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INTRODUCTION

[T]he framework of ordinary sequents is not capable of handling
all interesting logics. There are logics with nice, simple seman-
tics and obvious interest for which no decent, cut-free formula-
tion seems to exist . . .. Larger, but still satisfactory frameworks
should, therefore, be sought. A. Avron [1996, p. 3]

This chapter surveys the application of various kinds of sequent systems
to modal and temporal logic, also called tense logic. The starting point
are ordinary Gentzen sequents and their limitations both technically and
philosophically. The rest of the chapter is devoted to generalizations of
the ordinary notion of sequent. These considerations are restricted to for-
malisms that do not make explicit use of semantic parameters like possible
worlds or truth values, thereby excluding, for instance, Gabbay’s labelled
deductive systems, indexed tableau calculi, and Kanger-style proof systems
from being dealt with. Readers interested in these types of proof systems
are referred to [Gabbay, 1996], [Goré, 1999] and [Pliuškevien

.
e, 1998]. Also

Orlowska’s [1988; 1996] Rasiowa-Sikorski-style relational proof systems for
normal modal logics will not be considered in the present chapter. In rela-
tional proof systems the logical object language is associated with a language
of relational terms. These terms may contain subterms representing the ac-
cessibility relation in possible-worlds models, so that semantic information
is available at the same level as syntactic information. The derivation rules
in relational proof systems manipulate finite sequences of relational formulas
constructed from relational terms and relational operations. An overview of
ordinary sequent systems for non-classical logics is given in [Ono, 1998], and
for a general background on proof theory the reader may consult [Troelstra
and Schwichtenberg, 2000]. In this chapter we shall pay special attention to
display logic, a general proof-theoretic approach developed by Belnap [1982].
Two applications of the modal display calculus are included as case studies:
the formulas-as-types notion of construction for temporal logic and a display
calculus for propositional bi-intuitionistic logic (also called Heyting-Brouwer
logic). This logic comprises both constructive implication and coimplica-
tion (see, for example, [Goré, 2000], [Rauszer, 1980], [Wolter, 1998]), and its
sequent-calculus presentation to be given is based on a modal translation
into the temporal propositional logic S4t.1

1The chapter consists of revised and expanded material from [Wansing, 1998] and
includes the contents of the unpublished report [Wansing, 2000] on formulas-as-types for
temporal logics. Moreover, the sequent calculus for bi-intuitionistic logic and subsystems
of bi-intuitionistic logics in Section 3.8 and the translation of multiple-sequent systems
into higher-arity sequent systems in Section 4.1 are new.
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A note on notation. In the present chapter, both classical and constructive
logics will be considered. Therefore it makes sense to reflect this distinction
in the notation for the logical operations. In particular, the following sym-
bols will be used: B (constructive, intuitionistic implication), J (coimplica-
tion), ⊃ (Boolean implication), a (intuitionistic negation), ` (conegation),
¬ (Boolean negation).

1 ORDINARY SEQUENT SYSTEMS

The presentation of normal modal logics as ordinary (standard) sequent sys-
tems has turned out to be problematic for both technical and philosophical
reasons. The technical problems chiefly result from a lack of flexibility of
the ordinary notion of sequent for dealing with the multitude of interesting
and important modal logics in a uniform and perspicuous way. In this sec-
tion a number of standard Gentzen systems for normal modal propositional
logics is reviewed in order to give an impression of what has been and what
can be done to present normal modal logics as ordinary Gentzen calculi.
An ordinary Gentzen system is a collection of rule schemata for manipulat-
ing Gentzen sequents; these are derivability statements of the form ∆→ Γ,
where ∆ and Γ are finite, possibly empty sets of formulas. The set terms ‘∆’
and ‘Γ’ are called the antecedent and the succedent of ∆→ Γ, respectively.
Often, a sequent

{A1, . . . , Am} → {B1, . . . , Bn}

is written as A1, . . . , Am → B1, . . . , Bn. This notation supports viewing
the ‘,’ (the comma) as a structure connective in the language of sequents.
Indeed, the sequent arrow in Gentzen’s [1934] denotes a derivability relation
between finite sequences of formulas separated by the comma. Gentzen,
however, postulated structural rules that justify thinking of antecedents
and succedents as denoting sets:

(permutation) ∆, A,B,Γ→ Σ ∆→ Σ, A,B,Γ
∆, B,A,Γ→ Σ ∆→ Σ, B,A,Γ

(contraction) ∆, A,A,Γ→ Σ ∆→ Σ, A,A,Γ
∆, A,Γ→ Σ ∆→ Σ, A,Γ

Gentzen also postulated

(monotonicity) ∆,Γ→ Σ ∆→ Γ,Σ
∆, A,Γ→ Σ ∆→ Γ, A,Σ

These three rules are structural in the sense of exhibiting no operation
from an underlying logical object language. If the polymorphic comma is
interpreted as a binary structure connective that may or may not be asso-
ciative, the antecedent and the succedent of a sequent are Gentzen terms,
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and in generalized sequent calculi, the sequents display Gentzen terms or
other, much more complex data structures. We shall use ‘`’ to denote the
derivability relation in a given axiomatic system or a consequence relation
between finite sets of sequents and single sequents satisfying identity, cut,
and monotonicity. In other words, if ∆ and Γ are finite sets of sequents and
s, s′ are sequents, then we assume that {s} ` s,

∆ ` s
∆ ∪ {s′} ` s

and
∆ ` s Γ ∪ {s} ` s′

∆ ∪ Γ ` s′
.

1.1 Ordinary Gentzen systems for normal modal logics

The syntax of modal propositional logic (in Backus-Naur form, see for ex-
ample [Goldblatt, 1992, p. 3]) is given by:

A ::= p | t | f | ¬A | A ∧B | A ∨B | A ⊃ B | A ≡
B | 3A | 2A.

The smallest normal modal propositional logic K admits a simple presen-
tation as an ordinary Gentzen system (see, for instance, [Leivant, 1981],
[Mints, 1990], [Sambin and Valentini, 1982]). In the language with 2 (“nec-
essarily”) as the only primitive modal operator and 3A (“possibly A”) being
defined as ¬2¬A, one may just add the rule

(→ 2)1 ∆→ A ` 2∆→ 2A

to the standard sequent system LCPL for classical propositional logic CPL,
where 2∆ = {2A | A ∈ ∆}. A sequent calculus LK4 for K4 can be
obtained by supplementing LCPL with the rule

(→ 2)2 ∆,2∆→ A ` 2∆→ 2A

(see [Sambin and Valentini, 1982]). In [Goble, 1974] it is shown that the
pair of modal sequent rules (→ 2)1 and

(2→)1 ∆, A→ ∅ ` 2∆,2A→ ∅

yields a sequent system for KD (where ‘∅’ denotes the empty set) and that
a sequent calculus for KD4 is obtained, if (→ 2)1 is replaced by the rule

(→ 2)3 ∆′ → A ` 2∆→ 2A,

where ∆′ results from ∆ by prefixing zero or more formulas in ∆ by 2.
Shvarts [1989] gives a sequent calculus formulation of KD45 by adjoining
to LCPL the following rule for 2:

[2] 2∆1,∆2 → 2Γ1,Γ2 ` 2∆1,2∆2 → 2Γ1,2Γ2,

where Γ2 contains at most one formula. If in addition Γ1 and Γ2 are required
to be non-empty, this results in a sequent system for K45.
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Among the most important modal logics are the almost ubiquitous sys-
tems S4 and S5. Standard sequent systems for the axiomatic calculi S4 (=
KT4) and S5 (= KT5 = KT4B) were studied by Ohnishi and Matsumoto
[1957]. They considered the following schematic sequent rules for 2 and 3:

(→ 2)0 2∆→ 2Γ, A ` 2∆→ 2Γ,2A;
(2→)0 ∆, A→ Γ ` ∆,2A→ Γ;
(→ 3)0 ∆→ Γ, A ` ∆→ Γ,3A;
(3→)0 3Γ, A→ 3∆ ` 3Γ,3A→ 3∆;

where 3∆ = {3A | A ∈ ∆}. If either the rules (→ 2)0 and (2 →)0 or
the rules (→ 3)0 and (3 →)0 are adjoined to LCPL, then the result is a
sequent calculus LS5∗ for S5. If Γ is empty in (→ 2)0 or (3 →)0, this
yields a sequent calculus LS4 for S4. Several other modal logics can be
obtained by imposing suitable constraints on the structures exhibited in
(→ 2)0 and (3 →)0, respectively. Ohnishi and Matsumoto show that if
(→ 2)0 and (3→)0 are replaced by (→ 2)1 and

(3→)1 A→ Γ ` 3A→ 3Γ,

one obtains a Gentzen-system LKT for KT (= T). Kripke [1963] noted
that the equivalences between 2A and ¬3¬A and between 3A and ¬2¬A
cannot be proved by means of Ohnishi’s and Matsumoto’s rules. In the case
of S4, Kripke suggested remedying this by using sequent rules which exhibit
both 2 and 3, namely in addition to (2→)0 and (→ 3)0 the rules

(→ 2)′ 2Γ→ A,3∆ ` 2Γ→ 2A,3∆
and (3→)′ A,2Γ→ 3∆ ` 3A,2Γ→ 3∆.

Such rules fail to give a separate account of the inferential behaviour of 2

and 3, since only the combined use of these operations is specified. Another
problem with Ohnishi’s and Matsumoto’s sequent rules for S5 is that the
cut-rule

∆→ Σ, A; Γ, A→ Θ ` Γ,∆→ Σ,Θ

cannot be eliminated: the system without cut allows proving less formulas
than the full system containing cut. Ohnishi and Matsumoto [1959] give
the following counter-example to cut-elimination:

2p→ 2p
∅ → ¬2p,2p p→ p

∅ → 2¬2p,2p 2p→ p

∅ → 2¬2p, p

A solution to the problem of defining a cut-free ordinary Gentzen system
for S5 has been given in [Braüner, 2000].2 The logic S5 can be faithfully

2Another, perhaps less convincing solution has been presented by Ohnishi [1982].
Define the degree deg(A) of a modal formula in the language with 2 primitive as follows:
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embedded into monadic predicate logic, the first-order logic of unary pred-
icates, under a translation t employing a single individual variable x, see
for instance [Mints, 1992]. The translation t assigns to every propositional
variable p an atomic formula P (x), and for compound formulas it is defined
as follows:

t(t) = t,
t(¬A) = ¬t(A),

t(A]B) = t(A) ] t(B), for ] ∈ {⊃,∧,∨},
t(2A) = ∀xt(A),
t(3A) = ∃xt(A).

THEOREM 1. A modal formula A is provable in S5 if and only if t(A) is
provable in monadic predicate logic.

The familiar cut-free sequent calculus for monadic predicate logic can serve
as a starting point for defining a cut-free ordinary sequent system for S5
with side-conditions on the introduction rules for 2 on the right and 3 on
the left of the sequent arrow. The side conditions are simple, though their
precise formulation requires some terminology that will be useful also in
other contexts. An inference inf is a pair (∆, s), where ∆ is a set of sequents
(the premises of inf ) and s is a single sequent (the conclusion of inf ). A
rule of inference R is a set of inferences. If inf ∈ R, then inf is said to be
an instantiation of R. The rule R is an axiomatic rule, if ∆ = ∅ for every
(∆, s) ∈ R. We assume that inference rules are stated by using variables for
structures (in the present case finite sets of formulas) and formulas. Every
structure occurrence in an inference inf (a sequent s) is called a constituent
of inf (s). The parameters of inf ∈ R are those constituents which occur as
substructures of structures assigned to structure variables in the statement
of R. Constituents of inf are defined as congruent in inf if and only if (iff)
they are occupying similar positions in occurrences of structures assigned
to the same structure variable, in the present case iff they belong to a set
assigned to the same set variable.

DEFINITION 2. Two formula occurrences are immediately connected in
a proof Π iff Π contains an inference inf such that one of the following

1. deg(p) = 0, for every propositional variable p;

2. deg(¬A) = deg(A);

3. deg(A ∧B) = max(deg(A), deg(B));

4. deg(2A) = deg(A) + 1.

