,
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and show that rule derivable for {cutr,wk} by induction on m+n. The case for
m = n = 1 is trivial, for m > 1 and n = 1 we replace

Γ{A, . . . , A} Γ{Ā}
mcutm,1

r

Γ{∅}

by

Γ{A, . . . , A}

Γ{Ā}
wk

Γ{Ā, A}
mcutm−1,1

r

Γ{A} Γ{Ā}
cutr

Γ{∅}

and apply the induction hypothesis, and for m,n > 1 we replace

Γ{A, . . . , A} Γ{Ā, . . . , Ā}
mcutm,n

r

Γ{∅}

by

Γ{A, . . . , A}

Γ{Ā, . . . , Ā}
wk

Γ{Ā, . . . , Ā, A}
mcutm−1,n

r

Γ{A}

Γ{A, . . . , A}
wk

Γ{A, . . . , A, Ā} Γ{Ā, . . . , Ā}
mcutm,n−1

r

Γ{Ā}
cutr

Γ{∅}

and apply the induction hypothesis twice.

Lemma 2.44 (Push down contraction) Let X ⊆ {t, b, 4, 5}. Given a proof as
shown on the left, with ρ a single-premise-rule from Km + [X] + wk, there is a
proof as shown on the right, with |D′| ≤ |D|:

P Km+[X]+mcut+wk

Γ2

D
‖
‖ fctr

Γ1
ρ

Γ

;

P′ Km+[X]+mcut+wk

Γ3

D′ ‖
‖ fctr

Γ

.

Proof. By induction on the length of D and a case analysis on ρ. Most cases
are trivial. We show the two interesting ones. For ρ = ∨ and ρ = k we apply
the following transformations:

Γ{A,A,B}
fctr

Γ{A,B}
∨

Γ{A ∨ B}

;

Γ{A,A,B}
wk

Γ{A,B,A,B}
∨
2

Γ{A ∨ B,A ∨ B}
fctr

Γ{A ∨ B}
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Γ{[A,A,∆]}
fctr

Γ{[A,∆]}
k

Γ{3A, [∆]}

;

Γ{[A,A,∆]}
k2

Γ{3A,3A, [∆]}
fctr

Γ{3A, [∆]}

,

and in each case we apply the induction hypothesis twice.

Proposition 2.45 (Push down contraction) Given a proof as shown on the left,
there is a proof as shown on the right:

P Kc+[X]+cut

Γ

;

P′ Km+[X]+cut

Γ′

‖
‖ fctr

Γ

.

Proof. We first prove the claim that for each proof as shown on the left there is
a proof as shown on the right:

P1 Km+[X]+cut+fctr

Γ

;

P′

1 Km+[X]+mcut+wk

Γ′

‖
‖ fctr

Γ

,

The proof of the claim is by induction on the depth of P1, using Lemma 2.44
(Push down contraction). The proof of our proposition is as follows: by using
Lemma 2.41 (Decompose contraction) we obtain a proof in Km+[X]+ cut+ fctr,
we apply our claim, then we use Lemma 2.43 (From mcut to cut), to replace
mcut, starting with the top-most instances. Finally we remove weakening using
weakening admissibility.

It turns out that during the proof of cut-elimination for some system Kc + [X]
some rules may be introduced that are not in [X] but that logically follow from
X. These additional rule instances will then be removed from the proof after
cut-elimination.

Definition 2.46 (X+) Given some X ⊆ {d, t, b, 4, 5} we define

X+ =







X ∪ {4} if {t, 5} ⊆ X or {b, 5} ⊆ X

X ∪ {5} if {b, 4} ⊆ X

X otherwise ,

and likewise for 3X and [X].

This definition matches the semantical notion of 45-closed that we defined ear-
lier:
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Fact 2.47 (X+ is 45-closure of X) If X ⊆ {d, t, b, 4, 5} then X+ is the least set
which contains X and is 45-closed.

The following lemma ensures that, after we have eliminated cut, we can indeed
remove the additional rules in X+ − X.

Lemma 2.48 (From X+ to X)
(i) The [4]-rule is derivable for {[t], [5], nec}.
(ii) The [4]-rule is derivable for {[b], [5], nec}.
(iii) The [5]-rule is derivable for {[b], [4],wk}.

Proof. For (i) notice that the [4]-rule is a special case of the [5]-rule unless Γ{ }
has depth zero, and thus Γ{ } = Λ, { }. In that case we have:

Λ, [∆], [Σ]
[4]

Λ, [[∆],Σ]
;

Λ, [∆], [Σ]
nec

[Λ, [∆], [Σ]]
[5]

[Λ, [[∆],Σ]]
[t]

Λ, [[∆],Σ]

.

For (ii) we again have to consider only the case where Γ{ } = Λ, { }:

Λ, [∆], [Σ]
[4]

Λ, [[∆],Σ]
;

Λ, [∆], [Σ]
nec2

[[Λ, [∆], [Σ]]]
[5]

[[Λ, [Σ]], [∆]]
[b]

[[Λ], [∆],Σ]
[b]

Λ, [[∆],Σ]

For (iii) notice that a sequent has a tree structure and that, seen upwards, the
[5]-rule allows to move a boxed sequent [∆] to any position in that tree, but not
to the root. To move a boxed sequent to any position in the tree it is enough if
we are both able to move it a) from a given node the parent of this node and
b) to move it from a given node to any child of that node. Point a) is just the
[4]-rule and point b) is as follows:

Γ{[Λ, [∆]]}
wk

Γ{[Λ, [∅], [∆]]}
[4]

Γ{[Λ, [[∆]]]}
[b]

Γ{[Λ], [∆]}

.

We are now preparing for the reduction lemma, which we prove as usual by
pushing the cut rule upwards. In general we cannot push the cut above a modal
structural rule, so we push it upwards together with the cut. The interesting
case occurs once this conglomerate of cut and modal structural rules needs to be
pushed above the 3k-rule. Then we have to permute the 3k-rule down through
the modal structural rules to meet the cut. In the course of this permutation,
the 3k-rule might turn into another 3-rule. The following two lemmas take
care of these permutations.
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Lemma 2.49 (Push down 34, 35) Let X ⊆ {t, b, 4, 5} and ρ ∈ (3X∩{34,35}).
Given a derivation as shown on the left, where ρ applies to 3A, there is a
derivation as shown on the right, where all rules in D3 apply to the instance of
3A shown, and where |D2| ≤ |D1|:

Γ{3A}
ρ

Γ1{3A}

D1
‖
‖ [X]+med

∆{3A}

;

Γ{3A}

D2
‖
‖ [X]+med

Γ2{3A}

D3
‖
‖ (3X+∩{34,35})

∆{3A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply the induction hypothesis, possibly several times. We only
show the non-trivial permutations.

Γ{[3A,∆], [Σ]}
34

Γ{3A, [∆], [Σ]}
med

Γ{3A, [∆,Σ]}

;

Γ{[3A,∆], [Σ]}
med

Γ{[3A,∆,Σ]}
34

Γ{3A, [∆,Σ]}

Γ{[3A,∆]}
34

Γ{3A, [∆]}
[t]

Γ{3A,∆}

;
Γ{[3A,∆]}

[t]
Γ{3A,∆}

Γ{[∆, [3A,Σ]]}
34

Γ{[3A,∆, [Σ]]}
[b]

Γ{[3A,∆],Σ}

;

Γ{[∆, [3A,Σ]]}
[b]

Γ{3A, [∆],Σ}
35

Γ{[3A,∆],Σ}

Γ{[3A,∆], [Σ]}
34

Γ{3A, [∆], [Σ]}
[4]

Γ{3A, [[∆],Σ]}

;

Γ{[3A,∆], [Σ]}
[4]

Γ{[[3A,∆],Σ]}
34

Γ{[3A, [∆],Σ]}
34

Γ{3A, [[∆],Σ]}

Γ{[3A,∆]}{∅}
34

Γ{3A, [∆]}{∅}
[5]

Γ{3A}{[∆]}

;

Γ{[3A,∆]}{∅}
[5]

Γ{∅}{[3A,∆]}
35

Γ{3A}{[∆]}

Permuting down the 35-rule is trivial except over the [t]-rule and the [b]-rule,
and this is also trivial unless the restriction on the depth of the context in the
35-rule becomes relevant:

Γ1, [∆],Γ2{3A}
35

Γ1, [3A,∆],Γ2{∅}
[t]

Γ1,3A,∆,Γ2{∅}

;

Γ1, [∆],Γ2{3A}
[t]

Γ1,∆,Γ2{3A}
34∗

Γ1,3A,∆,Γ2{∅}



2.2. MODAL AXIOMS AS STRUCTURAL RULES 35

[∆, [Σ]],Γ{3A}
35

[∆, [Σ,3A]],Γ{∅}
[b]

[∆],Σ,3A,Γ{∅}

;

[∆, [Σ]],Γ{3A}
[b]

[∆],Σ,Γ{3A}
34∗

[∆],Σ,3A,Γ{∅}

Lemma 2.50 (Push down 3k, 3t, 3b) Let X ⊆ {t, b, 4, 5} and let ρ = 3k

or ρ ∈ (3X ∩ {3t,3b}). Given a derivation as shown on the left, where ρ
applies to 3A, there is a derivation as shown on the right, with σ = 3k or
σ ∈ (3X ∩ {3t,3b}), where all rules in D3 apply to the instance of 3A shown,
and where |D2| ≤ |D1|:

Γ{A}
ρ

Γ1{3A}

D1
‖
‖ [X]+med

∆{3A}

;

Γ{A}

D2
‖
‖ [X]+med

Γ3{A}
σ

Γ2{3A}

D3
‖
‖ (3X+∩{34,35})

∆{3A}

.

Proof. The proof is by induction on the length of D1. We permute the instance
of ρ down and apply Lemma 2.49 (Push down 34, 35) and/or the induction
hypothesis. We only show the non-trivial permutations.