Ohnishi adds to (2 →)0 and (→ 2)0 two further rules that deviate considerably from
familiar introduction schemata:

Γ, A∗,∆→ Σ ` Γ, A,∆→ Σ and Γ→ ∆, A∗,Σ ` Γ→ ∆, A,Σ,

where the formula A∗ is defined in such a way that (i) A and A∗ are equivalent in S5
and (ii) deg(A∗) ≤ 1.
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conditions holds:

1. both occurrences are non-parametric, one in the conclusion and the
other in a premise of inf;

2. inf belongs to an axiomatic sequent rule and both occurrences are
non-parametric in inf;

3. inf ∈ cut and both occurrences are non-parametric in inf;

4. the occurrences are parametric and congruent in inf.

A list of formula occurrences A1, . . . , An in a proof Π is called a connection
between A1 and An in Π iff for every i ∈ {1, . . . , n–1}, the occurrences Ai
and Ai+1 are immediately connected in Π. A formula is said to be modally
closed if every propositional variable in the formula occurs in the scope of
an occurrence 3 or 2.

DEFINITION 3. Two formula occurrences in a proof Π are said to be
dependent on each other in Π iff there exists a connection between these
occurrences that does not contain any modally closed formula.

The sequent system LS5 extends LCPL by (2 →)0, (→ 3)0 and the
rules:

(→ 2)′′ Γ→ ∆, A ` Γ→ ∆,2A
and (3→)′′ Γ, A→ ∆ ` Γ,3A→ ∆,

where applications of (→ 2)′′ and (3→)′′ in a proof Π must be such that
in Π none of the formula occurrences in Γ and ∆ depends on the displayed
occurrence of A. A cut-free proof of the notorious sequent ∅ → 2¬2p, p is
then easily available (as it is also in Ohnishi’s [1982] calculus):

p→ p
2p→ p
∅ → ¬2p, p
∅ → 2¬2p, p

THEOREM 4. ([Braüner, 2000]) A sequent ∆ → Γ is provable in LS5 iff∧
∆ ⊃

∨
Γ is provable in S5.

Avron [1984] (see also [Shimura, 1991]) presents a sequent calculus
LS4Grz for S4Grz (= KGrz). He replaces the rule (→ 2)0 in Ohnishi
and Matsumoto’s sequent calculus for S4 by the rule

(→ 2)4 2(A ⊃ 2A),2∆→ A ` 2∆→ 2A

exhibiting both 2 and ⊃. In [Takano, 1992], Takano defines sequent calculi
LKB, LKTB, LKDB, and LK4B for KB, KTB (= B), KDB, and K4B.
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The systems LKB and LK4B are obtained from LCPL by including the
rules

(→ 2)B Γ→ 2Θ, A ` 2Γ→ Θ,2A
and (→ 2)4BE Γ,2Γ→ 2Θ,2∆, A ` 2Γ→ 2Θ,∆,2A

respectively. LKTB and LKDB result from LKB by adjoining (2 →)0

and

(2→)D Γ→ 2∆ ` 2Γ→ ∆

respectively. Standard sequent systems for several other modal logics can
be found in [Goré, 1992] and [Zeman, 1973]. The sequent calculus for S4.3
(= S4 + 2(2A ⊃ B) ∨ 2(2B ⊃ A)) in [Zeman, 1973] results from LS4 by
the addition of the axiomatic sequent

2(A ∨2B),2(2A ∨B)→ 2A,2B.

Shimura [1991] obtains a cut-free sequent system LS4.3 by adding to LCPL
the rules (2→)0 and

(→ 2)5 2Γ→ (2∆)r {2A1} . . .2Γ→ (2∆)r {2An} ` 2Γ→ 2∆,

where ∆ = {A1, . . . , An} and r is set-theoretic difference.

1.2 Ordinary Gentzen systems for normal temporal logics

The syntax of temporal propositional logic is given by:

A ::= p | t | f | ¬A | A ∧B | A ∨B | A ⊃ B | A ≡
B | 〈P 〉A | [P ]A | 〈F 〉A | [F ]A.

Also a number of normal temporal propositional logics have been presented
as ordinary sequent calculi. Nishimura [1980], for example, defines sequent
systems LKt and LK4t for the minimal normal temporal logic Kt and the
tense-logical counterpart K4t of K4. The sequent calculus LKt comprises
the following introduction rules for forward-looking necessity [F ] (“always
in the future”) and backward-looking necessity [P ] (“always in the past”):3

(→ [F ]) Γ→ A, [P ]∆ ` [F ]Γ→ [F ]A,∆;
(→ [P ]) Γ→ A, [F ]∆ ` [P ]Γ→ [P ]A,∆,

where [F ]∆ = {[F ]A | A ∈ ∆} and [P ]∆ = {[P ]A | A ∈ ∆}. In K4t, these
rules are replaced by the following pair of rules:

(→ [F ])4 [F ]Γ,Γ→ A, [P ]∆, [P ]Σ ` [F ]Γ→ [F ]A,∆, [P ]Σ;
(→ [P ])4 [P ]Γ,Γ→ A, [F ]∆, [F ]Σ ` [P ]Γ→ [P ]A,∆, [F ]Σ.

3Nishimura allows infinite sets in antecedent and succedent position. It is proved,
however, that if a sequent Γ → ∆ is provable, then there are finite sets Γ′ ⊆ Γ and
∆′ ⊆ ∆ such that the sequent Γ′ → ∆′ is provable.



8 HEINRICH WANSING

In both systems, 〈P 〉 (“sometimes in the past”) and 〈F 〉 (“sometimes in the
future”) are treaded not as primitive but as defined by 〈P 〉A := ¬[P ]¬A
and 〈F 〉A := ¬[F ]¬A. Note also that this approach gives completely parallel
rules for [F ] and [P ] and that these rules do not exploit the interrelation
between the backward and the forward-looking modalities, that shows up,
for instance, in the provability of A ⊃ [F ]〈P 〉A and A ⊃ [P ]〈F 〉A.

In summary, it may be said that many normal modal and temporal logics
are presentable as ordinary Gentzen calculi, and that in some cases suitable
constraints on the structures exhibited in the statement of the sequent rules
for the modal operators allow for a number of variations. However, no
uniform way of presenting only the most important normal modal and tem-
poral propositional logics as ordinary Gentzen calculi is known. Further,
the standard approach fails to be modular : in general it is not the case
that a single axiom schema is captured by a single sequent rule (or a finite
set of such rules). In the following section a more philosophical critique of
ordinary Gentzen systems is advanced.

1.3 Introduction schemata and the meaning of the logical oper-
ations

The philosophical (and methodological) problems with applying the notion
of a Gentzen sequent to modal logics have to do with the idea of defining
the logical operations by means of introduction schemata (together with
structural assumptions about derivability formulated in terms of structural
rules). This ‘anti-realistic’ conception of the meaning of the logical opera-
tions is often traced back to a certain passage on natural deduction from
Gentzen’s Investigations into Logical Deduction [Gentzen, 1934, p. 80]:

[I]ntroductions represent, as it were, the ‘definitions’ of the sym-
bols concerned, and the eliminations are no more, in the final
analysis, than the consequences of these definitions.

To qualify as a definition of a logical operation, an introduction schema
must satisfy certain adequacy criteria. Such conditions are discussed, for
instance, by Hacking [1994]. Following Hacking, if introduction rules are to
be regarded as defining logical operations, these rules must be such that the
structural rules monotonicity (also called weakening, thinning, or dilution),
reflexivity, and cut can be eliminated. Hacking claims that

[i]t is not provability of cut-elimination that excludes modal
logic, but dilution-elimination . . .. The serious modal logics such
as T, S4 and S5 have cut-free sequent-calculus formalizations,
but the rules place restrictions on side formulas. Gentzen’s rules
for sentential connections are all ‘local’ in that they concern
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only the components from which the principal formula is built
up, and place no restrictions on the side formulas. Gentzen’s
own first-order rules, though not strictly local, are equivalent
to local ones. That is why dilution-elimination goes through for
first-order logic but not for modal logics ([Hacking, 1994, p. 24]).

By dilution-elimination Hacking means that the monotonicity rules

∆→ Γ ` ∆, A→ Γ, ∆→ Γ ` ∆→ Γ, A

may be replaced by atomic thinning rules

∆→ Γ ` ∆, p→ Γ, ∆→ Γ ` ∆→ Γ, p.

without changing the set of provable sequents. Similarly, reflexivity-elimin-
ation amounts to replaceability of ` A → A by ` p → p. The term “cut-
elimination” is reserved for something stronger than replaceability of cut by
the atomic cut-rule

∆→ Σ, p; Γ, p→ Θ ` Γ,∆→ Σ,Θ.

A cut-elimination proof shows the admissibility of cut: the rule has no effect
on the set of provable sequents.

The introduction rules for 2 in LS4 prevent dilution-elimination. Ob-
viously, the sequent 2B,2A → 2A, for example, cannot be proved using
only these rules and atomic thinning. A problem with the requirement
of dilution-elimination is the weak status monotonicity has acquired as a
defining characteristic of logical deduction. In view of the substantial work
on relevance logic, many other substructural logics, and a plethora of non-
monotonic reasoning formalisms extending a monotonic base system, mono-
tonicity of inference is not generally viewed as a touchstone of logicality any-
more. Moreover, also reflexivity and cut have been questioned. Unrestricted
transitivity of deduction as expressed by the cut-rule does not hold, for in-
stance, in Tennant’s intuitionistic relevant logic [1994], and both reflexivity
and cut fail to be validated by Update-to-Test semantic consequence as de-
fined in Dynamic Logic, see [van Benthem, 1996]. Reflexivity-elimination
and cut-elimination are, however, important. According to Belnap [1982,
p. 383], the provability of A→ A constitutes

half of what is required to show that the “meaning” of formulas
. . . is not context-sensitive, but that instead formulas “mean the
same” in both antecedent and consequent position. (The [Cut]
Elimination Theorem . . . is the other half of what is required for
this purpose).

A similar remark can be found in [Girard, 1989, p. 31]. Cut-elimination is
indispensable, because it amounts to the familiar non-creativity requirement
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for definitions (see, for instance, [Hacking, 1994], [von Kutschera, 1968]). If
one adds introduction rules for a (finitary) operation f to a sequent calculus,
this addition ought to be conservative, so that in the extended formalism,
every proof of an f -free formula A is convertible into a proof of A without
any application of an introduction rule for f .

There are other reasons why the eliminability of cut is a desirable prop-
erty. Usually, cut-elimination implies the subformula property: every cut-
free proof of a sequent s contains only subformulas of formulas in s. In
sequent calculi for decidable logics, the subformula property can often be
used to give a syntactic proof of decidability. According to Sambin and
Valentini [1982, p. 316], it

is usually not difficult to choose suitable [sequent] rules for each
modal logic if one is content with completeness of rules. The
real problem however is to find a set of rules also satisfying the
subformula-property.

The sequent calculi for S5 in [Mints, 1970], [Sato, 1977], and [Sato, 1980],
although admitting cut-elimination, do not have the subformula property.
In a sequent calculus with an enriched structural language, the subformula
property need not be accompanied by a substructure property. In such sys-
tems the subformula property for the logical vocabulary need neither imply
nor be of direct use for syntactic decidability proofs. Avron [1996, p. 2] re-
quires of a decent sequent calculus simplicity of the structures employed and
a ‘real’ subformula property. But even without the substructure property,
the subformula property may be useful, for instance in proving conservative
extension results, see also Section 3.8.

It is well-known that cut-elimination itself does not guarantee efficient
proof search (see [D’Agostino and Mondadori, 1994], [Boolos, 1984]), so
that it may be attractive to work with an analytic, subformula property
preserving cut-rule, if possible. An application of cut

∆→ Σ, A Γ, A→ Θ ` Γ,∆→ Σ,Θ

is analytic (see [Smullyan, 1968]), if the cut-formula A is a subformula of
some formula in the conclusion sequent Γ,∆ → Σ,Θ. Let Sub(∆) denote
the set of all subformulas of formulas in ∆. Applications of the sequent
rules

(→ 2)B Γ→ 2Θ, A ` 2Γ→ Θ,2A
(→ 2)4BE Γ,2Γ→ 2Θ,2∆, A ` 2Γ→ 2Θ,∆,2A

and (2→)D Γ→ 2∆ ` 2Γ→ ∆

may be said to be analytic if 2Θ ⊆ Sub(Γ∪{A}), 2∆ ⊆ Sub(2Γ∪2Θ∪{A}),
and 2∆ ⊆ Sub(Γ), respectively. Takano [1992] shows that the cut-rule in
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LS5∗, LKB, LKTB, LKDB, LK4B, LKt and LK4t can be replaced by
the analytic cut-rule: every proof in these sequent calculi can be transformed
into a proof of the same sequent such that every application of cut (and,
moreover, every application of the rules (→ 2)B , (→ 2)4BE , and (→ 2)D)
in this proof is analytic.

Although admissibility of analytic cut is a welcome property, in general,
unrestricted cut-elimination is to be preferred over elimination of analytic
cut. Admissibility of cut has great conceptual significance. The cut-rule
justifies certain substitutions of data; in particular it justifies the use of
previously proved formulas. Moreover, if the cut-rule is assumed, the non-
creativity requirement for definitions implies that cut must be eliminable.

There are other nice properties of introduction schemata as definitions
in addition to enabling cut-elimination and reflexivity-elimination. The
assignment of meaning to the logical operations should, for instance, be
non-holistic, and hence sequent rules like the above (→ 2)′ and (3→)′ are
unsuitable. If (the statement of) an introduction rule for a logical operation
f exhibits no connective other than f , the rule is called separated, see [Zucker
and Tragesser, 1978]. An even stronger condition is segregation, requiring
that the antecedent (succedent) of the conclusion sequent in a left (right)
introduction rule must not exhibit any structure operation. Segregation
has been suggested (although not under this name) by Belnap [1996] who
explains that

[t]he nub is this. If a rule for ⊃ only shows how A ⊃ B behaves
in context, then that rule is not merely explaining the meaning
of ⊃. It is also and inextricably explaining the meaning of the
context. Suppose we give sufficient conditions for

A ⊃ B,∆→ Γ

in part by the rule

∆→ A B → Γ
A ⊃ B,∆→ Γ

Then we are not explaining A ⊃ B alone. We are simultane-
ously involving the comma not just in our explicans (that would
surely be all right), but in our explicandum. We are explaining
two things at once. There is no way around this. You do not
have to take it as a defect, but it is a fact. . . . If you are a
‘holist’, probably you will not care; but then there is not much
about which holists much care. [Belnap, 1996, p. 81 f.] (notation
adjusted)
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Moreover, the rules for f may be required to be weakly symmetrical in the
sense that every rule should either belong to a set of rules (f →) which
introduce f on the left side of → in the conclusion sequent or to a set of
rules (→ f) which introduce f on the right side of → in the conclusion
sequent. The introduction rules for f are called symmetrical, if they are
weakly symmetrical and both (→ f) and (f →) are non-empty. The sequent
rules for f are called weakly explicit, if the rules (→ f) and (f →) exhibit f
in their conclusion sequents only, and they are called explicit, if in addition
to being weakly explicit, the rules in (→ f) and (f →) exhibit only one
occurrence of f on the right, respectively the left side of →. Separation,
symmetry, and explicitness of the rules imply that in a sequent calculus for
a given logic Λ, every connective that is explicitly definable in Λ also has
separate, symmetrical, and explicit introduction rules. These rules can be
found by decomposition of the defined connective, if it is assumed that the
deductive role of f(A1, . . . , An) only depends on the deductive relationships
between A1, . . . , An. It is therefore desirable to have introduction rules for
2, 3, 〈P 〉, [P ], 〈F 〉 and [F ] as primitive operations, so that the familiar
mutual definitions are derivable.

A further desirable property, reminiscent of implicit definability in pred-
icate logic, is the unique characterization of f by its introduction rules.
Suppose that Λ is a logical system with a syntactic presentation S in which
f occurs. Let S∗ be the result of rewriting f everywhere in S as f∗, and let
ΛΛ∗ be the system presented by the union SS∗ of S and S∗ in the combined
language with both f and f∗. Let Af denote a formula (in this language)
that contains a certain occurrence of f , and let Af∗ denote the result of re-
placing this occurrence of f in A by f∗. The connectives f and f∗ are said
to be uniquely characterized in ΛΛ∗ iff for every formula Af in the language
of ΛΛ∗, Af is provable in SS∗ iff Af∗ is provable in SS∗. Došen [1985] has
proved that unique characterization is a non-trivial property and that the
connectives in his higher-level systems S4p/D and S5p/D for S4 and S5,
respectively, are uniquely characterized.

As we have seen, the standard sequent-style proof-theory for normal
modal and temporal logic fails to be modular. The idea that modularity can
be achieved by systematically varying structural features of the derivabil-
ity relation while keeping the introduction rules for the logical operations
untouched can be traced back to Gentzen [1934] and has been referred to
as Došen’s Principle in [Wansing, 1994]. In [Došen, 1988, p. 352], Došen
suggests that “the rules for the logical operations are never changed: all
changes are made in the structural rules.” This methodology is adopted,
for example in Došen’s [1985] higher-level sequent systems for S4 and S5,
Blamey and Humberstone’s [1991] higher-arity sequent calculi for certain
extensions of K, Nishimura’s [1980] higher-arity sequent systems for Kt
and K4t, and the presentation of normal modal and temporal logics as
cut-free display sequent calculi.
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Another methodological aspect is generality. Is there a type of sequent
system that allows not only a uniform treatment of the most important
modal and temporal logics but also a treatment of substructural logics, other
non-classical logics and systems combining operations from different families
of logics and that, moreover, is rich enough to suggest important, hitherto
unexplored logics? The framework of display logic to be presented in the
next section has been devised explicitly as an instrument for combining
logics (see [Belnap, 1982]), and has been suggested, for example, as a tool
for defining subsystems of classical predicate logic (see [Wansing, 1999]). In
addition to generality, a ‘real’ subformula property, and Došen’s principle,
Avron [1996] requires of a good sequent calculus framework also semantics
independence. The framework should not be so closely tied to a particular
semantics that one can more or less read off the semantic structures in
question. Moreover, the proof systems instantiating the framework should
lead to a better understanding of the respective logics and the differences
between them.

Note that each of the ordinary sequent systems presented in the present
section fails to satisfy some of the more philosophical requirements men-
tioned. The same holds true for the ordinary sequent systems for various
non-normal, classical modal logics investigated in [Lavendhomme and Lu-
cas, 2000]. There are thus not only technical but also methodological and
philosophical reasons for investigating generalizations of the notion of a
Gentzen sequent.

2 GENERALIZED SEQUENT SYSTEMS

In this section the application of a number of generalizations of the ordinary
notion of sequent to normal modal propositional and temporal logics is
surveyed.

2.1 Higher-level sequent systems

Došen [1985] has developed certain non-standard sequent systems for S4
and S5. In these Gentzen-style systems one is dealing with sequents of
arbitrary finite level. Sequents of level 1 are like ordinary sequents, whereas
sequents of level n + 1 (0 < n < ω) have finite sets of sequents of level n
on both sides of the sequent arrow. The main sequent arrow in a sequent
of level n carries the superscript n, and ∅ is regarded as a set of any finite
level. The rules for logical operations are presented as double-line rules. A
double-line rule

s1, . . . , sn

s0
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involving sequents s0, . . . , sn, denotes the rules
s1, . . . , sn

s0
,
s0

s1
, . . . ,

s0

sn
.

Došen gives the following double-line sequent rules for 2 and 3:

X + {∅ →1 {A}} →2 X2 + {X3 →1 X4}
X1 →2 X2 + {X3 + {2A} →1 X4}

X1 + {{A} →1 ∅} →2 X2 + {X3 →1 X4}
X1 →2 X2 + {X3 →1 X4 + {3A}}

,

where + refers to the union of disjoint sets. If these rules are added to
Došen’s higher-level sequent calculus Cp/D for CPL, this results in the
sequent system S5p/D for S5. The sequent calculus S4p/D for S4 is then
obtained by imposing a structural restriction on the monotonicity rule of
level 2:

X →2 Y ` X ∪ Z1 →2 Y ∪ Z2.

The restriction is this: if Y = ∅, then Z2 must be a singleton or empty;
if Y 6= ∅, then Z2 must be empty. If the same restriction is applied to
monotonicity of level 1 in Cp/D, then this gives a higher-level sequent
system for intuitionistic propositional logic IPL.

Note that 3 and 2 are interdefinable in S4p/D and S5p/D. The double-
line rules for 2 and 3, however, do not satisfy weak symmetry and weak
explicitness, but the upward directions of these rules can be replaced by:

∅ →1 {A} ` ∅ →1 {2A} and {A} →1 ∅ ` {3A} →1 ∅.

Whereas cut can be eliminated at levels 1 and 2, cut of all levels fails to
be eliminable [Došen, 1985, Lemma 1]. Moreover, in Došen’s higher-level
framework it is not clear how restrictions similar to the one used to obtain
S4p/D from S5p/D would allow to capture further axiomatic systems of
normal modal propositional logic.

2.2 Higher-dimensional sequent systems

A ‘higher-dimensional’ proof theory for modal logics has been developed by
Masini [1992; 1996]. This approach is based on the notion of a 2-sequent.
In order to define this notion, various preparatory definitions are useful.
Any finite sequence of modal formulas is called a 1-sequence. The empty
1-sequence is denoted by ε. A 2-sequence is an infinite ‘vertical’ succession
of 1 sequences, Γ = {αi}0<i<ω such that ∃j ≥ 1, ∀k ≥ j : αk = ε. For each
i, αi is said to be at level i. The depth of Γ (\Γ) is defined as min{i | i ≥
0, ∀k > i : αk = ε}. A 2-sequent is an expression Γ → ∆, where Γ and ∆
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are 2-sequences. The depth of Γ→ ∆ (\(Γ→ ∆)) is defined as max(\Γ, \∆).
If Γ→ ∆ is a 2-sequent and A an occurrence of a modal formula in Γ→ ∆,
then A is said to be maximal in Γ → ∆, if A is at level k in Γ or in ∆
and k = \(Γ → ∆). A is the maximum in Γ → ∆, if A is the unique
maximal formula in Γ→ ∆. The sequent rules for 2 are based on the idea
of “internalizing the level structure of 2-sequents” [Masini, 1992, p. 231]:

(2→)

Γ
α
β,A
Γ′

→ ∆

Γ
α,2A
β
Γ′

→ ∆

(→ 2)
Γ→

∆
µ
A

Γ→ ∆
µ,2A

(3→)

Γ
α
A

→ ∆

Γ
α,3A

→ ∆

(→ 3)

Γ→

∆
µ
π,A
∆′

Γ→

∆
µ,3A
π
∆′

where α, β, π, and µ denote arbitrary 1-sequences, and A must be the
maximum of the premise 2-sequent in (→ 2) and (3 →). According to
Masini, these introduction rules give rise to a “general basic proof theory
of modalities” [Masini, 1992, p. 232]. If added to a 2-sequent calculus for
CPL, the above rules result, however, in a sequent calculus for KD instead
of the basic system K. This sequent system for KD admits cut-elimination,
2 and 3 are interdefinable, and the introduction rules are separate, sym-
metrical, and explicit, but no indication is given of how to present axiomatic
extensions of KD as higher-dimensional sequent systems. Moreover, it is
not clear how Masini’s framework may be modified in order to obtain a
2-sequent calculus for K.

2.3 Higher-arity sequent systems

In search of generalizations of the standard Gentzen-style sequent format,
it is a natural move to consider consequence relations with an arity greater
than 2. It seems that the first higher-arity sequent calculus was formulated
by Schröter [1955], see also [Gottwald, 1989]. This formalism is a natural
generalization of Gentzen’s sequent calculus for CPL to truth-functional
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n-valued logic. The intended truth-functional reading of a Gentzen sequent
s = ∆→ Γ is given by a translation σ of s into a formula:

σ(∆→ Γ) =
∧

∆ ⊃
∨

Γ,

The sequent s thus is true under a given interpretation if either some for-
mula in ∆ is false, or some formula in Γ is true, and the two places of
the sequent arrow correspond to the two truth-values of classical logic. In
general, in n-valued logic (with 2 ≤ n) one obtains n-place sequents s =
∆1; ∆2; . . . ; ∆n, with the understanding that s is true under an interpreta-
tion if for every i ≤ n, some formula in ∆i has truth-value i; for a com-
prehensive treatment of sequent calculi for truth-functional many-valued
logics see [Zach, 1993]. We shall here briefly review some relevant parts
of the work of Blamey and Humberstone [1991], who investigate an appli-
cation of three-place and, ultimately, four-place sequent arrows to normal
modal logic. This approach is congenial to display logic with respect to a
realization of the Došen-Principle insofar as Blamey and Humberstone em-
phasize that distinctions between various well-known normal modal logics
can “be reflected at the purely structural level, if an appropriate notion of
sequent” is adopted [Blamey and Humberstone, 1991, p. 763]. Let Γ, ∆, Θ,
and Σ range over finite sets of formulas in the modal propositional language
with 2 as primitive. The four-place sequent

Γ→Θ
Σ ∆

has the following heuristic reading:

(
∧

Γ ∧
∧

2Σ) ⊃ (
∨

∆ ∨
∨

2Θ).