Γ{[A,∆]}
3k

Γ{3A, [∆]}
[t]

Γ{3A,∆}

;

Γ{[A,∆]}
[t]

Γ{A,∆}
3t

Γ{3A,∆}

Γ{[∆, [A,Σ]]}
3k

Γ{[3A,∆, [Σ]]}
[b]

Γ{[3A,∆],Σ}

;

Γ{[∆, [A,Σ]]}
[b]

Γ{A, [∆],Σ}
3b

Γ{[3A,∆],Σ}

Γ{[A,∆], [Σ]}
3k

Γ{3A, [∆], [Σ]}
[4]

Γ{3A, [[∆],Σ]}

;

Γ{[A,∆], [Σ]}
[4]

Γ{[[A,∆],Σ]}
3k

Γ{[3A, [∆],Σ]}
34

Γ{3A, [[∆],Σ]}

Γ{[A,∆]}{∅}
3k

Γ{3A, [∆]}{∅}
[5]

Γ{3A}{[∆]}

;

Γ{[A,∆]}{∅}
[5]

Γ{∅}{[A,∆]}
3k

Γ{∅}{3A, [∆]}
35

Γ{3A}{[∆]}

The cases for ρ = 3t are trivial.
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Γ{[∆], A}
3b

Γ{[∆,3A]}
[t]

Γ{∆,3A}

;

Γ{[∆, A]}
[t]

Γ{∆, A}
3t

Γ{∆,3A}

Γ{[Σ, [∆], A]}
3b

Γ{[Σ, [∆,3A]]}
[b]

Γ{[Σ],∆,3A}

;

Γ{[Σ, [∆], A]}
[b]

Γ{[Σ, A],∆}
3k

Γ{[Σ],∆,3A}

Γ{[∆], A, [Σ]}
3b

Γ{[∆,3A], [Σ]}
[4]

Γ{[[∆,3A],Σ]}

;

Γ{[∆], A, [Σ]}
[4]

Γ{[[∆],Σ], A}
3b

Γ{[[∆],3A,Σ]}
35

Γ{[[∆,3A],Σ]}

For permuting down over the [5]-rule, in the only non-trivial case, notice that
the context has to be of the form shown because of the restriction of context
depth in the [5]-rule:

Γ{∅}{[Σ, [∆], A]}
3b

Γ{∅}{[Σ, [∆,3A]]}
[5]

Γ{[∆,3A]}{[Σ, ∅]}

;

Γ{∅}{[Σ, [∆], A]}
[5]

Γ{[∆]}{[A,Σ]}
3k

Γ{[∆]}{3A, [Σ, ∅]}
35

Γ{[∆,3A]}{[Σ, ∅]}

Once a 3-rule has been permuted down through the structural modal rules to
meet the cut, we want to build a new derivation with a lower cut rank. This
is not possible when this 3-rule is either 34 or 35 since these rules do not
decrease the size of the main formula, when seen upwards. The solution is to
“reflect” them at the cut and incorporate them in the structural rules that are
pushed up together with the cut.

Lemma 2.51 (Reflect 34, 35) Let X ⊆ {4, 5}. Given a derivation as shown on
the left, where all rules in D apply to the instance of 3A shown, then for each
sequent ∆ there is a derivation as shown on the right:

Γ{3A}{∅}

D
‖
‖ 3X

Γ{∅}{3A}

;

Γ{∅}{[∆]}

D′ ‖
‖ [X]

Γ{[∆]}{∅}

.

Proof. By induction on the length of D.

We are now ready to prove the reduction lemma.

Lemma 2.52 (Reduction Lemma) Let X ⊆ {t, b, 4, 5}. Given a proof as shown
on the left, with P1 and P2 in Km + [X] + cutr, then there is a proof P in
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Km + [X]+ + cutr as shown on the right:

P1

Γ1{A}
‖
‖ [X]+med

Γ{A}

P2

Γ2{Ā}
‖
‖ [X]+med

Γ{Ā}
cutr+1

Γ{∅}

; P

Γ{∅}

.

Proof. As usual, by an induction on |P1| + |P2| and a case analysis on the
lowermost rules in P1 and P2. We only show the most complicated case, in
which we cut a box introduced by the m2-rule against a diamond introduced
by k-rule. All other cases are much simpler. We have

Γ1{[B, . . . , B]}
m2

Γ1{2B}
‖
‖ [X]+med

Γ{2B}

Γ′
2{[B̄,∆]}

k

Γ′
2{3B̄, [∆]}

‖
‖ [X]+med

Γ{3B̄}
cutr+1

Γ{∅}

In the left subderivation we permute down the instance of m2 and on the right
subderivation we apply Lemma 2.50 (Push ktb down) in order to obtain the
following derivation, where Γ{ } = Γ{ }{∅}. Note that the second hole in the
binary context marks the position to which the 3B̄ is moved:

Γ1{[B, . . . , B]}
‖
‖ [X]+med

Γ{[B, . . . , B]}{∅}
m2

Γ{2B}{∅}

Γ′
2{[B̄,∆]}

‖
‖ [X]+med

Γ3{B̄}
σ

Γ{∅}{3B̄}
‖
‖ (X+∩{4,5})3

Γ{3B̄}{∅}
cutr+1

Γ{∅}{∅}

By using Lemma 2.51 (Reflect 45) we obtain a derivation D and build:

Γ1{[B, . . . , B]}
‖
‖ [X]+med

Γ{[B, . . . , B]}{∅}

D
‖
‖ (X+∩{4,5})·

Γ{∅}{[B, . . . , B]}
m2

Γ{∅}{2B}

Γ′
2{[B̄,∆]}

‖
‖ [X]+med

Γ3{B̄}
σ

Γ{∅}{3B̄}
cutr+1

Γ{∅}{∅}

.

We now consider the three possible cases for σ ∈ {k,3t,3b} and apply one of
the following transformations to the relevant part of the proof:

Σ{[B, . . . , B], [∆]}
m2

Σ{2B, [∆]}

Σ{[B̄,∆]}
k

Σ{3B̄, [∆]}
cutr+1

Σ{[∆]}

;

Σ{[B, . . . , B], [∆]}
med

Σ{[B, . . . , B,∆]} Σ{[B̄,∆]}
mcutr

Σ{[∆]}



38 CHAPTER 2. SYSTEMS FOR BASIC NORMAL MODAL LOGICS

Σ{[B, . . . , B]}
m2

Σ{2B}

Σ{B̄}
3t

Σ{3B̄}
cutr+1

Σ{∅}

;

Σ{[B, . . . , B]}
[t]

Σ{B, . . . , B} Σ{B̄}
mcutr

Σ{∅}

Σ{[[B, . . . , B],∆]}
m2

Σ{[2B,∆]}

Σ{B̄, [∆]}
3b

Σ{[3B̄,∆]}
cutr+1

Σ{[∆]}

;

Σ{[[B, . . . , B],∆]}
[b]

Σ{B, . . . , B,∆]} Σ{B̄, [∆]}
mcutr

Σ{[∆]}

We then eliminate mcut by using Lemma 2.43 (From mcut to cut) and weakening
admissibility.

Proposition 2.53 (Cut-elimination for Km) Let X ⊆ {t, b, 4, 5}. If Km+[X]+cut ⊢
Γ then Km + [X]+ ⊢ Γ.

Proof. We first prove the claim: If Km+[X]+cutr+1 ⊢ Γ then Km+[X]++cutr ⊢ Γ.
The claim is proved by induction on the depth of the given proof, using the
reduction lemma. Our proposition then follows from an induction on the cut
rank of the given proof, using the claim.

Finally, we can prove cut-elimination for the systems Kc + [X].

Proof of Theorem 2.37 (Cut-elimination). We first prove the theorem for the
cases where d /∈ X. The transformation (i) is by Proposition 2.45 (Push down
contraction), the transformation (ii) is Proposition 2.53 (Cut-elimination for
Km), and transformation (iii) is by Lemma 2.48 (From X+ to X) and weakening
and necessitation admissibility.

P1 Kc+[X]+cut

Γ

(i)
;

P2 Km+[X]+cut

Γ′

‖
‖ fctr

Γ

(ii)
;

P3 Km+[X]+

Γ′

‖
‖ fctr

Γ

(iii)
; P4 Kc+[X]

Γ

.

In the cases where d ∈ X we first apply Lemma 2.40 (Push down seriality) and
then proceed the same way with the upper part of the proof.

2.3 Relation to Deep Inference

Deep inference is a proof-theoretic formalism introduced by Guglielmi [26] where
inference rules are term rewriting rules which work on formulas and where
derivations are just reduction sequences from one formula to another. Some
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deep inference systems for modal logic have been studied by Hein, Stewart and
Stouppa [28, 46, 47].

Stewart and Stouppa give certain deep inference rules for the modal axioms in
their paper [46] and conjecture that all combinations yield cut-free systems that
are complete for the corresponding frame conditions (Conjecture 11 in [46]).
They prove their conjecture just for some modal logics, namely K, KD, KT, S4
and S5, and in all cases their method is embedding a cut-free (hyper-)sequent
system. They do not provide cut-free deep inference systems for the other 10
logics of the cube. Also, their method does not extend to logics for which there
is no known cut-free (hyper-)sequent system, such as KB and K5.

In this section we see cut-free deep inference systems for these modal logics.
Nested sequent systems can be easily embedded into corresponding deep infer-
ence systems and via this embedding we get complete and cut-free deep inference
systems for all the modal logics considered in this chapter. In fact, we get two
sets, one based on the nested sequent systems with logical rules, and one based
on the ones with structural rules. However, this does not settle Stewart and
Stouppa’s Conjecture 11, since our rules are different.

The embedding of nested sequent systems into corresponding deep inference
systems is trivial: essentially, all derivations on nested sequents are special
deep inference derivations where rules do not apply deeply with respect to all
connectives, but only with respect to the comma (structural disjunction) and
structural box. The reverse direction, embedding deep inference into nested
sequent calculus is also easy, but requires cut.

In this section we extend our language of formulas by the constants t for true
and f for false.

A deep inference rule is just a labelled rewrite rule as used in term rewriting.
An example is the following switch-down-rule:

S{A ∧ (B ∨ C)}
s↓
S{(A ∧ B) ∨ C}

,

which in term rewriting would be written as

s↓ : (A ∧ B) ∨ C → A ∧ (B ∨ C) .

There is a notational difference: in the deep inference rule the context in which
it can be applied is made explicit, in this case any formula context S{ }. A
proof of a formula is a rewriting sequence starting from the constant t and
ending with that formula. For more explicit definitions and more discussion of
deep inference systems, see [9].

A deep inference system for propositional logic is shown in Figure 2.10. This
particular system is similar to the one given by Straßburger in [48] and slightly
weaker than the one originally given in [9] because it replaces the equivalence
rule by several explicit rules for for commutativity, associativity and units (which
together are weaker than the equivalence rule). Let us call it system KS for the
purpose of this section. Systems for modal logics can be obtained from it by
adding rules from Figure 2.11. The cut in deep inference has the form

S{A ∧ Ā}
i↑

S{f}
.
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S{A ∨ (B ∨ C)}
as↓

S{(A ∨ B) ∨ C}

S{A ∨ B}
co↓

S{B ∨ A}

S{A}
f↓
S{A ∨ f}

S{A}
t↓
S{A ∧ t}

S{t}
ai↓

S{a ∨ ā}

S{A ∧ (B ∨ C)}
s↓
S{(A ∧ B) ∨ C}

S{A ∨ A}
c↓

S{A}

S{f}
w↓

S{A}

Figure 2.10: A deep inference system for propositional logic

Let an instance of 5↓ be an instance of either 5a↓, 5b↓ or 5c↓. For a set X of
rule names append the symbol ↓ to each name to obtain X↓. Let system KSk

be system KS+ {nec↓, k↓, r↓}.

Proposition 2.54 (Nested sequent calculus into deep inference)
For all X ⊆ {d, t, b, 4, 5} and sequents Γ we have that:
If K+ 3Xc ⊢ Γ then KSk+ X↓ ⊢ Γ

F
.

Proof. A routine induction on the depth of the proof and a straightforward
extension of a corresponding embedding for the propositional system as given
in [9]. Note that embedding the ∧-rule requires the r↓-rule.

Proposition 2.55 (Deep inference into nested sequent calculus)
For all X ⊆ {d, t, b, 4, 5} and formulas A we have that:
If KSk+ X↓+ i↑ ⊢ A then K+ 3Xc + cut ⊢ A.

Proof. A routine induction on the length of the proof and a straightforward
extension of a corresponding embedding for the propositional system as given
in [9].

These propositions, together with cut-elimination for our nested sequent sys-
tems, trivially yields cut-elimination for the corresponding deep inference sys-
tems. By the second proposition we translate a deep inference proof with cuts
into a nested sequent calculus proof with cuts, eliminate the cuts, and translate
back to deep inference by the first proposition.

Corollary 2.56 (Cut elimination for deep inference)
For all 45-closed X ⊆ {d, t, b, 4, 5} we have that if a formula is provable in system
KSk+ X↓+ i↑ then it is also provable in system KSk+ X↓.

A similar exercise will obtain cut-free and complete deep inference systems from
the nested sequent systems with structural modal rules.

Remark 2.57 (for some systems the r↓-rule is admissible) Some of the deep
inference systems are not minimal: for example in system KSk the r↓-rule is
admissible for KSk − r↓. This can be seen by embedding the usual sequent
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S{t}
nec↓

S{2t}

S{2(A ∨ B)}
k↓
S{2A ∨ 3B}

S{2A ∧ 2B}
r↓
S{2(A ∧ B)}

S{2A}
d↓

S{3A}

S{A}
t↓
S{3A}

S{A ∨ 2B}
b↓

S{2(3A ∨ B)}

S{2(A ∨ 3B)}
4↓

S{2A ∨ 3B}

S{3A ∨ 2B}
5a↓

S{2(3A ∨ B)}

S{2B ∨ 2(3A ∨ C)}
5b↓

S{2(3A ∨ B) ∨ 2C}

S{2(A ∨ 2(3B ∨ C))}
5c↓

S{2(A ∨ 3B ∨ 2C)}

Figure 2.11: Deep inference rules for modal logic

system for K, of which we show the case for the 2-rule:

P

A,B1, . . . , Bn
2

2A,3B1, . . . ,3Bn

;

t
nec↓

2t

2P′ ‖
‖

2(A ∨ B1 ∨ . . . ∨ Bn)
kn

2A ∨ 3B1 ∨ . . . ∨ 3Bn

,

where P ′ is the translation of P , 2P ′ is obtained by adding a box to every
formula in P ′ and kn denotes n instances of the k-rule. For some systems,
however, the r↓-rule is not admissible. For example in system KSk + b↓ the
formula 2(a ∨ 33ā) ∧ (b ∨ 33b̄)) is provable, but it is not provable without
r↓-rule.

2.4 Discussion

We have seen how nested sequents allow us to give a systematic proof theory
for the modal logics of the cube. In fact, we have seen two distinct proof-
theories, one based on formalising modal axioms as logical rules and one based
on formalising modal axioms as structural rules. The first option is closer to the
ordinary sequent calculus and allows for a straightforward terminating proof-
search procedure, but fails to be modular: not every possible combination of
rules yields a complete system for the corresponding logic. The second option
yields a modular set of systems, but the presence of structural rules devalues the
subformula property. In any case, we have seen that generalising hypersequents
to nested sequents yields cut-free systems for more modal logics, so it leads to
greater expressivity. It is particularly pleasant that this extra generality does not
come at the cost of extra complexity, but in fact simplifies hypersequent systems:
the two kinds of context in hypersequent inference rules (sequent context and
hypersequent context) are merged into one. Our systems with logical rules
enjoy invertibility of all rules. This property does not seem to be achievable
in an ordinary sequent system for modal logic. In hypersequent systems it also
does not seem to be achievable in a non-trivial way (although one could of course
trivially make rules invertible by copying a component whenever a rule applies
in it).
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Relation to the display calculus. Nested sequents and display sequents share
the idea of simply allowing the connective 2 as a structural connective. There
are two crucial differences. First, display sequents also contain a structural
connective for the backward-looking modality. This is crucial for the display
property to hold, a central property of display calculi which allows to single
out a formula in order to apply a logical rule to it. Since in our proof systems
logical rules apply deeply inside nested sequents, there is no need for a display
property, and thus no need for the backward-looking modality, so we can stay
inside the modal language. The second difference is that in the display calculus
one has to use structural rules called display postulates to move a formula to
the top in order to apply a logical rule to it. In nested sequent systems one
can apply the rule on the spot and thus has no need for such structural rules.
Nested sequents thus allow for deductive systems with fewer rules and shorter
derivations.

Relation to labelled systems. The main conceptual advantage of a nested se-
quent over a labelled sequent is that it can be read as a modal formula. Labelled
sequents are more general than nested sequents: they can form an arbitrary
graph, while nested sequents are always trees. A cut-free proof in nested se-
quents is thus in general a more restricted, simpler object than a cut-free proof
in labelled sequents. I hope that this fact will help in using nested sequent
systems for interpolation proofs, for which labelled systems do not seem to be
well-suited. It should also be easy to embed cut-free nested sequent systems
into corresponding cut-free labelled sequent systems, while the opposite is not
true in general. I thus think of the completeness of a nested sequent system
as a stronger result than the completeness of a corresponding labelled sequent
system. To get this stronger result we had to work harder, for example in our
completeness proof for the systems with logical rules: we had to establish cer-
tain properties of, say, the euclidean closure of a relation, which is not needed
for labelled systems. There, that relation is part of the proof system and it is
being closed under euclideanness by the appropriate inference rule. The extra
work also shows in our cut-elimination procedure: we had to show admissibility
of certain rules in order to push the cut over the rules for the frame properties.
This, again, is not needed for labelled systems. There the rules for the frame
conditions do not affect the cut-elimination procedure at all.

Relation to tableau systems. While the focus of tableau systems is on giv-
ing decision procedures, our focus is on giving proof systems which support
proof-transformations, in particular cut-elimination. This is more easily and
more commonly done with local rules, so in sequent systems instead of tableau
systems. Nevertheless, there is correspondence between tableau systems and
sequent systems. For an overview of modal tableau systems see the survey by
Goré [22]. The tableau formalism which corresponds most closely to nested
sequents is the prefixed tableau formalism, due to Fitting [19]. In particular,
prefixes impose the same tree structure on formulas that is imposed in a nested
sequent. However, prefixed tableaux are closer to the semantics. In particular
they have rules which are parametrised by an accessibility relation, which is a
marked difference from our inference rules.

Specific tableau rules which correspond to our inference rules have also been
studied before, namely by Castilho et. al. [16]. Their systems are based on
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graphs rather than trees, but they have structural rules which closely corre-
spond to (some of) ours and propagation rules which correspond to our 3-rules.
A difference is that propagation rules and structural rules are mixed in [16],
while here we first treat systems purely consisting of propagation- or 3-rules in
Chapter 2 and systems purely consisting of structural rules in Chapter 3.

Future work. Of course we would like to extend the range of logics for which
there are cut-free nested sequent systems. Candidates are the set of modal
logics formalised by so-called primitive axioms, which have been captured in the
display calculus [52]. At the same time, it is interesting to generate such systems
automatically, so it is our goal to devise 1) easily checkable criteria on rules,
which guarantee cut-elimination, and 2) a procedure which turns modal axioms
into rules which satisfy these criteria. Such a generic cut-elimination procedure
exists already for the display calculus [52]. Recently, such a procedure has also
been proposed by Ciabattoni et al. for certain hypersequent systems [17].

On the other hand, we would like to use nested sequent systems to obtain results
which are harder or cannot be obtained with other proof-theoretic formalisms.
Neither display calculus nor labelled sequent calculus seem to allow us to prove
interpolation results, for example. Conservativity results are another interesting
field. Here the property of staying inside the modal language is useful. The
conservativity of tense logic over modal logic is an immediate consequence of
the completeness of a cut-free nested sequent system for tense logic, as noted
by Goré et al. [24]. This conservativity result is not an immediate consequence
of cut-elimination in the display calculus, precisely because of the presence of
(rules affecting) backward-looking structural connectives.

Another area to explore is the one of explicit modal logics [4]. Here the modality
in modal logic which can be read as provability or as knowledge is replaced by
specific terms which can be read as individual proofs or as pieces of evidence.
Researchers study realisation-procedures which turn a proof in modal logic into
a proof in explicit modal logic. Such procedures rely on cut-free systems for
modal logics. Nested sequent systems may provide such realisation procedures.
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Chapter 3

Systems for Common
Knowledge

The notion of common knowledge is well-studied in epistemic logic, where modal-
ities express knowledge of agents. Two standard textbooks on epistemic logic
and common knowledge in particular, are [18] by Fagin, Halpern, Moses, and
Vardi and [33] by Meyer and van der Hoek.