This kind of sequent had independently been used by Sato [1977], where a
cut-free sequent calculus for S5 is presented containing a left introduction
rule for 2 that fails to be weakly explicit. Blamey’s and Humberstone’s
introduction rules for 2 are:

(2 ↓)0 ` ∅ →∅A 2A (2 ↑)0 ` 2A→A
∅ ∅.

In order to obtain a sequent calculus for K the following structural rules
are assumed:

(R) ` A→∅∅ A (vertical R) ` ∅ →A
A ∅

(M) Γ→Θ
Σ ∆ ` Γ,Γ′ →Θ,Θ′

Σ,Σ′ ∆,∆′

(undercut) Σ→∅∅ A Γ→Θ
Σ′,A ∆ ` Γ→Θ

Σ,Σ′ ∆

(T ) Γ, A→Θ
Σ ∆ Γ→Θ

Σ A,∆ ` Γ→Θ
Σ ∆

(vertical T ) Γ→Θ
Σ,A ∆ Γ→Θ,A

Σ ∆ ` Γ→Θ
Σ ∆.
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Against the background of these rules, the introduction rules (2 ↓)0 and
(2 ↑)0 are interreplaceable with the following rules, respectively:

(2 ↓) Γ,2A→Θ
Σ ∆ ` Γ→Θ

Σ,A ∆

(2 ↑) Γ→Θ
Σ,A ∆ ` Γ,2A→Θ

Σ ∆.

The introduction rules for the Boolean operations are adaptations of the fa-
miliar rules to the higher-arity case. Here is a simple example of a derivation
in this formalism (using some obvious notational simplifications):

2A,2B → 2A ∧2B (2↓)
A ∧B → A 2A→B 2A ∧2B (2↓)
A ∧B → A,B ∅ →A,B 2A ∧2B

(undercut) twice
∅ →A∧B 2A ∧2B (2↑)
2(A ∧B)→ 2A ∧2B

The axiom schemata D, T , 4, and B are captured by purely structural rules
not exhibiting any logical operations:

D Σ→∅∅ ∅ ` ∅ →
∅
Σ ∅

T ` ∅ →∅A A
4 Σ→Θ

Σ A Γ→Θ
Σ′,A ∆ ` Γ→Θ

Σ,Σ′ ∆
B Σ→∆

∅ A Γ→Θ
Σ,A ∆ ` Γ→Θ

Σ ∆.

Since Blamey and Humberstone are primarily interested in semantical
aspects of their sequent systems, they do not consider cut-elimination.
Although their calculi satisfy Došen’s Principle, it remains unclear whether
their approach is fully modular for the most important systems of normal
modal propositional logic. They do not present a structural equivalent of
the 5-axiom schema, but rather treat S5 as KTB4.

In [Nishimura, 1980], Nishimura uses six-place sequents

Θ1; Γ; Θ2 → Σ1; ∆; Σ2.

These higher-arity sequents can intuitively be read as follows:

(
∧

[P ]Θ1 ∧
∧

Γ ∧
∧

[F ]Θ2) ⊃ (
∨

[P ]Σ1 ∨
∨

∆ ∨
∨

[F ]Σ2).

Nishimura defines introduction rules for the tense logical operations [F ] and
[P ], which are explicit in the sense of Section 1.3:

(→ [F ])′ Θ1; Γ; Θ2 → Σ1; ∆;A,Σ2

Θ1; Γ; Θ2 → Σ1; ∆, [F ]A; Σ2

([F ]→)′ Θ1; Γ;A,Θ2 → Σ1; ∆; Σ2

Θ1; Γ, [F ]A; Θ2 → Σ1; ∆; Σ2

(→ [P ])′ Θ1; Γ; Θ2 → Σ1, A; ∆; Σ2

Θ1; Γ; Θ2 → Σ1; [P ]A,∆Σ2

([P ]→)′ Θ1, A; Γ; Θ2 → Σ1; ∆; Σ2

Θ1; [P ]A,Γ; Θ2 → Σ1; ∆; Σ2
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In accordance with the Došen Principle, these rules are held constant in
sequent systems for Kt and K4t. The difference between these logics is
accounted for by different structural rules, namely

(r-trans) ∅; Γ; ∅ → ∆;A; ∅ (l-trans) ∅; Γ; ∅ → ∅;A; ∆
∅; ∅; Γ→ ∅; ∆;A Γ; ∅; ∅ → A; ∆; ∅

in the case of Kt and

(r-trans)4 ∅; Γ; Γ→ ∆,Σ;A; ∅ (l-trans)4 Γ; Γ; ∅ → ∅;A; ∆,Σ
∅; ∅; Γ→ Σ; ∆;A Γ; ∅; ∅ → A; ∆; Σ

in the case of K4t. Nishimura observes that although in the introduction
rules for 〈F 〉 and 〈P 〉 subformulas are preserved from premise sequent to
conclusion sequent, cut-elimination fails to hold in the six-place sequent
systems for Kt and K4t. There is, for instance, no cut-free proof of ; p;→
; [F ]¬[P ]¬p;.4

2.4 Multiple-sequent systems

Indrzejczak, in [1997; 1998], suggested non-standard sequent systems for
certain extensions of the minimal regular modal logic C using three sequent
arrows →, 2→ , and 3→ . These sequent arrows denote binary relations
between finite sets of S-formulas, where the set of S-formulas is defined as
the union of the set of modal formulas and {−A | A is a modal formula}.
As before, we shall use A, B, C, . . . to denote modal formulas. The symbol
‘−’ is a unary structure connective that may not be nested, and the sequent
arrows 2→ and 3→ are auxiliary in the sense that they fail to represent
consequence relations, because (in general) neither ` A2→A nor ` A3→A.
The logics presented by such multiple-sequent systems are given by the
set of provable sequents ∆ → Γ. The intended meaning of a sequent is
captured by a translation σ from sequents into ordinary sequents using a
translation δ from S-formulas to modal formulas. For every modal formula
A, δ(−A) := ¬A and δ(A) := A. The translation σ is defined as follows:

σ(Γ→ ∆) =
∧
δ(Γ)→

∨
δ(∆)

σ(Γ2→∆) =
∧
δ(Γ)→ 2

∨
δ(∆)

σ(Γ3→∆) = 3
∧
δ(Γ)→

∨
δ(∆)

Here δ(Γ) := {A | A ∈ Γ} ∪ {¬A | −A ∈ Γ}. For every modal formula
A, A∗ is defined as −A and −A∗ as A. If ∆ is a set of S-formulas, ∆∗ :=

4Note that Nishimura allows infinite sets in antecedent and succedent position. It
is, however, shown that if a sequent Θ1; Γ; Θ2 → Σ1; ∆; Σ2 is provable, then there are
finite sets Θ′i ⊆ Θi, Σ′i ⊆ Σi, (i = 1, 2), Γ′ ⊆ Γ, and ∆′ ⊆ ∆ such that the sequent
Θ′1; Γ′; Θ′2 → Σ′1; ∆′; Σ′2 is provable.
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{A | −A ∈ ∆} ∪ {−A | A ∈ ∆}. Let (→) be any of →, 2→ , 3→ . The
following reflexivity and monotonicity rules are assumed:

` A→ A; ∆ (→) Γ ` ∆ (→) Γ, A; ∆ (→) Γ ` ∆, A (→) Γ.

Next, there are further structural rules called shifting rules:

[→∗] A,∆→ Γ ` ∆→ Γ, A∗ [∗→] ∆→ Γ, A ` ∆, A∗ → Γ
[TR] ∆2→Γ ` Γ∗3→∆∗ ∆3→Γ ` Γ∗2→∆∗

The introduction rules for ∧, ∨, ⊃ and ¬ are formulated for arbitrary se-
quent arrows. Whereas the rules for ∧ and ∨ are versions of the familiar
introduction rules, the rules for ¬ and ⊃ can be formulated such that they
make use of the structure connective −:

∆,−A (→) Γ ` ∆,¬A (→) Γ
∆ (→) Γ,−A ` ∆ (→) Γ,¬A
∆,−A (→) Γ Σ, B (→) Θ ` ∆,Σ, A ⊃ B (→) Γ,Θ
∆ (→) Γ,−A,B ` ∆ (→) Γ, A ⊃ B

The introduction rules for the modal operators are not formulated for arbi-
trary sequent arrows:

[22→ ] A→ ∆ ` 2A2→∆ [→ 2] ∆2→A ` ∆→ 2A

[33→ ] A3→∆ ` 3A→ ∆ [3→3] ∆→ A ` ∆3→3A

[3→3] −A,∆3→Γ ` ∆3→Γ,3A [22→ ] ∆2→Γ,−A ` ∆2A2→Γ

The above collection of sequent rules forms a multiple-sequent calculus MC
for the system C. An axiomatization of C can be obtained by replacing the
necessitation rule in the familiar axiomatization of K by the weaker rule

(RR) if (A ∧B) ⊃ C is provable, then so is (2A ∧2B) ⊃ 2C,

see [Chellas, 1980]. The necessitation rule and the modal axiom schemata
D, T , and 4 can be captured in a modular fashion by pairs of sequent rules:

[nec] ∆→ ∅ ` ∆3→∅ ∅ → ∆ ` ∅2→∆
[D] ∆2→∅ ` ∆→ ∅ ∅3→∆ ` ∅ → ∆
[T ] ∆2→Γ ` ∆→ Γ ∆3→Γ ` ∆→ Γ
[4] ∆→ Σ ` ∆2→Σ Θ→ Γ ` Θ3→Γ,

where in rule [4], every S-formula in ∆ has the shape 2A or −3A and every
S-formula in Γ has the shape 3A or −2A. All sequent systems obtained in
this way satisfy a generalized subformula property: for every modal formula
A, it holds that if A or −A is used in a proof of ∆→ Γ, then A is a subfor-
mula of ∆∪Γ (where the notion of a subformula of an S-formula is defined
in the obvious way). Indrzejczak does not investigate the admissibility of
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cut for → or the admissibility of cut for 2→ and 3→ in extensions of CT
(where ` A2→A and ` A3→A). Note that the introduction rules for the
modal operators fail to be symmetrical, since there are no introduction rule
for 2 on the left and 3 on the right of →. Moreover, the side conditions
on [4] are such that the status of this rule as a purely structural rule is
doubtful. The multiple-sequent systems for extensions of KB make use of
denumerably many sequent arrows n→ (n ≥ 0), where logics are defined by
the provable sequents ∆ 0→Γ. The introduction rules

A n→∆ ` 2A n+1→∆ ∆ n+1→A ` ∆ n→2A

A n+1→∆ ` 3A n→∆ ∆ n→A ` ∆ n+1→3A

fail to introduce 2 on the left and 3 on the right of 0→, so that also these
rules are not symmetrical.

In Section 4.1, we shall point to a simple relation between Indrzejczak’s
multiple-sequent systems and higher-arity sequent systems for modal logics.

2.5 Hypersequents

Hypersequents were introduced into the literature by Pottinger [1983], and
have later systematically been studied by Avron [1991; 1991a; 1996]. A
hypersequent is a sequence

Γ1 → ∆1 | Γ2 → ∆2 | . . . | Γn → ∆n

of ordinary sequents (or, more generally, sequents in which ∆i and Γi are
sequences of formula occurrences) as their components. The symbol ‘|’ in
the statement of a hypersequent enriches the language of sequents and is in-
tuitively to be read as disjunction. This expressive enhancement “makes it
possible to introduce new types of structural rules, and . . . to allow greater
versatility in developing interesting logical systems” [Avron, 1996, p. 6]. In
particular, a distinction may be drawn between internal and external ver-
sions of structural rules. The internal rules deal with formulas within a cer-
tain component, whereas the external rules deal with components within a
hypersequent. Let G, H, H1, H2 etc. be schematic letters for possibly empty
hypersequents. External monotonicity, for instance, can be contrasted with
internal monotonicity:

H1 | H2 ` H1 | G | H2 vs. H1 | Γ→ ∆ | H2 ` H1 | A,Γ→ ∆ | H2.