The fact that a proposition A is common knowledge can be expressed by the
infinite conjunction “all agents know A and all agents know that all agents
know A and so on”. In order to express this in a finite way we can use fixpoints:
common knowledge ofA is then defined to be the greatest fixpoint of the function

X 7→ everybody knows A and everybody knows X.

Such a definition was introduced by Halpern and Moses [27] and further studied
in [18].

The traditional way to formalise common knowledge is to use a Hilbert-style
axiom system. Such a system has a fixpoint axiom, which states that common
knowledge is a fixpoint, and an induction rule, which states that this fixpoint is
the greatest fixpoint. However, this approach does not work well for designing
a Gentzen-style sequent calculus. In particular, Alberucci and Jäger show in [2]
that a cut-free sequent system designed in this way is not complete.

To obtain a complete cut-free system Alberucci and Jäger replace the induction
rule by an infinitary ω-rule. This results in a system in which proofs have
transfinite depth and in which common knowledge is the greatest fixpoint of
the function described above. Although this system has been further studied in
[31, 29], no syntactic cut-elimination procedure has been found. Cut-elimination
was proved only indirectly by showing completeness of the cut-free system. No
non-trivial bound on the depth of proofs in this system is known.

In this chapter, we give a syntactic cut-elimination procedure for an infinitary
system of common knowledge based on nested sequents. Since its inference rules
apply deeply inside of the nested sequents we call this system “deep” while we
call the system by Alberucci and Jäger “shallow”. The deep system allows
to straightforwardly apply the method of predicative cut-elimination, which is

45
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a standard tool for the proof-theoretic analysis of systems of set theory and
second order number theory, see Pohlers [39, 40] and Schütte [45]. Since the
shallow and the deep system can be embedded into each other, this also yields
a syntactic cut-elimination procedure for the shallow system. For both systems
we thus obtain an upper bound of ϕ20 on the depth of proofs, where ϕ is the
Veblen function.

Please note that, like Alberucci and Jäger, our term logic of common knowledge
refers to the least normal modal logic K, with an added fixpoint modality. Some
people might prefer to call that the logic of common belief. The methods in-
troduced here should transfer easily to cases where rules for the modal axioms
are added that were studied in the previous chapter. The combination of the
techniques presented here and the ones in the previous chapter should suffice to
get cut-elimination for modal logics with additional modal axioms and common
knowledge.

Several cut-free systems for logics with common knowledge exist already. The
one that is closest to our system was introduced by Tanaka in [49] for predicate
common knowledge logic and is based on Kashima’s ideas. It essentially also
uses nested sequents, but uses explicit labels to name the nodes of the tree.
In fact, if one disregards the rather different notation and some choices in the
formulation of rules, then one could say that our system is the propositional part
of Tanaka’s system. There are also finitary systems. Abate, Goré and Widmann,
for example, introduce a cut-free tableau system for common knowledge in [1].
Cut-free system have also been studied in the context of explicit modal logic by
Artemov [5] and by Antonakos [3].

However, we do not know of syntactic cut-elimination procedures for any of
the systems mentioned. Typically, cut-elimination is established only indi-
rectly. There are cut-elimination procedures for similar logics, for example by
Pliuškevičius for an infinitary system for linear time temporal logic in [37]. For
linear temporal logic there is no need for nested sequents. For this logic it is
enough to use indexed formulas of the form Ai which denotes A at the i-th
moment in time.

This chapter is organised as follows. We first review the shallow sequent sys-
tem by Alberucci and Jäger and show the obstacle to cut-elimination. We then
present our nested sequent system, prove the invertibility of its rules, the ad-
missibility of the structural rules and finally cut-elimination. Then we embed
the shallow system into the deep system and vice versa, thus establishing cut-
elimination for the shallow system. Then, by embedding the Hilbert system into
our deep sequent system, we obtain an upper bound for the depth of proofs in
both the shallow and the deep system. Some discussion about future work ends
this chapter.

3.1 The Shallow Sequent System

Formulas and sequents. We are considering a language with h agents for some
h > 0. Propositions p and their negations p̄ are atoms, with ¯̄p defined to be p.
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Γ, p, p̄ ∧
Γ, A Γ, B
Γ, A ∧ B

∨
Γ, A,B
Γ, A ∨ B

2i
Γ, ∗3∆, A

3iΓ, ∗3∆,2iA,Σ

∗2
Γ,2kA for all k ≥ 1

Γ, ∗2A
∗3

Γ, ∗3A,3A
Γ, ∗3A

Figure 3.1: System GC

Formulas are denoted by A,B,C,D. They are given by the following grammar:

A ::= p | p̄ | (A ∨ A) | (A ∧ A) | 3iA | 2iA | ∗3A | ∗2A ,

where 1 ≤ i ≤ h. The formula 2iA is read as “agent i knows A” and the
formula ∗2A is read as “A is common knowledge”. The connectives 2i and ∗2

have 3i and ∗3 as their respective De Morgan duals. Binary connectives are
left-associative: A ∨ B ∨ C denotes ((A ∨ B) ∨ C), for example.

Given a formula A, its negation Ā is defined as usual using the De Morgan laws,
A ⊃B is defined as Ā ∨B and ⊥ is defined as p ∧ p̄ for some proposition p. The
formula 2A is an abbreviation for “everybody knows A”:

2A = 21A ∧ . . . ∧ 2hA and 3A = 31A ∨ . . . ∨ 3hA.

A sequence of n ≥ 0 modal connectives can be abbreviated, for example

2
nA = 2 . . .2

︸ ︷︷ ︸

n−times

A .

A (shallow) sequent is a finite multiset of formulas. Sequents are denoted by
Γ,∆,Λ,Π,Σ.

Inference rules. In an instance of the inference rule ρ

ρ
Γ1 Γ2 . . .

∆

the sequents Γ1,Γ2 . . . are its premises and the sequent ∆ is its conclusion. An
axiom is a rule without premises. We will not distinguish between an axiom and
its conclusion. A system, denoted by S, is a set of rules. Figure 3.1 shows system
GC, a shallow sequent calculus for the logic of common knowledge. Its only axiom
is called identity axiom. Notice that the ∗2-rule has infinitely many premises. If
Γ is a sequent then 3iΓ is obtained from Γ by prefixing the connective 3i to
each formula occurrence in Γ, and similarly for other connectives.

Derivations and proofs. In the following, a tree is a tree in the graph-theoretic
sense, and may be infinite. A tree is well-founded if it does not have an infinite
path. A derivation in a system S is a directed, rooted, ordered and well-founded
tree whose nodes are labelled with sequents and which is built according to the
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wk
Γ

Γ, A
ctr

Γ, A,A
Γ, A

cut
Γ, A ∆, Ā

Γ,∆

Figure 3.2: Weakening, contraction and cut for system GC

inference rules from S. Derivations are visualised as upward-growing trees, so
the root is at the bottom. The sequent at the root is the conclusion and the
sequents at the leaves are the premises of the derivation. A proof of a sequent
Γ in a system is a derivation in this system with conclusion Γ where all leaves
are axioms. Proofs are denoted by P . We write S ⊢ Γ if there is a proof of Γ in
system S. Given a proof P we denote its depth by |P|. Notice that derivations
here are in general infinitely branching, thus their depth can be infinite even
though each branch has to be finite.

Formula rank. Notice that formulas in the premises of the ∗2-rule are generally
larger than formulas in its conclusion. This is typically a problem for cut-
elimination, but we can easily solve this by defining an appropriate measure.
For a formula A we define its rank rk(A) as follows:

rk(p) = rk(p̄) = 0
rk(A ∧ B) = rk(A ∨ B) = max (rk (A), rk (B)) + 1
rk(2iA) = rk(3iA) = rk(A) + 1
rk( ∗2A) = rk( ∗3A) = ω + rk(A)

Lemma 3.1 (Some properties of the rank) For all formulas A we have that
(i) rk(A) = rk(Ā),
(ii) rk(A) < ω2,
(iii) for all k < ω we have rk(2kA) < rk( ∗2A).

Proof. Statements (i) and (ii) are immediate. For (iii), an induction on k yields
that rk (2kA) = rk (A) + k · h. By (ii) it is then enough to check that for all k
and all α < ω2 we have α+ k · h < ω + α.

Cut rank. The cut rank of an instance of cut as shown in Figure 3.2 is the rank
of its cut formula A. For an ordinal γ we define the rule cutγ which is cut with
at most rank γ and the rule cut<γ which is cut with a rank strictly smaller than
γ. For a system S and ordinals α and γ and a sequent Γ we write S

α

γ
Γ to say

that there is a proof of Γ in system S + cut<γ with depth bounded by α. We

write S
<α

γ
Γ to say that there is an ordinal α0 < α such that S

α0

γ
Γ.

Admissibility and invertibility. An inference rule ρ is depth- and cut-rank-
preserving admissible or, for short, perfectly admissible for a system S if for
each instance of ρ with premises Γ1,Γ2 . . . and conclusion ∆, whenever S

α

γ
Γi

for each premise Γi then S
α

γ
∆. For each rule ρ there is its inverse, denoted

by ρ, which has the conclusion of ρ as its only premise and any premise of ρ as
its conclusion. An inference rule ρ is perfectly invertible for a system S if ρ is
perfectly admissible for S.

We omit the proof of the following lemma, which is standard.
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Lemma 3.2 (Admissibility of the structural rules and invertibility)
(i) The rules weakening and contraction from Figure 3.2 are perfectly admissible
for system GC.
(ii) All rules of GC except for the 2i-rule are perfectly invertible for system GC.

3.1.1 The Problem for Cut-Elimination

Let us look at the problem of cut-elimination in system GC. Consider the fol-
lowing proof:

P1

A,Γ, ∗3B̄
2i

2iA,3iΓ,Σ, ∗3B̄

...

P2k

2
kB,∆

...
∗2 1≤k<ω

∗2B,∆
cut

2iA,3iΓ,Σ,∆

Here the inference rule above the cut on the left does not apply to the cut
formula while the inference rule on the right does. The typical transformation
would push the left rule instance below the cut, as follows:

P1

A,Γ, ∗3B̄

...

P2k

2
kB,∆

...
∗2 1≤k<ω

∗2B,∆
cut

A,Γ,∆
2i

2iA,3iΓ,Σ,3i∆

However, this transformation introduces the 3i in 3i∆, and thus it does not
yield a proof of the original conclusion. This problem is caused by the context
restriction in the 2i-rule.

Such a context restriction also occurs in the standard sequent calculus for the
modal logic K. While it destroys invertibility, at least it does not cause any
difficulties for syntactic cut-elimination for K. However, we see that the context
restriction poses a genuine problem for logics with more modalities like in the
logic of common knowledge. In the next section we will see how a more general
format for sequents and inference rules solves the problem since it does not
require context restrictions.

3.2 The Nested Sequent System

Nested sequents. A nested sequent is a finite multiset of formulas and boxed
sequents. A boxed sequent is an expression [Γ]i where Γ is a nested sequent and
1 ≤ i ≤ h. The letters Γ,∆,Λ,Π,Σ from now on denote nested sequents and
the word sequent from now on refers to nested sequent, except when it is clear



50 CHAPTER 3. SYSTEMS FOR COMMON KNOWLEDGE

from the context that a sequent is shallow, such as a sequent appearing in a
derivation in GC. A sequent is always of the form

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in ,

where the ij denote agents and thus range from 1 to h. As usual, the comma
denotes multiset union and there is no distinction between a singleton multiset
and its element.

Fix an arbitrary linear order on formulas. Fix an arbitrary linear order on boxed
sequents. The corresponding formula of a non-empty sequent Γ, denoted Γ

F
, is

defined as follows:

A1, . . . , Am, [∆1]i1 , . . . , [∆n]in
F
= A1 ∨ . . . ∨ Am ∨ 2i1∆1

F
∨ . . . ∨ 2in∆n

F
,

where formulas and boxed sequents are listed according to the fixed orders. The
corresponding formula of the empty sequent is ⊥. A sequent has a corresponding
tree whose nodes are marked with multisets of formulas and whose edges are
marked with agents. The corresponding tree of the above sequent is

{A1, . . . , Am}

i1

i2 in−1

in

tree(∆1) tree(∆2) . . . tree(∆n−1) tree(∆n)

,

where tree(∆1) . . . tree(∆n) are the corresponding trees of ∆1 . . .∆n. Often we
do not distinguish between a sequent and its corresponding tree, for example
the root of a sequent is the root of its corresponding tree.

Formula contexts and sequent contexts. A formula context is a formula with
exactly one occurrence of the special atom { }, which is called the hole or the
empty context. A sequent context is a sequent with exactly one occurrence of
the hole, which does not occur inside formulas. Formula contexts are denoted
by A{ }, B{ }, and so on. Sequent contexts are denoted by Γ{ }, ∆{ }, and so
on. Formally, sequent contexts are generated inductively as follows: if ∆ is a
sequent then ∆, { } is a sequent context, and if ∆ is a sequent and Γ{ } is a
sequent context, then ∆, [Γ{ }] is a sequent context.

The formula A{B} is obtained by replacing { } inside A{ } by B and the
sequent Γ{∆} is obtained by replacing { } inside Γ{ } by ∆. For example, if
Γ{ } = A, [[B]1, { }]2 and ∆ = C, [D]3 then

Γ{∆} = A, [[B]1, C, [D]3]2 .

Formally, given a sequent ∆ and a sequent context Γ{ } then Γ{∆} is defined
inductively as follows: if Γ{ } = Γ1, { } then Γ{∆} = Γ1,∆ and if Γ{ } =
Γ1, [Γ2{ }] then Γ{∆} = Γ1, [Γ2{∆}].

The corresponding formula context of a sequent context Γ{ }, denoted Γ{ }
F
is

defined as follows:
Γ, { }

F
= Γ

F
∨ { }

Γ, [∆{ }]i
F
= Γ

F
∨ 2i∆{ }

F
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Γ{p, p̄} ∧
Γ{A} Γ{B}
Γ{A ∧ B}

∨
Γ{A,B}
Γ{A ∨ B}

2i
Γ{[A]i}
Γ{2iA}

3i
Γ{3iA, [∆, A]i}
Γ{3iA, [∆]i}

∗2
Γ{2kA} for all k ≥ 1

Γ{ ∗2A}
∗3

Γ{ ∗3A,3kA}
Γ{ ∗3A}

Figure 3.3: System DC

nec
Γ
[Γ]i

wk
Γ{∅}
Γ{∆}

ctr
Γ{∆,∆}
Γ{∆}

cut
Γ{A} Γ{Ā}

Γ{∅}

Figure 3.4: Necessitation, weakening, contraction and cut for system DC

Figure 3.3 shows our nested sequent system DC. Figure 3.4 shows the structural
rules necessitation, weakening and contraction as well as the rule cut, which are
associated to system DC. Notice that the rules of system DC and the associated
rules are different from the corresponding rules in system GC but have the same
names. If we refer to a rule only by its name then it will be clear from the context
which rule is meant. For example the cut in GC + cut is the one associated to
system GC and the one in DC + cut is the one associated with system DC.

Lemma 3.3 (Admissibility of the structural rules and invertibility)
(i) The rules necessitation, weakening and contraction from Figure 3.4 are per-
fectly admissible for system DC.
(ii) All rules in DC are perfectly invertible for DC.

Proof. Admissibility of necessitation and weakening follow from a routine in-
duction on the depth of the proof. The same works for the invertibility of the
∧, ∨,2i and ∗2-rules in (ii). The inverses of all other rules are just weakenings.
For admissibility of contraction we also proceed by induction on the depth of
the proof tree, using invertibility of the rules. The cases for the propositional
rules and for the 2i, ∗2, ∗3-rules are trivial. For the 3i-rule we consider the for-
mula 3iA from its conclusion Γ{3iA, [∆]i} and its position inside the premise
of contraction Λ{Σ,Σ}. We have the cases 1) 3iA is inside Σ or 2) 3iA is inside
Λ{ }. We have two subcases for case 1: 1.1) [∆]i inside Λ{ }, 1.2) [∆]i inside
Σ. There are three subcases of case 2: 2.1) [∆]i inside Λ{ } and 2.2) [∆]i inside
Σ, 2.3) Σ,Σ inside [∆]i. All cases are either simpler than or similar to case 2.2,
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which is as follows:

Λ′{3iA,Σ
′, [∆, A]i,Σ

′, [∆]i}
3i

Λ′{3iA,Σ
′, [∆]i,Σ

′, [∆]i}
ctr

Λ′{3iA,Σ
′, [∆]i}

;

Λ′{3iA,Σ
′, [∆, A]i,Σ

′, [∆]i}
3i

Λ′{3iA,Σ
′, [∆, A]i,Σ

′, [∆, A]i}
ctr

Λ′{3iA,Σ
′, [∆, A]i}

3i

Λ′{3iA,Σ
′, [∆]i}

,

where the instance of 3i in the proof on the right is removed because it is
perfectly admissible and the instance of contraction is removed by the induction
hypothesis.

Lemma 3.4 (Derivability of the general identity axiom) For all contexts Γ{ }

and all formulas A we have DC
2·rk(A)

0 Γ{A, Ā}.

Proof. We perform an induction on rk(A) and a case analysis on the main
connective of A. The cases for atoms and for the propositional connectives are
obvious. For A = 2iB and A = ∗2B we respectively have

Γ{[B, B̄]i,3iB̄}
3i

Γ{[B]i,3iB̄}
2i

Γ{2iB,3iB̄}

and
...

Γ{2kB,3kB̄}
wk,∗3

Γ{2kB, ∗3B̄}
...

∗2 1≤k<ω

Γ{ ∗2B, ∗3B̄}

.

On the left by induction hypothesis we get a proof of the premise of depth
2·rk(B) and thus a proof of the conclusion of depth 2·rk(B)+2 = 2·(rk (B)+1) =
2 · rk(2iB). On the right by Lemma 3.1 we can apply the induction hypothesis
for each premise to get a proof of depth 2·rk(2kB) = 2·(rk (B)+k ·h) and thus a
proof of the conclusion of depth 2·(rk(B)+ω) ≤ 2·(ω+rk(B)) = 2·rk( ∗2B).

3.3 Cut-Elimination for the Nested System

We first need some notions concerning ordinals. For an introduction to ordinals
we refer to Schütte [45]. We write α#β for the natural sum of α and β which,
in contrast to the ordinary ordinal sum, does not cancel additive components.
In particular, the natural sum is commutative. To give names to the ordinals
which measure our proofs we also need the following definition.

Definition 3.5 (Veblen function) The binary Veblen function ϕ is generated in-
ductively as follows:

1. ϕ0β := ωβ ,

2. if α > 0, then ϕαβ is the (β + 1)th common fixpoint of the functions
ξ 7→ ϕγξ for all γ < α.

The Veblen function just generates an increasing sequence of ordinals, as follows:
ϕ00 = ω0 = 1, ϕ01 = ω1 = ω, . . . , ϕ0ω = ωω, . . . ,
ϕ10 = first fixpoint of the function (ξ 7→ ϕ0ξ = ξ 7→ ωξ) = ε0, . . . ,
ϕ20 = first fixpoint of the function (ξ 7→ ϕ1ξ = ξ 7→ εξ), . . . .

Here we will only need ordinals up to ϕ20. In this subsection we write
α

β
Γ for

DC
α

β
Γ. We now prove the central lemma.
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Lemma 3.6 (Reduction Lemma) If there is a proof

P1

Γ{A}

P2

Γ{Ā}
cutγ

Γ{∅}

with P1 and P2 in DC + cut<γ then
|P1|# |P2|

γ
Γ{∅} .

Proof. By induction on |P1|# |P2|. We perform a case analysis on the two
lowermost rules in the given proofs. If one of the two rules is passive and an
axiom then Γ{∅} is axiomatic as well. If one is active and an axiom then we
have

Γ{p, p̄}

P2

Γ{p̄, p̄}
cut0

Γ{p̄}

;
P2

Γ{p̄, p̄}
ctr

Γ{p̄}

,

and by contraction admissibility we have
|P2|

0 Γ{p̄} and thus
|P1|# |P2|

0 Γ{p̄}.
If some rule ρ is passive then we have

P1

Γ{A}

...

P2i

Γi{Ā}
...

ρ

Γ{Ā}
cutγ

Γ{∅}

;

...

P1

Γ{A}
ρ̄

Γi{A}

P2i

Γi{Ā}
cutγ

Γi{∅}
...