Cut only has an internal version:

G1 | Γ1 → ∆1, A | H1 G2 | A,Γ2 → ∆2 | H2

G1 | G2 | Γ1,Γ2 → ∆1,∆2 | H1 | H2

The use of hypersequents allows a cut-free presentation GS5 of S5 satisfy-
ing the subformula property. The system GS5 consists of hypersequential
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versions of the rules of LS4, in particular, external and internal versions of
contraction and monotonicity, the above cut-rule, and a structural rule of a
new kind, namely the modalized splitting rule:

(MS) G | 2Γ1,Γ2 → 2∆1,∆2 | H ` G | 2Γ1 → 2∆1 | Γ2 → ∆2 | H.

In the next section we shall define display sequents, and in Section 4.2 we
shall define a translation of hypersequents into display sequents.

3 DISPLAY LOGIC

We shall develop display logic only to the extent needed to cover a vari-
ety of normal modal and temporal logics based on classical or intuitionistic
logic. A more comprehensive presentation of display logic and its appli-
cation to modal and non-classical logics can be found in [Belnap, 1982],
[Belnap, 1990], [Belnap, 1996], [Goré, 1998], [Kracht, 1996], [Restall, 1998],
[Wansing, 1998]. Note that except for the substructure property, all require-
ments examined in the previous sections are satisfied by the display sequent
systems to be presented.

3.1 Introduction rules through residuation

Whereas the ordinary sequent systems for temporal logics presented in Sec-
tion 1.2 fail to exploit the interaction between the backward and the forward
looking modalities, the modal display calculus is based on observing that
the operators 〈P 〉 and [F ] form a residuated pair. The following definition
is taken from Dunn [1990, p. 32]:

DEFINITION 5. Consider two partially ordered sets A = (A,≤) and B =
(B,≤′) with functions f: A −→ B and g: B −→ A. The pair (f, g) is called

residuated iff (fa ≤′ b iff a ≤ gb);
a Galois connection iff (b ≤′ fa iff a ≤ gb);

a dual Galois connection iff (fa ≤′ b iff gb ≤ a);
a dual residuated pair iff (b ≤′ fa iff gb ≤ a).

Obviously, (〈P 〉, [F ]) forms a residuated pair with respect to the prov-
ability relation in normal extensions of Kt, and (¬〈F 〉,¬〈P 〉) is a Galois
connection.5 These ideas of residuation and Galois connection can be gen-
eralized. In [Dunn, 1990], [Dunn, 1993], Dunn has defined an abstract law of

5The fact that 〈P 〉 and [F ] form a residuated pair is also used in Kashima’s [1994]

sequent calculi for various normal temporal logics. The approach of Kashima is simi-
lar to the modal display calculus and the modal signs approach developed by Cerrato
[1993; 1996] insofar as the structural language of sequents is extended by unary struc-
ture operations. Whereas nesting of these operations is not allowed in Cerrato’s sequent
systems for normal modal propositional logics, Kashima allows iteration. Kashima in-
ductively defines a notion of sequent as follows:
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residuation for n-place connectives f and g. The formulation of this princi-
ple refers to traces of operations and assumes the presence (or definability)
of a truth constant t and a falsity constant f . We shall use A a` B to
express that A and B are interderivable in a given axiom system.

DEFINITION 6. An n-place connective f (n ≥ 0) has a trace (ρ1, . . . , ρn) 7→
+ (in symbols T (f) = (ρ1, . . . , ρn) 7→ +) iff

f(A1, . . . , t, . . . , An) a` t, if ρi = + (the indicated t is in position i);
f(A1, . . . ,f , . . . , An) a` t, if ρi = − (the indicated f is in position i);
if A ` B and ρi = +, then f(A1, . . . , A, . . . , An) ` f(A1, . . . , B, . . . , An);
if A ` B and ρi = −, then f(A1, . . . , B, . . . , An) ` f(A1, . . . , A, . . . , An).

The operation f has a trace (ρ1, . . . , ρn) 7→ − (T (f) = (ρ1, . . . , ρn) 7→ −) iff

f(A1, . . . ,f , . . . , An) a` f , if ρi = + (the indicated f is in position i);
f(A1, . . . , t, . . . , An) a` f , if ρi = − (the indicated t is in position i);
if A ` B and ρi = +, then f(A1, . . . , B, . . . , An) ` f(A1, . . . , A, . . . , An);
if A ` B and ρi = −, then f(A1, . . . , A, . . . , An) ` f(A1, . . . , B, . . . , An).

In Kt, ¬ has traces − 7→ + and + 7→ −, whereas [F ] has trace + 7→ + and
〈P 〉 has trace − 7→ −.

DEFINITION 7. Two n-place operations f and g are contrapositives in
place j iff T (f) = (ρ1, . . . , ρj , . . . , ρn) 7→ ρ implies T (g) = (ρ1, . . . ,−ρ, . . . ,
ρn) 7→ −ρj , where −+ = − and −− = +.

DEFINITION 8. Let

S(f,A1, . . . , An, B) iff
{
B ` f(A1, . . . , An) if T (f) = (. . .) 7→ +
f(A1, . . . , An) ` B if T (f) = (. . .) 7→ −

1. every temporal formula is a sequent;

2. if Γ is a sequent, then so is P {Γ} and F {Γ};
3. if n ≥ 0 and every Γi (1 ≤ i ≤ n) is a sequent, then so is Γ1, . . . ,Γi.

The intuitive meaning of a sequent is given by the following inductively defined translation
(·)∗ from sequents into formulas:

1. (Γ)∗ = A, if Γ is the formula A;

2. (P {Γ})∗ = [P ]P (Γ)∗; (F {Γ})∗ = [F ]F (Γ)∗;

3. if n > 0, then (Γ1, . . . ,Γn)∗ =
∨
{(Γ1)∗, . . . , (Γn)∗};

4. ( )∗ = (p ∧ ¬p), for some atom p.

Residuation then shows up in Kashima’s “turn rules”:

Γ,F {∆} ` PΓ,∆; Γ,P {∆} ` FΓ,∆.

Most of Kashima’s sequent rules used to capture various structural properties of acces-
sibility either fail to be explicit or separated in the sense of Section 1.3. Cut-elimination
for these systems is shown semantically, i.e., in a non-constructive way.
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A pair of n-place connectives f and g satisfies the abstract law of residuation
just in case for some j (1 ≤ j ≤ n), f and g are contrapositives in place j,
and

S(f,A1, . . . , Aj , . . . , An, B) iff S(f,A1, . . . , B, . . . , An, Aj).

OBSERVATION 9. The abstract law of residuation holds for the pairs
(t, f), (¬,¬), (〈P 〉, [F ]), (∧,B), (J,∨), (∧,¬���∨...), and (��� ∧ ¬...,∨), where
B is intuitionistic implication and J is coimplication.

Coimplication J is characterized by

A ` B ∨ C,∆ iff A J B ` C,∆.

In classical logic, the residual of disjunction is definable, since

A ` B ∨ C,∆ iff A ∧ ¬B ` C,∆ iff ¬(A ⊃ B) ` C,

but in bi-intuitionistic logic it is not, see Section 3.8. For each of the pairs
(t, f), (¬,¬), (〈P 〉, [F ]), (∧,B), (J,∨), the structural language of display
sequents contains one structure connective. Since in classical logic ∧ and ∨
are interdefinable using ¬, the pairs (∧,¬��� ∨ ...) and (��� ∧ ¬...,∨) require
only a single structure connective in addition to the unary structure opera-
tion associated with (¬,¬). We shall use X, Y , Z (possibly with subscripts)
as variables for structures. A display sequent is an expression X → Y ; X
is called the antecedent and Y is called the succedent of X → Y . The
structures are defined by:

X ::= A | I | ∗X | •X | X ◦ Y | X o Y | X n Y.

The association of structure connectives with pairs of operations satisfying
the abstract law of residuation is accomplished by the following translations
τ1 of antecedents and τ2 of succedents into formulas:

τ1(A) = A τ2(A) = A

τ1(I) = t τ2(I) = f

τ1(∗X) = ¬τ2(X) τ2(∗X) = ¬τ1(X)
τ1(•X) = 〈P 〉τ1(X) τ2(•X) = [F ]τ2(X)

τ1(X o Y ) = τ1(X) ∧ τ1(Y ) τ2(X o Y ) = τ2(X) B τ2(Y )
τ1(X n Y ) = τ1(X) J τ1(Y ) τ2(X n Y ) = τ2(X) ∨ τ2(Y )
τ1(X ◦ Y ) = τ1(X) ∧ τ1(Y ) τ2(X ◦ Y ) = τ2(X) ∨ τ2(Y )

Under these translations, the following basic structural rules are valid ((1)–
(4) in normal temporal logic; (5) and (6) in bi-intuitionistic logic) if → is
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understood as provability:

Basic structural rules
(1) X ◦ Y → Z a` X → Z ◦ ∗Y a` Y → ∗X ◦ Z
(2) X → Y ◦ Z a` X ◦ ∗Z → Y a` ∗Y ◦X → Z
(3) X → Y a` ∗Y → ∗X a` X → ∗ ∗ Y
(4) X → •Y a` •X → Y
(5) X o Y → Z a` Y → X o Z a` X → Y o Z
(6) X → Y n Z a` X n Y → Z a` X n Z → Y,

where X1 → Y1 a` X2 → Y2 abbreviates X1 → Y1 ` X2 → Y2 and
X2 → Y2 ` X1 → Y1. If two sequents are interderivable by means of (1)–
(6), then these sequents are said to be structurally or display equivalent.
The following pairs of sequents, for example, are display equivalent on the
strength of (1)–(3):

X ◦ Y → Z ∗Z → ∗Y ◦ ∗X; X → Y ◦ Z ∗Z ◦ ∗Y → ∗X;
X → Y ∗Y → X; X → ∗Y Y → ∗X;
X → Y ∗ ∗X → Y.

The name ‘display logic’ derives from the fact that any substructure of
a given display sequent s may be displayed as the entire antecedent or
succedent of a structurally equivalent sequent s′. In order to state this
fact precisely, we define the notion of a polarity vector and antecedent and
succedent part of a sequent (cf. [Goré, 1998]).

DEFINITION 10. To each n-place structure connective c we assign two
polarity vectors ap(c,±1, . . . ,±n) and sp(c,±1, . . . ,±n), where ±i ∈ {+,−}
and 1 ≤ i ≤ n:

ap(∗,−) ap(•,+) ap(◦,+,+) ap(o,+,+) ap(n,+,−)
sp(∗,−) sp(•,+) sp(◦,+,+) sp(o,−,+) sp(n,+,+)

We write ap(c, j,±) and sp(c, j,±) to express that c has antecedent, respec-
tively succedent polarity ± at place j.

DEFINITION 11. Let s = X → Y . The exhibited occurrence of X is
an antecedent part of s, and the exhibited occurrence of Y is a succedent
part of s. If c(X1, . . . , Xn) is an antecedent [succedent] part of s, then the
substructure occurrence Xj (1 ≤ j ≤ n) is

1. an antecedent [succedent] part of s if ap(c, j,+) [sp(c, j,+)];

2. a succedent [antecedent] part of s if ap(c, j,−) [sp(c, j,−)].

THEOREM 12. (Display Theorem, Belnap) For each display sequent s and
each antecedent [succedent] part X of s there exists a display sequent s′

structurally equivalent to s such that X is the entire antecedent [succedent]
of s′.
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Proof. The theorem was first proved in [Belnap, 1982]; we shall follow the
proof in [Restall, 1998]. A context results from a structure by replacing
one occurrence of a substructure by the ‘Void’ (in symbols ‘−’). If f is a
context and X is a structure, then f(X) is the result of substituting X for
the Void in f . A context f is called antecedent positive (negative) if the
indicated X is an antecedent part (a succedent part) of f(X) → Y ; f is
said to be succedent positive (negative) if the indicated X is a succedent
part (an antecedent part) of Y → f(X). A contextual sequent has the
shape f → Z or Z → f , and a pair of contextual sequents is said to be
structurally equivalent if the sequents are interderivable by means of rules
(1)–(6). The Display Theorem then follows from the following lemma.

LEMMA 13. (i) Suppose f is a context in antecedent position. If f is an-
tecedent positive, then f(X)→ Y is structurally equivalent to X → fa(Y ),
where fa is a context obtained by unraveling the Void in f . If f is an-
tecedent negative, then f(X)→ Y is structurally equivalent to fa(Y )→ X.
(ii) Suppose f is a context in succedent position. If f is succedent positive,
then Y → f(X) is structurally equivalent to fc(Y ) → X, where fc is a
context obtained by unraveling the Void in f . If f is succedent negative,
then Y → f(X) is structurally equivalent to X → fc(Y ).