ρ

Γ{∅}

,

where i ranges from 1 to the number of premises of ρ. By invertibility of ρ we

get
|P1|

γ
Γi{A}, thus by induction hypothesis

|P1|# |P2i|

γ
Γi{∅} for all i and by

ρ we get
|P1|# |P2|

γ
Γ{∅}.

This leaves the case that both rules are active and neither is an axiom. We
have:
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(∧− ∨):

P11

Γ{B}

P12

Γ{C}
∧

Γ{B ∧ C}

P21

Γ{B̄, C̄}
∨

Γ{B̄ ∨ C̄}
cutσ+1

Γ{∅}

;

P11

Γ{B}

P12

Γ{C}
wk

Γ{B̄, C}

P21

Γ{B̄, C̄}
cutσ

Γ{B̄}
cutσ

Γ{∅}

,

where by weakening admissibility we get
|P12|

γ
Γ{B̄, C}, and since σ < σ+1 = γ

we get
α

γ
Γ{∅} for α = max (|P11|,max (|P12|, |P21|)+1)+1. It is easy to check

that α ≤ |P1|# |P2|.

(2i −3i):

P11

Γ{[∆]i, [A]i}
2i

Γ{[∆]i,2iA}

P21

Γ{[∆, Ā]i,3iĀ}
3i

Γ{[∆]i,3iĀ}
cutσ+1

Γ{[∆]i}

;

P11

Γ{[∆]i, [A]i}
wk2

Γ{[∆, A]i, [∆, A]i}
ctr

Γ{[∆, A]i}

P11

Γ{[∆]i, [A]i}
wk,2i

Γ{[∆, Ā]i,2iA}

P21

Γ{[∆, Ā]i,3iĀ}
cutσ+1

Γ{[∆, Ā]i}
cutσ

Γ{[∆]i}

,

where the premises of the upper cut have been derived by use of weaken-
ing admissibility with depth |P11| + 1 and |P21|, the natural sum of which is

smaller than |P1|# |P2|. The induction hypothesis thus yields
(|P11|+1)# |P21|

γ

Γ{[∆, Ā]i} and since σ < σ + 1 = γ we get
|P1|# |P2|

γ
Γ{[∆]i} by the lower cut.

( ∗2− ∗3):

...

P1k

Γ{2kA}
...

∗2 1≤k

Γ{ ∗2A}

P21

Γ{ ∗3Ā,3jĀ}
∗3

Γ{ ∗3Ā}
cutω+σ

Γ{∅}

;



3.3. CUT-ELIMINATION FOR THE NESTED SYSTEM 55

P1j

Γ{2jA}

...

P1k

Γ{2kA}
wk

Γ{2kA,3jĀ}
...

∗2 1≤k

Γ{ ∗2A,3jĀ}

P21

Γ{ ∗3Ā,3jĀ}
cutω+σ

Γ{3jĀ}
cutσ+(j·h)

Γ{∅}

,

where the induction hypothesis applied on the upper cut gives us
|P1|# |P21|

γ

Γ{3jĀ} and since by Lemma 3.1 we have σ + j · h < ω + σ = γ the lower cut

yields
|P1|# |P2|

γ
Γ{∅}.

From the reduction lemma we obtain the first and the second elimination lemma
as usual, see for instance Pohlers [39, 40] or Schütte [45].

Lemma 3.7 (First Elimination Lemma) If
α

γ+1 Γ then
2α

γ
Γ.

Proof. By induction on α and a case analysis on the last rule applied. Most
cases are trivial, in case of a cut with rank γ we apply the induction hypothesis
to both proofs of the premises of the cut and then apply the reduction lemma

to obtain
2α0 #2α0

γ
Γ for some α0 < α and thus

2α

γ
Γ.

Lemma 3.8 (Second Elimination Lemma) If
α

β+ωγ Γ then
ϕγα

β
Γ.

Proof. By induction on γ with a subinduction on α. For γ = 0 this trivially
follows from the first elimination lemma. Assume γ > 0. The non-trivial case is
where the last rule in the given proof of Γ is a cut with a rank of β or greater.
With Γ = Γ{∅} the proof is of the following form:

P1

Γ{A}

P2

Γ{Ā}
cut<β+ωγ

Γ{∅}

.

Let α0 = max(|P1|, |P2|). We apply the subinduction hypothesis on the sub-

proofs of the cut and obtain
ϕγ(α0)

β
Γ{A} and

ϕγ(α0)

β
Γ{Ā}. Since rk(A) < β+

ωγ a quick calculation by case analysis on γ yields the existence of σ with σ < γ

and of n such that rk(A) < β + ωσ · n. Thus, by a cut we obtain
ϕγ(α0)+1

β+ωσ·n Γ.

We apply the induction hypothesis n times to obtain
ϕn

σ(ϕγ(α0)+1)

β
Γ, where ϕn

σ

means ϕσ applied n times. Since ϕn
σ(ϕγ(α0)+1) < ϕγ(α) we have

ϕγ(α)

β
Γ.

The cut-elimination theorem follows by iterated application of the second elim-
ination lemma.

Theorem 3.9 (Cut-elimination for the deep system)

If DC
α

ω·n Γ then DC
ϕn

1 (α)

0 Γ.
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GC + cut

Thm 3.12

GC

HC
Thm 3.22

DC + cut
Thm 3.9

DC

Thm 3.20

Figure 3.5: Overview of the various embeddings

3.4 Cut-Elimination for the Shallow System

In this section we give a cut-elimination procedure for the shallow system. To
do so, we first embed the shallow system with cut into the deep system with cut,
eliminate the cut there, and embed the cut-free deep system into the cut-free
shallow system. Figure 3.5 gives an overview of the embeddings. We have seen
the horizontal arrow on the right in the last section. Now we are going to see
the vertical arrows. System HC is a Hilbert system which we will see in the last
section, together with the horizontal arrow on the left.

3.4.1 Embedding Shallow into Deep

This is the easy direction. We first define a notion of admissibility which is
weaker than “depth-preserving”: it allows the proof to grow by a finite amount.

Definition 3.10 A rule ρ is finitely admissible for a system S if for each instance
of ρ with premises Γ1,Γ2 . . . and conclusion ∆ there exists a finite ordinal n

such that whenever S
α

γ
Γi for all i then S

α+n

γ
∆.

Note that every perfectly admissible (that is, depth- and cut-rank-preserving
admissible) rule is also finitely admissible: in that case the n in the above
definition is zero. A finitary rule which is contained in a system is also finitely
admissible for that system: in that case the n in the above definition is one.
The cut rule, on the other hand, is generally not finitely admissible for (cut-free)
infinitary systems.

Lemma 3.11 The rule
Γ{[ ∗3A,∆]i}

d

Γ{ ∗3A, [∆]i}
is finitely admissible for system DC.

Proof. By induction on the depth of the proof of the premise. The only inter-
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esting case is the one with a ∗3-rule:

P

Γ{[ ∗3A,3kA,∆]i}
∗3

Γ{[ ∗3A,∆]i}
d

Γ{ ∗3A, [∆]i}

;

P

Γ{[ ∗3A,3kA,∆]i}
d

Γ{ ∗3A, [3kA,∆]i}
wk,3i

Γ{ ∗3A,3i3
kA, [∆]i}

wk,∨∗

Γ{ ∗3A,3k+1A, [∆]i}
∗3

Γ{ ∗3A, [∆]i}

,

where the instance of d shown on the right is removed by induction hypothesis.

Theorem 3.12 (Shallow into deep) If GC
α

γ
Γ then DC

ω·α

γ
Γ .

Proof. By induction on α and a case analysis on the last rule in the proof. Each
rule of GC except for the 2i-rule is a special case of its respective rule in DC.
For the 2i-rule we have the following transformation:

P

Γ, ∗3∆, A
2i

3iΓ, ∗3∆,2iA,Σ

;

P′

Γ, ∗3∆, A
nec

[Γ, ∗3∆, A]i
wk∗,3∗

i

3iΓ, [ ∗3∆, A]i
d∗

3iΓ, ∗3∆, [A]i
2i,wk

3iΓ, ∗3∆,2iA,Σ

,

where P ′ is obtained by induction hypothesis.

3.4.2 Embedding Deep into Shallow

This is the harder direction, since we need to simulate deep applicability of
rules in the shallow system. We use the invertibility of rules in the shallow
system in order to do so. The 2i-rule is the only rule in GC which is not
invertible. However, a somewhat weaker property than invertibility holds, which
is sufficient for our purposes, and which is stated in the upcoming lemma.

Example 3.13 To motivate the following definition consider the following three
provable sequents to which the 2i-rule cannot be applied (upwards) in an in-
vertible way:

2i(a ∧ b),3iā ∨ 3ib̄ 2i(a ∧ b), ∗3ā ∨ ∗3b̄ 2ia, ∗3ā .

Definition 3.14 (hiding formula, ∗3-saturated sequent) A formula is essentially
3i if 1) it is of the form 3iA for any formula A or 2) it is of the form A∨B,B ∨

A,A∧B or B ∧A where A is any formula and B is a formula which is essentially
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3i. A formula is hiding 3i in case 2). We define essentially ∗3 and hiding ∗3

formulas likewise. A formula is just hiding if it is either hiding 3i for some i
or hiding ∗3. A sequent Γ is ∗3-saturated if ∗3A ∈ Γ implies 3iA ∈ Γ, for each
formula A and each i with 1 ≤ i ≤ h.

Definition 3.15 (canonical 2i-instance) An instance of the rule

2i
Γ, ∗3∆, A

3iΓ, ∗3∆,2iA,Σ

is canonical if no formulas of the form 3iB or ∗3B are in Σ.

Lemma 3.16 (Quasi-invertibility of the 2i-rule) Let Γ be a ∗3-saturated sequent
without hiding formulas and let there be a proof of the sequent 2iA,Γ in GC.
Then there is a proof of the same depth in GC either 1) of the sequent Γ or 2)
of the sequent 2iA,Γ where the last rule instance is a canonical instance of the
2i-rule applying to the shown formula 2iA.

Proof. By induction on the depth of the given proof and a case analysis on
the last rule. If the endsequent is axiomatic then Γ is axiomatic and the first
disjunct of our lemma applies. If the last rule is the ∗2-rule then the proof is of
the form

...

Pk

2iA,Γ1,2
kB

...
∗2 1≤k

2iA,Γ1, ∗2B

We apply the induction hypothesis to each premise, with Γ = Γ1,2
kB. Notice

that Γ is ∗3-saturated and does not contain hiding formulas. There are two
cases. First, if for all premises the first disjunct of the induction hypothesis is
true then for each k we have a proof P ′

k such that the following shows the first
disjunct of our lemma:

...

P′

k

Γ1,2
kB

...
∗2 1≤k

Γ1, ∗2B

.

Second, if for some premise the second disjunct of the induction hypothesis is
true then for some k we have a proof of the form

A,Γ′

2i

2iA,Γ1,2
kB

.

Notice that the 2i-rule can only introduce a formula of the form 2
kB in Σ, so
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we can easily turn this into a proof

A,Γ′

2i

2iA,Γ1, ∗2B

,

and we have shown the second disjunct of our lemma. The cases for ∨ and ∧

are similar.

If the last rule is the ∗3-rule then the following transformation yields a shorter
proof:

P

2iA,Γ1, ∗3B,3B
∗3

2iA,Γ1, ∗3B

;

P

2iA,Γ1, ∗3B,3B
∨̄
∗

2iA,Γ1, ∗3B,31B, . . . ,3nB
ctr∗

2iA,Γ1, ∗3B

,

where by assumption of ∗3-saturation all the 3iB are in Γ1. To this proof we
can now apply the induction hypothesis which yields our lemma.

If the last rule in the given proof is the 2j-rule, then we distinguish two cases.
First, if 2iA is the active formula then the second disjunct of our lemma is
either immediate or obtained via weakening admissibility if the rule instance is
not canonical.

Second, if 2iA is not the active formula then the proof is of the form

P

Γ′

2j

2iA,Γ1,2jB

,

where the formula 2iA has been introduced inside Σ. We can thus change it
into a proof

P

Γ′

2j

Γ1,2jB

,

which shows the first disjunct of our lemma.

In order to translate a derivation with deep rule applications into a derivation
where only shallow rules are allowed we need a way of simulating the deep
applicability. It turns out that, for certain shallow rules, if they are admissible
for the shallow system, then their “deep version” is also admissible.
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Definition 3.17 (Make a shallow rule deep) Let C{ } be a formula context.
Given a rule ρ we define a rule rule C{ρ} as follows: an instance of the rule ρ
is shown on the left iff an instance of the rule C{ρ} is shown on the right:

Γ, A1 . . . Γ, Ai . . .
ρ

Γ, A

Γ, C{A1} . . . Γ, C{Ai} . . .
C{ρ}

Γ, C{A}
.

We define a restricted context as a formula context in which the hole is in the
scope of at most the connectives from {∨,21, . . . ,2h}. Given a rule ρ we define
the rule rule ρ̌ as follows: its set of instances is the union of all sets of instances
of C{ρ} where C{ } is a restricted context.

Lemma 3.18 (Deep applicability preserves finite admissibility) Let C{ } be a
restricted context.
(i) There is an n such that for all Γ we have GC

n

0 Γ, C{p ∨ p̄} .
(ii) If a rule ρ is finitely admissible for GC then C{ρ} is also finitely admissible
for system GC.
(iii) If a rule ρ is finitely admissible for GC then ρ̌ is also finitely admissible for
system GC.

Proof. Statement (iii) is immediate from (ii). Both (i) and (ii) are proved by
induction on C{ }. The case with C{ } = C1{ } ∨ C2 is of course analogous
to the case with C{ } = C1 ∨ C2{ } and is omitted. We first prove (i).
The case that C{ } is empty is handled by an application of the ∨-rule. If
C{ } = C1 ∨ C2{ } or C{ } = 2iC1{ } then we obtain a proof respectively as
follows:

P

Γ, C1, C2{p ∨ p̄}
∨

Γ, C1 ∨ C2{p ∨ p̄}

or
P

C1{p ∨ p̄}
2i

Γ,2iC1{p ∨ p̄}

where in both cases P exists by induction hypothesis. For statement (ii) the
case that C{ } is empty is clear, so we assume that it is non-empty. If C{ } =
C1 ∨ C2{ } then the following transformation proves our claim:

...

Pk

Γ, C1 ∨ C2{Ak}
...

C1∨C2{ρ}
Γ, C1 ∨ C2{A}

; ...

Pk

Γ, C1 ∨ C2{Ak}
∨̄

Γ, C1, C2{Ak}
...

C2{ρ}
Γ, C1, C2{A}

∨

Γ, C1 ∨ C2{A}

If C{ } = 2iC1{ } then we have the following situation:

...

Pk

Γ,2iC1{Ak}
...

2iC1{ρ}
Γ,2iC1{A}

.
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In order to apply quasi-invertibility of 2i, Lemma 3.16, we first need to replace
the shown instance of the rule 2iC1{ρ} by several instances of it which are
applied in a context which is ∗3-saturated and free of hiding formulas. We apply
conjunction invertibility, disjunction invertibility and weakening admissibility
to each Pk to obtain a sequence of proofs Pk1 . . .Pkm such that for each k there
is a proof of the form

Pk1

Γ1,2iC1{Ak} . . .

Pkm

Γm,2iC1{Ak}

∧,∨,∗3

Γ,2iC1{Ak}

,

where each Γj is ∗3-saturated and free of hiding formulas.

Fix some j. For all k apply quasi-invertibility of 2i, Lemma 3.16, to the proof
Pkj . Either this yields some proof P of Γj or for each k it yields a proof P ′

kj of
some sequent Γ′

j , C1{Ak}. Then we can build either

P

Γ
wk

Γj ,2iC1{A}

or
...

P′

kj

Γ′
j , C1{Ak}

...
C1{ρ}

Γ′
j , C1{A}

2i

Γj ,2iC1{A}

,

where in the second case C1{ρ} is finitely admissible by induction hypothesis.
Repeat this argument for each j with 1 ≤ j ≤ m, which for each j yields a proof
P ′′
j in GC. From those we build

P′′

1

Γ1,2iC1{A} . . .

P′′

m

Γm,2iC1{A}

∧,∨,∗3

Γ,2iC1{A}

,

which shows our lemma.

Lemma 3.19 (Some glue) The rules in Figure 3.6 are finitely admissible for
system GC.

Proof. The rules gc, ga and gctr are easily seen to be finitely admissible by using
invertibility of the ∨-rule. For the g3-rule we proceed by induction on the given
proof of the premise and make a case analysis on the last rule in this proof.
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gc
Γ, A ∨ B
Γ, B ∨ A

ga
Γ, (A ∨ B) ∨ C
Γ, A ∨ (B ∨ C)

gctr
Γ, A ∨ A
Γ, A

g3

Γ,2i(A ∨ B)
Γ,3iA,2iB

g∗3
Γ,3kA
Γ, ∗3A

where k ≥ 1

Figure 3.6: Some glue

All cases are trivial except when this is the 2i-rule. We distinguish two cases:
either 1) 2i(A∨B) is the active formula or 2) it is not. In the first case we have:

P

∗3∆,Λ, A ∨ B
2i

Σ, ∗3∆,3iΛ,2i(A ∨ B)
g3

Σ, ∗3∆,3iΛ,3iA,2iB

;

P

∗3∆,Λ, A ∨ B
∨

∗3∆,Λ, A,B
2i

Σ, ∗3∆,3iΛ,3iA,2iB

and in the second case we have the following:

P

C,Γ′′

2i

2iC,Γ
′,2i(A ∨ B)

g3

2iC,Γ
′,3iA,2iB

;
P

C,Γ′′

2i

2iC,Γ
′,3iA,2iB

.

For the g∗3-rule we proceed by induction on k and a subinduction on the depth
of the given proof of the premise. For k = 1 the g∗3-rule coincides with the
∗3-rule plus a weakening, so we assume that we have a proof of Γ,3k+1A. By
invertibility of the ∨-rule we obtain a proof

P

Γ,313
kA, . . . ,3h3

kA

of the same depth. By induction on the depth of P and a case analysis on
the last rule in P we now show that we have a proof of the same depth of
Γ, ∗3A. All cases are trivial except when the last rule is 2i. Then the following
transformation:

P′

B,∆, ∗3Λ,3kA
2i

2iB,3i∆, ∗3Λ,Σ,313
kA, . . . ,3h3

kA

;

P′

B,∆, ∗3Λ,3kA
g∗3

B,∆, ∗3Λ, ∗3A
2i

2iB,3i∆, ∗3Λ,Σ, ∗3A
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proves our claim, where the instance of the g∗3-rule on the right is finitely ad-
missible by the outer induction hypothesis.

For our translation from deep into shallow we translate nested sequents into
formulas and thus fix an arbitrary order and association among elements of a
sequent. The arbitrariness of this translation gets in the way, and we work
around it as follows: we write

ac
A
B

if the formula B can be derived from the formula A in {ǧc, ǧa}. Clearly, in that
case A and B are equal modulo commutativity and associativity of disjunction.
The converse is not the case. For example ∗3(C ∨ D) can not be derived from
∗3(D ∨C) by ac, in general. Note that since ǧc and ǧa are finitely admissible for
system GC, so is the rule ac.

Theorem 3.20 (Deep into shallow)

If DC
α

0 Γ then we have GC
ω·(α+1)

0 Γ
F
.

Proof. By induction on α. If the endsequent of the given proof is of the form
Γ{p, p̄}, then we have

Γ{p, p̄} ;

P

Γ
F
{p ∨ p̄}

ac

Γ{p, p̄}
F

where P is of finite depth by Lemma 3.18 and ac is finitely admissible by
Lemma 3.19 and Lemma 3.18. If the last rule is the ∨-rule then an application
of ac proves our claim. The case of the 2i-rule is trivial since the corresponding
formula for the premise is the corresponding formula of the conclusion. For the
∗2-rule we apply the following transformation, where the P ′

k are obtained by
induction hypothesis:

...

Pk

Γ{2kA}
...

∗2 1≤k<ω

Γ{ ∗2A}

; ...