The proof is by induction on the complexity of contexts.
Case 1: f = −. Then f is antecedent and succedent positive, and fa(Y ) =
fc(Y ) = Y .
Case 2: f = •g. Then f(X)→ Y is structurally equivalent to g(X)→ •Y ,
and Y → f(X) is equivalent to •Y → g(X). By the induction hypothesis,
these sequents are equivalent to X → fa(•Y ), fa(•Y )→ X, fc(•Y )→ X,
or X → fc(•Y ). Hence fa = ga(•−) and fc = gc(•−).
Case 3: f = ∗g. Then f(X) → Y is equivalent to ∗Y → g(X). Depending
on whether g is succedent positive or negative, f(X) → Y is structurally
equivalent to gc(∗Y ) → X or to X → gc(∗Y ). Therefore, by the induction
hypothesis, fa = gc(∗−). Similarly, fc = ga(∗−).
Case 4: f = Z ◦ g. Then f(X) → Y is equivalent to g(X) → ∗Z ◦ Y . By
the induction hypothesis, this sequent is equivalent to X → ga(∗Z ◦ Y ) or
ga(∗Z ◦ Y )→ X, and hence fa = ga(∗Z ◦ −). Similarly, fc = ga(− ◦ ∗Z).
Case 5: f = g ◦ Z. Similar to Case 4.
Case 6: f = g o Z. Then Y → f(X) is equivalent to g(X) → Y o Z, and
by the induction hypothesis, the latter is equivalent to X → ga(Y o Z) or
to ga(Y o Z)→ X. Thus fc = ga(−o Z). Similarly, fa = gc(Z o−).
Case 7: f = Z o g. Analogous to the previous case.
Cases 8 and 9: f = g n Z and f = Z n g. Analogous to Cases 6 and 7. �

If (for suitable notions of structural equivalence, antecedent part, and
succedent part) a sequent calculus satisfies the Display Theorem, it is said to
enjoy the display property. Note that the set of rules (1)–(6) is not the only
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truth and falsity rules
(→ f) X → I ` X → f
(f →) ` f → I
(→ t) ` I→ t
(t→) I→ X ` t→ X

Boolean introduction rules
(→ ¬) X → ∗A ` X → ¬A
(¬ →) ∗A→ X ` ¬A→ X

(→ ∧) X → A Y → B ` X ◦ Y → A ∧B
(∧ →) A ◦B → X ` A ∧B → X

(→ ∨) X → A ◦B ` X → A ∨B
(∨ →) A→ X B → Y ` A ∨B → X ◦ Y
(→⊃) X ◦A→ B ` X → A ⊃ B
(⊃→) X → A B → Y ` A ⊃ B → ∗X ◦ Y
(→≡) X ◦A→ B X ◦B → A ` X → A ≡ B
(≡→) X → A B → Y X → B A→ Y ` A ≡ B → ∗X ◦ Y

tense logical introduction rules
(→ [F ]) •X → A ` X → [F ]A
([F ]→) A→ X ` [F ]A→ •X
(→ 〈F 〉) X → A ` ∗ • ∗X → 〈F 〉A
(〈F 〉 →) ∗ • ∗A→ Y ` 〈F 〉A→ Y

(→ [P ]) X → ∗ • ∗A ` X → [P ]A
([P ]→) A→ X ` [P ]A→ ∗ • ∗X
(→ 〈P 〉) X → A ` •X → 〈P 〉A
(〈P 〉 →) A→ •X ` 〈P 〉A→ X

nonclassical introduction rules
(→ ∧)′ X → A Y → B ` X o Y → A ∧B
(∧ →)′ AoB → X ` A ∧B → X

(→B) X → AoB ` X → A B B
(B→) X → A B → Y ` A B B → X o Y

(→ ∨)′ X → AnB ` X → A ∨B
(∨ →)′ A→ X B → Y ` A ∨B → X n Y

(→J) X → A B → Y ` X n Y → A J B
(J→) AnB → X ` A J B → X

Table 1. Introduction rules.
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(I◦+) X → Z ` I ◦X → Z X → Z ` X ◦ I→ Z
X → Z ` X → Z ◦ I X → Z ` X → I ◦ Z

(I◦−) I ◦X → Z ` X → Z X ◦ I→ Z ` X → Z
X → Z ◦ I ` X → Z X → I ◦ Z ` X → Z

(I) I→ X ` Z → X X → I ` X → Z
(I∗) I→ X a` ∗I→ X X → I a` X → ∗I
(P◦) X1 ◦X2 → Z ` X2 ◦X1 → Z Z → X1 ◦X2 ` Z → X2 ◦X1

(C◦) X ◦X → Z ` X → Z Z → X ◦X ` Z → X
(E◦) X → Z ` X ◦X → Z Z → X ` Z → X ◦X
(M◦) X1 → Z ` X1 ◦X2 → Z X1 → Z ` X2 ◦X1 → Z

Z → X1 ` Z → X1 ◦X2 Z → X1 ` Z → X2 ◦X1

(A◦) X1 ◦ (X2 ◦X3)→ Z a` (X1 ◦X2) ◦X3 → Z
Z → X1 ◦ (X2 ◦X3) a` (X1 ◦X2) ◦X3 → Z

(MN) I→ X ` I→ •X X → I ` X → •I
I→ X ` I→ ∗ • ∗X X → I ` X → ∗ • ∗I

Table 2. Additional structural rules.

possible choice of display rules warranting the display property, see [Belnap,
1996] and [Goré, 1998].6 The display property allows an “ ‘essentials-only’
proof of cut elimination relying on easily established and maximally general
properties of structural and connective rules” [Belnap, 1996, p. 80]. Further,
the display property enables a statement of the introduction rules that satis-
fies the segregation requirement. Belnap emphasizes that the display prop-
erty may be used to keep certain proof-theoretic components as separate as
possible. In a sequent calculus enjoying the display property, the behaviour
of the structural elements can be described by the structural rules, and
the right (left) introductions rules for an n-place logical operation f can
be formulated with f(A1, . . . , An) standing alone as the entire succedent
(antecedent) of the conclusion sequent. Since f(A1, . . . , An) plays no in-
ferential roles beyond being derived and allowing to derive, these left and
right rules provide a complete explanation of the inferential meaning of
f . The constant I induces introduction rules for t and f . The operations
∗ and ◦ give rise to introduction rules for the Boolean connectives. The
structure operation • permits formulating introduction rules for the modal-

6Goré [Goré, 1998] introduces binary structure connectives < and > to be inter-
preted as directional versions of implication in succedent position and coimplication in
antecedent position. The display property is guaranteed by the following structural rules
(notation adjusted):

X → Z < Y a` X ◦ Y → Z a` Y → X > Z
Z < Y → X a` Z → X ◦ Y a` X > Z → Y.



28 HEINRICH WANSING

ities, whereas o and n give rise to introduction schemata for conjunction,
disjunction, implication, and coimplication in bi-intuitionistic logic. These
introduction rules are assembled in Table 1. The further structural rules in
Table 2 contain many redundancies when they are assumed as a set. Such
a rich inventory of structural inference rules is, however, an advantage in a
treatment of substructural subsystems of normal modal and temporal log-
ics, see [Goré, 1998]. In addition to a set of structural rules and a set of
introduction rules, every display sequent system contains two logical rules
exhibiting neither structural nor logical operations, namely reflexivity for
atoms (alias identity) and cut:

(id) ` p→ p and (cut) X → A A→ Y ` X → Y.

The identity rule (id) can be generalized to arbitrary formulas from temporal
or bi-intuitionistic logic.

OBSERVATION 14. For every formula A, ` A→ A.

Proof. The proof is by induction on the complexity of A. For example,

A→ A
A→ A •A→ 〈P 〉A A→ A B → B

[P ]A→ ∗ • ∗A A→ •〈P 〉A AnB → A J B
[P ]A→ [P ]A 〈P 〉A→ 〈P 〉A A J B → A J B.

�

DEFINITION 15. The display sequent system DCPL is given by (id),
(cut), the Boolean rules, and the structural rules exhibiting I, ∗, and ◦.
The system DKt consists of DCPL plus the tense logical rules and the
structural rules exhibiting •. The system DK results from DKt by remov-
ing the introduction rules for [P ] and 〈P 〉.

A sequent rule is invertible if every premise sequent can be derived from
the conclusion sequent.

OBSERVATION 16. The following holds in every purely structural exten-
sion ofDKt andDK. (i) The logical operations are uniquely characterized.
(ii) The introduction rules for ¬, ∧, and ∨, the left introduction rules for t,
〈P 〉, and 〈F 〉, and the right introduction rules for f , ⊃, ≡, [P ], and [F ] are
invertible. (iii) The modalities [F ] and 〈F 〉 ([P ] and 〈P 〉) are interdefinable
using ¬.

Note that there exist various duality and symmetry transformations on
proofs in display logic, see [Goré, 1998], [Kracht, 1996].
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3.2 Completeness

We shall first consider weak completeness of DKt and DK, that is, the
coincidence of Kt (K) and DKt (DK) with respect to provable formulas.
We shall then strengthen this result and in Section 3.4 turn to axiomatic
extensions of K and Kt.

THEOREM 17. (i) If ` A in Kt, then ` I→ A in DKt. (ii) If ` X → Y
in DKt, then τ1(X) ` τ2(Y ) in Kt.

Proof. (i) We may take any axiomatization of Kt and show that the axiom
schemata are provable in DKt, and the proof rules preserve provability in
DKt. The following is a cut-free proof of the K axiom schema for [F ]; the
proof for [P ] is analogous:

A→ A
[F ]A→ •A
[F ](A ⊃ B) ◦ [F ]A→ •A
•([F ](A ⊃ B) ◦ [F ]A)→ A B → B

A ⊃ B → ∗ • ([F ](A ⊃ B) ◦ [F ]A) ◦B
[F ](A ⊃ B)→ •(∗ • ([F ](A ⊃ B) ◦ [F ]A) ◦B)
[F ](A ⊃ B) ◦ [F ]A→ •(∗ • ([F ](A ⊃ B) ◦ [F ]A) ◦B)
•([F ](A ⊃ B) ◦ [F ]A)→ ∗ • ([F ](A ⊃ B) ◦ [F ]A) ◦B
•([F ](A ⊃ B) ◦ [F ]A) ◦ •([F ](A ⊃ B) ◦ [F ]A)→ B

•([F ](A ⊃ B) ◦ [F ]A)→ B

[F ](A ⊃ B) ◦ [F ]A→ [F ]B
[F ](A ⊃ B)→ [F ]A ⊃ [F ]B
I ◦ [F ](A ⊃ B)→ [F ]A ⊃ [F ]B
I→ [F ](A ⊃ B) ⊃ [F ]A ⊃ [F ]B

Necessitation for [F ] and [P ] is taken care of by the (MN) rules. It remains
to derive the tense logical interaction schemata A ⊃ [F ]〈P 〉A and A ⊃
[P ]〈F 〉A:

A→ A
•A→ 〈P 〉A
A→ [F ]〈P 〉A

A→ A

∗ • ∗A→ 〈F 〉A
∗〈F 〉A→ • ∗A
• ∗ 〈F 〉A→ ∗A
A→ ∗ • ∗〈F 〉A
A→ [P ]〈F 〉A

(ii) By induction on the complexity of proofs in DKt. �

COROLLARY 18. (i) In Kt, ` A iff ` I→ A in DKt. (ii) In K, ` A iff
` I→ A in DK.
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Proof. (i) By the previous theorem. (ii) This follows from the fact that
every frame complete normal propositional tense logic is a conservative ex-
tension of its modal fragment. �

LEMMA 19. In every extension of DKt by structural inference rules, it
holds that ` X → τ1(X) and ` τ2(X)→ X.

Proof. By induction on the complexity of X. �

This lemma allows one to prove strong completeness.

THEOREM 20. In DKt, ` X → Y iff τ1(X) ` τ2(Y ) in Kt.

Proof. (⇒): This is Theorem 17, (ii). (⇐): Suppose that in Kt, τ1(X) `
τ2(Y ). Hence `Kt τ1(X) ⊃ τ2(Y ). By Corollary 18, `DKt I → τ1(X) ⊃
τ2(Y ) and thus `DKt τ1(X) → τ2(Y ). Since by Lemma 19, ` X → τ1(X)
and ` τ2(Y )→ Y in DKt, an application of cut gives ` X → Y . �

COROLLARY 21. DK is strongly sound and complete with respect to K.

COROLLARY 22. DCPL is strongly sound and complete with respect to
CPL.

3.3 Strong cut-elimination

A remarkable quality of display logic is that a strong cut-elimination theo-
rem holds for every properly displayable and every displayable logic. Proper
displayability and displayability are easily checkable properties. A proper
display calculus is a calculus of sequents whose rules of inference satisfy the
following eight conditions (recall the terminology from Section 1.1):

C1 Preservation of formulas. Each formula which is a constituent of some
premise of inf is a subformula of some formula in the conclusion of inf.

C2 Shape-alikeness of parameters. Congruent parameters are occurrences
of the same structure.

C3 Non-proliferation of parameters. Each parameter of inf is congruent
to at most one constituent in the conclusion of inf.

C4 Position-alikeness of parameters. Congruent parameters are either all
antecedent or all succedent parts of their respective sequents.

C5 Display of principal constituents. A principal formula of inf is either
the entire antecedent or the entire succedent of the conclusion of inf.

C6 Closure under substitution for consequent parts. Each rule is closed
under simultaneous substitution of arbitrary structures for congruent
formulas which are consequent parts.
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C7 Closure under substitution for antecedent parts. Each rule is closed
under simultaneous substitution of arbitrary structures for congruent
formulas which are antecedent parts.

C8 Eliminability of matching principal formulas. If there are inferences
inf1 and inf2 with respective conclusions (1) X → A and (2) A → Y
with A principal in both inferences, and if cut is applied to obtain
(3) X → Y , then either (3) is identical to one of (1) or (2), or there
is a proof of (3) from the premises of inf1 and inf2 in which every
cut-formula of any application of cut is a proper subformula of A.

Obviously, every display calculus satisfying C1 enjoys the subformula prop-
erty, that is, every cut-free proof of any sequent s contains no formulas
which are not subformulas of constituents of s. If a logical system can be
presented as a proper display calculus, it is said to be properly displayable.
Belnap [1982] showed that in every properly displayable logic, a proof of a
sequent s can be converted into a proof of s not containing any application
of cut

(1) X → A (2) A→ Y

(3) X → Y
.

The proof of strong cut-elimination reveals that every sufficiently long se-
quence of steps in a certain process of cut-elimination terminates with a
cut-free proof. The elimination process consists of various kinds of actions,
principal moves, parametric moves, and a combination of parametric and
principal moves. If the cut-formula A is principal in the final inference in
the proofs of both (1) and (2), a principal move is performed. Otherwise, if
there is no previous application of cut, a parametric move or a combination
of parametric and principal moves is executed. According to this distinction
we define primitive reductions of proofs Π ending in an application of cut.
Recently, Rajeev Goré and Jeremy Dawson discovered a gap in the proof of
strong normalization presented in [Wansing, 1998]. To avoid the problem,
the primitive reduction steps have to be redefined. Let Πi be the proof of
(i) we are dealing with, (i = 1, 2).

Principal moves. By C8, there are two subcases:

Case 1. (3) is the same as (i):
Π1 Π2 ; Πi

(3)
Case 2. There is a proof Π of (3) from the premises s1, . . . , sn of (1) and
s′1, . . . , s

′
m of (2) in which every cut-formula of any application of cut is a

proper subformula of A:

Π1 Π2

s1, . . . , sn s′1, . . . , s
′
m

(1) (2)
(3)

;

Π1 Π2

Π
(3)
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Parametric moves. The parametric moves modify proofs on a larger scale
than the principal moves. The parametric moves show that applications of
structural rules need never immediately precede applications of cut. Sup-
pose that A is parametric in the inference ending in (1). The case for (2)
is completely symmetrical. In order to define the parametric moves, we
inductively define a set Q of occurrences of A, called the set of ‘parametric
ancestors’ of A (in Π1), cf. [Belnap, 1982, p. 394]. We start with putting
the displayed occurrence of A in (1) into Q. Then, by working up Π1, we
add for every inference inf in Π1 each constituent of a premise of inf which
is congruent (with respect to inf ) to a constituent of the conclusion of inf
already in Q. What we obtain is a finite tree of parametric ancestors of
A rooted in the displayed occurrence of A in (1). This tree and the tree
of parametric ancestors of the displayed occurrence of A in (2) either con-
tain an application of cut or not. If so, we do not perform a reduction,
but instead consider one of these applications of cut above (1) or (2) for
reduction. If not, that is, if there is no application of cut in the trees of
parametric ancestors, then for each path of parametric ancestors of A in Π1,
we distinguish two subcases. Let Au be the uppermost element of the path
and let inf be the inference ending in the sequent s which contains Au.

Case 1. Au is not parametric in inf. By C4 and C5, it is the entire con-
sequent of s. We cut with Π2 and replace every parametric ancestor of A
below Au in the path by Y .

Case 2. Au is parametric in inf. Then, with respect to inf, Au is congruent
only to itself, and we just replace every parametric ancestor of A below Au
in the path by Y . Moreover, we delete Π2, which is now superfluous.

Call the result of simultaneously carrying out these operations for every
path of parametric ancestors of A in Π1 and removing the initial occurrence
of (3) (since now (2) = (3)) Πl. If the tree of parametric ancestors of the
displayed occurrence of A in (1) contains at most one element Au that is
not parametric in inf, Π reduces to Πl: Π ; Πl. Typically we have the
situation of Figure 1.
By C3 and the bottom-up definition of Q, for every inference inf in Π1, Q
must contain the whole congruence class of inf, if Q is inhabited at all. By
C4, Q only consists of consequent parts. Hence, by C2 and C6, the result
of such a reduction is in fact a proof of (3), since on the path from (1) to
Z → A we have the same sequence of inference rules being applied as on the
path from (3) to Z → Y . If the cut-formula A is parametric in the inference
ending in (2), we rely on C7 instead of C6 and obtain a proof Πr.
If the tree of parametric ancestors of the displayed occurrence of A in (1)
contains more than one element Au that is not parametric in inf, parametric
and principal moves have to be combined. If A is parametric in the final
inference of Π2, we apply to Πl a principal move on every cut with Π2.
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Z → A
��
· · ·
HH

(1) Π2

(3)

��HH

;

��
· · ·
HH

Z → A Π2

Z → Y

��HH

(3)

Figure 1.

Call the resulting proof Πl∗: Π ; Πl∗. If A is not parametric in the final
inference of Π2, consider Πlr. We apply to Πlr a principal move on every
cut with any subproof of Π2 ending in a sequent containing a parametric
ancestor Au. Call the resulting proof Πlr∗: Π ; Πlr∗. Thus, if the tree of
parametric ancestors of the displayed occurrence of A in (1) contains more
than one element Au that is not parametric in inf, the primitive reduction
of Π gives a proof that is calculated via some intermediate steps. Moreover,
instead of a cut with cut-formula A, we obtain several cuts with subformulas
of A as the cut-formula. Here is a worked out example:

Π =

Π1

∗(A ◦B) ◦X → (A ◦B)
∗(A ◦B) ◦X → (A ∨B)
∗(A ∨B) ◦X → (A ◦B) Π21 Π22

∗(A ∨B) ◦X → (A ∨B) A→ Y B → Z

X → (A ∨B) ◦ (A ∨B) (A ∨B)→ (Y ◦ Z)
X → (A ∨B) (A ∨B)→ (Y ◦ Z) ◦W
X → (Y ◦ Z) ◦W

Πl =

Π1

∗(A ◦B) ◦X → (A ◦B)
∗(A ◦B) ◦X → (A ∨B) Π2

∗(A ◦B) ◦X → (Y ◦ Z) ◦W
∗((Y ◦ Z) ◦W ) ◦X → (A ◦B)
∗((Y ◦ Z) ◦W ) ◦X → (A ∨B) Π2

∗((Y ◦ Z) ◦W ) ◦X → (Y ◦ Z) ◦W
X → ((Y ◦ Z) ◦W ) ◦ ((Y ◦ Z) ◦W )
X → ((Y ◦ Z) ◦W )
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Πlr =

Π1 Π21 Π22

∗(A ◦B) ◦X → (A ◦B) A→ Y B → Z

∗(A ◦B) ◦X → (A ∨B) (A ∨B)→ (Y ◦ Z)
∗(A ◦B) ◦X → (Y ◦ Z)
∗(A ◦B) ◦X → (Y ◦ Z) ◦W Π21 Π22

∗((Y ◦ Z) ◦W ) ◦X → (A ◦B) A→ Y B → Z

∗((Y ◦ Z) ◦W ) ◦X → (A ∨B) (A ∨B)→ (Y ◦ Z)
∗((Y ◦ Z) ◦W ) ◦X → (Y ◦ Z)
∗((Y ◦ Z) ◦W ) ◦X → (Y ◦ Z) ◦W
X → ((Y ◦ Z) ◦W ) ◦ ((Y ◦ Z) ◦W )
X → ((Y ◦ Z) ◦W )

Π ; Πlr∗ =

Π1

∗(A ◦B) ◦X → (A ◦B) Π21

(∗(A ◦B) ◦X) ◦ ∗B → A A→ Y

(∗(A ◦B) ◦X) ◦ ∗B → Y Π22

∗Y ◦ (∗(A ◦B) ◦X)→ B B → Z

∗Y ◦ (∗(A ◦B) ◦X)→ Z

∗(A ◦B) ◦X → (Y ◦ Z)
∗(A ◦B) ◦X → (Y ◦ Z) ◦W
∗((Y ◦ Z) ◦W ) ◦X → A ◦B Π21

(∗((Y ◦ Z) ◦W ) ◦X) ◦ ∗B → A A→ Y

(∗((Y ◦ Z) ◦W ) ◦X) ◦ ∗B → Y Π22

∗Y ◦ (∗((Y ◦ Z) ◦W ) ◦X)→ B B → Z

∗Y ◦ (∗((Y ◦ Z) ◦W ) ◦X)→ Z

∗((Y ◦ Z) ◦W ) ◦X → (Y ◦ Z)
∗((Y ◦ Z) ◦W ) ◦X → ((Y ◦ Z) ◦W )
X → ((Y ◦ Z) ◦W ) ◦ ((Y ◦ Z) ◦W )
X → ((Y ◦ Z) ◦W )

THEOREM 23. Every proper display calculus enjoys strong cut-elimination.

Proof. See Appendix A. �

COROLLARY 24. Cut is an admissible rule of every proper display
calculus.

Theorem 23 can straightforwardly be applied to DK and DKt. It can
easily be checked that in these systems conditions C1 – C7 are satisfied.
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Verification of C8 is also a simple exercise. We have for instance:

•X → A A→ Y
X → [F ]A [F ]A→ •Y

X → •Y
;

•X → A A→ Y
•X → Y
X → •Y

X → A ∗ • ∗A→ Y
∗ • ∗X → 〈A〉 〈A〉 → Y

∗ • ∗X → Y
;

∗ • ∗A→ Y
∗Y → • ∗A
• ∗ Y → ∗A

X → A A→ ∗ • ∗Y
X → ∗ • ∗Y
• ∗ Y → ∗X
∗Y → • ∗X
∗ • ∗X → Y.

THEOREM 25. Strong cut-elimination holds for DK and DKt.

COROLLARY 26. DKt is a conservative extension of DK.

We shall now briefly consider generalizations of Theorem 23. By conditions
C6 and C7, the inference rules of a proper display calculus are closed under
simultaneous substitution of arbitrary structures for congruent formulas.
The proof of strong normalization can be generalized to logics which for
formulas of a certain shape satisfy closure under substitution either only
for congruent formulas (of this shape) which are consequent parts or only
for congruent formulas (of this shape) which are antecedent parts. In order
to extend the proof of strong cut-elimination to such systems, C6 and C7
have to be replaced by the more general condition of regularity, see [Belnap,
1990]. A formula A is defined as cons-regular if the following holds: (i) if
A occurs as a consequent parameter of an inference inf in a certain rule R,
then R contains also the inference resulting by replacing every member of
the congruence class of A in inf with an arbitrary structure X, and (ii) if
A occurs as an antecedent parameter of an inference inf in a certain rule
R, then R contains also the inference resulting by replacing every member
of the congruence class of A in inf with any structure X such that X → A
is the conclusion of an inference in which A is not parametric. The notion
of ant-regularity is defined in exactly the dual way. The new condition on
rules then is

C6/C7 Regularity. Every formula is regular.