P′

k

Γ{2kA}
F

ac

Γ
F
{2kA}

...
ΓF{∗2} 1≤k<ω

Γ
F
{ ∗2A}

ac

Γ{ ∗2A}
F

Let the depth of the proof on the left be β with β ≤ α and the depth of a proof
Pk be βk. Note that the depth of the ac-derivations both below and above the
infinitary rule is bounded by a finite ordinal m because the context Γ{ } is finite.
Then, by finite admissibility of the rule Γ

F
{ ∗2} (Lemma 3.18) there is a finite
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ordinal n such that the proof on the right has the depth

supk(|P
′
k|+m+ 1) + n+m < supk(|P

′
k|) + ω

≤ supk(ω · (βk + 1)) + ω = ω · supk(βk + 1) + ω
= ω · β + ω = ω · (β + 1) ≤ ω · (α+ 1) .

The case for the ∧-rule is similar. For the 3i-rule we apply the following trans-
formation, where P ′ is obtained by induction hypothesis and the bound on the
depth is easy to check:

P

Γ{3iA, [A,∆]i}
3i

Γ{3iA, [∆]i}

;

P′

Γ{3iA, [A,∆]i}
F

ac

Γ
F
{3iA ∨ 2i(A ∨ ∆

F
)}

ΓF{3iA∨g3}
Γ

F
{3iA ∨ (3iA ∨ 2i∆F

)}
ac

Γ
F
{(3iA ∨ 3iA) ∨ 2i∆F

}
ΓF{gctr∨2i∆F}

Γ
F
{3iA ∨ 2i∆F

}
ac

Γ{3iA, [∆]i}
F

.

Note that here a rule like C{ρ ∨ A} means the rule ρ applied in the context
C{{ } ∨ A}, and is finitely admissible for GC if is ρ is finitely admissible for GC,
by Lemma 3.18.

The case for the ∗3-rule is similar.

We can now state the cut-elimination theorem for the shallow system.

Theorem 3.21 (Cut-elimination for the shallow system)

If GC
α

ω·n Γ then GC
ω·(ϕn

1 (ω·α)+1)

0 Γ

3.5 An Upper Bound on the Depth of Proofs

The Hilbert system HC is obtained from some Hilbert system for classical propo-
sitional logic by adding the axioms and rules shown in Figure 3.7. It is essentially
the same as system KC

h from the book [18], where also soundness and complete-
ness are shown. We will now embed HC into DC + cut, keeping track of the
proof depth and thus, via cut-elimination for DC, establish an upper bound for
proofs in DC. Via the embedding of the deep system into the shallow system,
this bound also holds for the shallow system.

Theorem 3.22 (HC into DC + cut) If HC ⊢ A then DC
<ω2

ω2 A.

Proof. The proof is by induction on the depth of the derivation in HC. If A is
a propositional axiom of HC then there is a finite derivation of A in the propo-
sitional part of system DC such that all premises are instances of the general
identity axiom. Thus we obtain DC

ω·m

0 A for some m < ω by admissibility of
the general identity axiom (Lemma 3.4).
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(K) 2iA ∧ 2i(A ⊃ B) ⊃ 2iB (CCL) ∗2A ⊃ (2A ∧ 2 ∗2A)

(IND)
B ⊃ (2A ∧ 2B)

B ⊃ ∗2A
(MP)

A A ⊃ B
B

(NEC)
A

2iA

Figure 3.7: System HC

If A is an instance of (K), then we obtain DC
ω·m

0 A for some m < ω from the
following derivation and admissibility of the general identity axiom to take care
of the premises.

3iĀ,3i(A ∧ B̄), [B,A, Ā]i
3i

3iĀ,3i(A ∧ B̄), [B,A]i 3iĀ,3i(A ∧ B̄), [B, B̄]i
∧

3iĀ,3i(A ∧ B̄), [B,A ∧ B̄]i
3i

3iĀ,3i(A ∧ B̄), [B]i
2i

3iĀ,3i(A ∧ B̄),2iB
∨
2

2iA ∧ 2i(A ⊃ B) ⊃ 2iB

If A is an instance of (CCL), then we obtain DC
ω·m

0 A for some m < ω from
the following derivation and again admissibility of the general identity axiom to
take care of the premises. An argument similar to the one used to derive the
general identity axiom guarantees that all premises of the ∗2 rule are derivable
with depth smaller than rk( ∗2A).

3Ā,2A
∗3,wk

∗3Ā,2A

...

...

[3kĀ,2kA]i
3i,wk

3i3
kĀ, [2kA]i

∨,wk

3
k+1Ā, [2kA]i

∗3,wk
∗3Ā, [2kA]i

...
∗2 1≤k<ω

∗3Ā, [ ∗2A]i
2i

∗3Ā,2i ∗2A
...

∧
1≤i≤h

∗3Ā,2 ∗2A
∧

∗3Ā,2A ∧ 2 ∗2A
∨

∗2A ⊃ (2A ∧ 2 ∗2A)

If the last rule in the derivation is an instance of (MP), then by the induction
hypothesis there are m1,m2, n1, n2 < ω such that DC

ω·m1

ω·n1
A and DC

ω·m2

ω·n2

A⊃B. Thus we getDC
ω·m1

ω·n1
A,B by weakening admissibility andDC

ω·m2

ω·n2
Ā, B

by invertibility. An application of cut yields DC
ω·m

ω·n B form = max (m1,m2)+1
and n = max (n1, n2, rk(A) + 1).

If the last rule in the derivation is an instance of (NEC), then the claim fol-
lows from the induction hypothesis, the fact that nec is cut-rank- and depth-
preserving admissible, and an application of 2i.

If the last rule in the derivation is an instance of (IND), then by the induction
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hypothesis there are m1, n1 < ω such that DC
ω·m1

ω·n1
B ⊃ (2A ∧ 2B). Then by

invertibility of the ∧- and ∨-rules we obtain

1) DC
ω·m1

ω·n1
B̄,2B and 2) DC

ω·m1

ω·n1
B̄,2A.

Let n2 be such that rk(2B) < ω ·n2. We set n = max (n1, n2). By induction on

k we show that for all k ≥ 1 there is an m2 < ω such that DC
ω·m1+m2

ω·n B̄,2kA.
The case k = 1 is given by 2) and the induction step is as follows:

B̄,2B

...

B̄,2kA
nec

[B̄,2kA]i
3i,wk

3iB̄, [2kA]i
2i

3iB̄,2i2
kA

∨,wk

3B̄,2i2
kA

...
∧

1≤i≤h

3B̄,2k+1A
cut

B̄,2k+1A

,

where the premise on the left is 1) and the premise on the right follows by
induction hypothesis. The claim follows by applications of ∗2 and ∨.

The embedding of the Hilbert system into the nested sequent system together
with the cut-elimination theorem for the deep system gives us the following
upper bounds on the depth of proofs in the cut-free systems.

Theorem 3.23 (Upper bounds) If A is a valid formula then

(i) DC
<ϕ20

0 A, and

(ii) GC
<ϕ20

0 A.

Proof. If A is valid then by completeness of HC we have HC ⊢ A and by the
embedding of the Hilbert system into the nested sequent system there are nat-
ural numbers m,n such that DC

ω·m

ω·n A. By the cut elimination theorem for

the nested sequent system we obtain DC
ϕn

1 (ω·m)

0 A. We know ϕβ1γ1 < ϕβ2γ2

if β1 < β2 and γ1 < ϕβ2γ2. Thus DC
<ϕ20

0 A. For (ii) by the embedding of the
deep system into the shallow system it suffices to check that for α < ϕ20 we
have ω · (α+ 1) < ϕ20.

3.6 Discussion

We have introduced a nested sequent system for common knowledge which,
in contrast to the ordinary sequent system by Alberucci and Jäger, admits a
syntactic cut-elimination procedure. We have shown this cut-elimination proce-
dure, and, via embedding the two systems into each other, have also provided a
cut-elimination procedure for the shallow system. We embedded a Hilbert style
system and obtained ϕ20 as upper bound on the depth of cut-free proofs for
both sequent systems.

Notice in particular how we used the nested sequent system as a tool in order
to prove a result about an existing, ordinary sequent system. Designing some
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kind of infinitary proof system with a syntactic cut-elimination for the logic of
common knowledge was the less interesting part: we could have used both the
display calculus and labelled sequents to do so. However, it is hard to imagine
how a cut-free display calculus or cut-free labelled sequent calculus could have
been translated back into our cut-free ordinary sequent calculus. The fact that
nested sequents stay inside the modal language allowed us to do so.

Other modal logics. We have looked at common knowledge based on the least
normal modal logic. In a sense, common belief would be a better name. Given
the previous chapter, it seems that any other modal logic of the cube could be
used instead and thus our approach is independent of the particular underlying
axiomatisation of knowledge. The modal logic S5 is often proposed as an ade-
quate logic for knowledge. As we have seen in the previous chapter, contrary to
shallow sequents, nested sequents can easily handle S5. So it is easy to design
a system for S5-based common knowledge. We just need to add a single rule to
system DC:

S5
Γ{3A}{A}
Γ{3A}{∅}

.

However, hypersequents are already sufficient to capture S5 and a system for
S5-based common knowledge based on the hypersequent system LS5 by Mints
[34] seems to admit a cut-elimination procedure similar to the one given here
for system DC. So for S5-based common knowledge there is no need for nested
sequents.

Future work. Of course there are also more speculative questions. What is the
mathematical meaning of the upper bound on the depth of cut-free proofs? Is
there a kind of boundedness lemma in modal logic similar to the one used in
the analysis of set theories and second order arithmetic? What would be the
equivalent of a well-ordering proof in modal logic? Is ϕ20 the best possible
upper bound on the depth of proofs? Can our analysis be extended to more
powerful modal fixpoint logics? Work under preparation suggests that a cut-free
infinitary nested sequent system for the µ-calculus can be bounded by ϕω0.

A more interesting, and harder problem is the design of cut-free finitary sequent
systems for modal fixpoint logics. While such systems exist, for example for
temporal logics [20, 12], their rules are context-dependent in a way which makes
it hard to study them proof-theoretically, in particular it seems hard to design
a syntactic cut-elimination procedure.
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[14] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic.
In R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250
of Lecture Notes in Artificial Intelligence, pages 347–361. Springer-Verlag,
2001.

[15] Robert A. Bull. Cut elimination for propositional dynamic logic without *.
Mathematische Logik und Grundlagen der Mathematik, 38:85–100, 1992.
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[24] Rajeev Goré, Linda Postniece, and Alwen Tiu. Taming displayed tense
logics using nested sequents with deep inference. Accepted at Tableaux
2009, 2009.
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