A display calculus simpliciter is a calculus of sequents satisfying C1 - C5,
C6/7, and C8. If a logic can be presented as a display calculus, then it is said
to be displayable. Obviously, every properly displayable logic is displayable.
Also the parametric moves must be redefined. Suppose in what follows that
the cut-formula A is parametric in both the final inference of Π1 and the final
inference of Π2. Moreover, suppose that the trees of parametric ancestors
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of A in Π1 and in Π2 do not contain any application of cut. If Au is the
tip of a path of parametric ancestors of A in Πi, let inf be the inference
ending in the sequent which contains Au. Let us call Au significant, if it
is not parametric in inf. Then, in a proper display calculus we may choose
whether we cut every significant tip Au in the tree of parametric ancestors
of A in Π1 with Π2 or whether we cut every significant tip Au in the tree of
parametric ancestors of A in Π2 with Π1 to obtain Πl or Πr. Both operations
form an essential part in the definition of certain primitive reductions. In a
display calculus simpliciter this indeterministic choice has to be abandoned.
If the cut-formula is cons-regular, we cut with Π2, and if the cut-formula is
ant-regular, we cut with Π1. This further restriction on parametric moves
does not affect the proof of strong cut-elimination.

THEOREM 27. Every displayable logic enjoys strong cut-elimination.

A further strengthening of the strong cut-elimination theorem has re-
cently been proved in [Demri and Goré, 1999], where it is shown that con-
dition C8 may be relaxed. A proof Π ending in a principal application of
cut may also be replaced by a proof Π′ of the same sequent if the degree
of any application of cut in Π′ is the same as the degree of the cut-formula
in Π, and in Π′, every inference except possibly one falls under a structural
rule with a single premise. Moreover, in [Demri and Goré, 1999] a display
sequent calculus for the minimal nominal tense logic is defined, and it is
shown that every extension of this calculus by structural rules satisfying
conditions C1 – C7 enjoys strong cut-elimination.

3.4 Kracht’s algorithm

The class of all properly displayable normal propositional tense logics has
been characterized by Kracht [1996]. The idea is to obtain a canonical way
of capturing axiomatic extensions of Kt by purely structural inference rules
over DKt.

DEFINITION 28. Let Kt + α be an extension of Kt by a tense logical
axiom schema α, and let DKt + α′ be an extension of DKt by a set α′

of purely structural inference rules. Kt + α is said to be properly displayed
by DKt + α′ if (i) DKt + α′ is a proper display calculus and (ii) every
derived rule of Kt + α is the τ -translation of a sequent rule derivable in
DKt + α′.

Now, every axiom schema is equivalent to a schema of the form A ⊃ B,
where A and B are implication-free. The schema A ⊃ B has the same
deductive strength as the rule

B → X ` A→ X.

Moreover, if A and B are only built up from propositional variables, t, ∧,



SEQUENT SYSTEMS FOR MODAL LOGICS 37

∨, 〈F 〉, and 〈P 〉, then by classical logic and distribution of 〈F 〉 and 〈P 〉 over
disjunction, we have

A ≡
∨

i≤m
Ci and B ≡

∨
j≤n

Dj ,

where every Ci and Dj is only built up from t, ∧, 〈F 〉, and 〈P 〉. Therefore
A ⊃ B may as well be replaced by the rule schemata

D1 → Y . . . Dn → Y

Ci → Y.

These rule schemata can now be translated into purely structural display se-
quent rules, using the following translation η from formulas of the fragment
under consideration into structures:

η(p) = p η(t) = I
η(〈F 〉A) = ∗ • ∗η(A) η(〈P 〉A) = •η(A)
η(A ∧B) = η(A) ∧ η(B)

The resulting structural rules

η(D1)→ Y . . . η(Dn)→ Y

η(Ci)→ Y

may still violate condition C3. In order to avoid this obstruction of proper
display, it must be required that in the inducing schema A ⊃ B, the
schematic formula A contains each formula variable only once. A tense
logical formula schema is then said to be primitive if it has the form A ⊃ B,
A contains each formula variable only once, and A, B are built up from t,
∧, ∨, 〈F 〉, and 〈P 〉.
LEMMA 29. Every extension of Kt by primitive axiom schemata can be
properly displayed.

Next, if DKt + α′ properly displays Kt + α, by condition (ii) of Defi-
nition 28, the structural rules in α′ may all have the form

X1 → Y . . . Xn → Y

Z → Y.

This rule has the same deductive strength as the axiom schema

τ1(Z) ⊃
∨

i
τ1(Xi),

which is a primitive formula schema.

THEOREM 30. (Kracht) An axiomatic extension of Kt can be properly
displayed in precisely the case that it is axiomatizable by a set of primitive
axiom schemata.
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The question whether an axiomatically presented normal temporal logic
Λ is properly displayable thus reduces to the question whether Λ can be
axiomatized by primitive axioms over Kt. The implicit use of tense logic
in the structural language of sequents may help to find simple structural
sequent rules expressing less simple modal axiom schemata. The following
example is taken from [Kracht, 1996]. The .3 axiom schema 2(2A ⊃ 2B)∨
2(2B ⊃ 2A) has the primitive modal equivalent

(3A ∧3B) ⊃ ((3(A ∧3B) ∨3(B ∧3A)) ∨3(A ∧B)),

which in tense logic is equivalent to the simpler primitive schema

〈P 〉〈F 〉A ⊃ ((〈F 〉A ∨A) ∨ 〈P 〉A).

Application of Kracht’s algorithm results in the following structural rule:

X → Y •X → Y ∗ • ∗X → Y ` • ∗ • ∗X → Y.

Kracht also proves a semantic characterization of the properly displayable
tense logics. Let F be a class of Kripke frames 〈W,R,R−1〉 for temporal
logics, where R−1 is the inverse of R (i.e., R = {(x, y) | (y, x) ∈ R}). A
first-order sentence (open formula) over two binary relation symbols R and
R−1 is said to be primitive if it has the form (∀)(∃)A, where every quantifier
is restricted with respect to R or R−1, and A is built up from ∧, ∨, and
atomic formulas x = y, xRy, xR−1y, where at least one of x, y is not in the
scope of an existential quantifier.

THEOREM 31. (Kracht) A class F of Kripke frames for temporal logics is
describable by a set of primitive first-order sentences iff the tense logic of F
can be properly displayed.

The characteristic axiom schemata of quite a few fundamental systems of
modal and tense logic are equivalent to primitive schemata, and therefore
these systems can be presented as proper display calculi, cf. Table 3.7 A
set of structural sequent rules α′ is said to correspond to a property of an
accessibility relation R (with a modal or tense logical axiom schema α) iff
under the τ -translation the rules in α′ are admissible just in the event that

7Goré recently observed that Theorem 20 in [Kracht, 1996] is incorrect. This theorem
states that an axiomatic extension of K can be properly displayed iff it is axiomatizable by
a set of primitive modal axiom schemata. There are, however, first-order frame properties
that correspond to a primitive tense logical schema but fail to correspond to a primitive
modal axiom schema. An example of such a frame property is weak directedness:

∀s∀t∀u(sRt ∧ sRu ⊃ ∃v(tRv ∧ uRv)).

Weak directedness corresponds to the .2 schema 32A ⊃ 23A (alias 〈F 〉[F ]A ⊃ [F ]〈F 〉A).
Although .2 has no primitive modal equivalent, it has a primitive tense logical equivalent,
namely 〈P 〉〈F 〉A ⊃ 〈F 〉〈P 〉A. The latter schema induces a structural rule that may be
added to display calculi for (extensions of) K. Therefore, K.2 is properly displayable,
although .2 is not primitive.
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R enjoys the property (the rules in α′ have the same deductive strength
as α). Every axiom schema α in Table 3 corresponds to a purely structural
sequent rule α′ which can directly be determined from α, see Table 4.

schema primitive equivalent

D [F ]A ⊃ 〈F 〉A t ⊃ 〈F 〉t
T [F ]A ⊃ A A ⊃ 〈F 〉A
4 [F ]A ⊃ [F ][F ]A 〈F 〉〈F 〉A ⊃ 〈F 〉A
5 〈F 〉A ⊃ [F ]〈F 〉A 〈P 〉〈F 〉A ⊃ 〈F 〉A
B A ⊃ [F ]〈F 〉A (A ∧ 〈F 〉B) ⊃ 〈F 〉(B ∧ 〈F 〉A)

Alt1 〈F 〉A ⊃ [F ]A (〈F 〉A ∧ 〈F 〉B) ⊃ 〈F 〉(A ∧B)

T c A ⊃ [F ]A 〈F 〉A ⊃ A
4c [F ][F ]A ⊃ [F ]A 〈F 〉A ⊃ 〈F 〉〈F 〉A
.2 〈F 〉[F ]A ⊃ [F ]〈F 〉A 〈P 〉〈F 〉A ⊃ 〈F 〉〈P 〉A
.3 [F ]([F ]A ⊃ [F ]B) ∨ [F ]([F ]B ⊃ [F ]A) 〈P 〉〈F 〉A ⊃ ((〈F 〉A ∨A) ∨ 〈P 〉A)

linf 〈F 〉A ⊃ [F ]((〈F 〉A ∨A) ∨ 〈P 〉A) 〈P 〉〈F 〉A ⊃ ((〈F 〉A ∨A) ∨ 〈P 〉A)

linp 〈P 〉A ⊃ [P ]((〈P 〉A ∨A) ∨ 〈F 〉A) 〈F 〉〈P 〉A ⊃ ((〈P 〉A ∨A) ∨ 〈F 〉A)

V [F ]A 〈P 〉t ⊃ A
Dp [P ]A ⊃ 〈P 〉A t ⊃ 〈P 〉t
Tp [P ]A ⊃ A A ⊃ 〈P 〉A
4p [P ]A ⊃ [P ][P ]A 〈P 〉〈P 〉A ⊃ 〈P 〉A
5p 〈P 〉A ⊃ [P ]〈P 〉A 〈F 〉〈P 〉A ⊃ 〈P 〉A
Bp A ⊃ [P ]〈P 〉A (A ∧ 〈P 〉B) ⊃ 〈P 〉(B ∧ 〈P 〉A)

Alt1p 〈P 〉A ⊃ [P ]A (〈P 〉A ∧ 〈P 〉B) ⊃ 〈P 〉(A ∧B)

T cp A ⊃ [P ]A 〈P 〉A ⊃ A
4cp [P ][P ]A ⊃ [P ]A 〈P 〉A ⊃ 〈P 〉〈P 〉A
Vp [P ]A 〈F 〉t ⊃ A

Table 3. Axioms and primitive axioms.

Let Γ (Θ) be the set of all (all purely modal) axiom schemata from Table
3, Γ ⊆ Γ, Θ ⊆ Θ, Γ′ = {α′ | α ∈ Γ}, and Θ′ = {α′ | α ∈ Θ}.
THEOREM 32. In DKt∪Γ′, ` X → Y iff ` τ1(X) ⊃ τ2(Y ) in Kt∪Γ. In
DK∪Θ′, ` X → Y iff ` τ1(X) ⊃ τ2(Y ) in K∪Θ.

Proof. This follows from axiomatizability by primitive schemata. �

THEOREM 33. Strong cut-elimination holds for DKt ∪Γ′ and DK ∪Θ′.

Proof. The rules in Γ′ and Θ′ satisfy conditions C2 – C7. �

COROLLARY 34. DKt ∪Γ′ is a conservative extension of DK ∪Γ′.

Kracht’s algorithm can be dualized. Every schema A ⊃ B is interreplace-
able with the rule

X → A ` X → B.
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D′ ∗ • ∗I→ Y ` I→ Y
T ′ ∗ • ∗X → Y ` X → Y
4′ ∗ • ∗X → Y ` ∗ • • ∗X → Y
5′ ∗ • ∗X → Y ` • ∗ • ∗X → Y
B′ ∗ • ∗(X ◦ ∗ • ∗Y )→ Z ` Y ◦ ∗ • ∗X → Z
Alt1′ ∗ • ∗(X ◦ Y )→ Z ` ∗ • ∗X ◦ ∗ • ∗Y → Z
T c′ X → Y ` ∗ • ∗X → Y
4c′ ∗ • • ∗X → Y ` ∗ • ∗X → Y
.2′ ∗ • ∗ •X → Y ` • ∗ • ∗X → Y
.3′ X → Y •X → Y ∗ • ∗X → Y ` • ∗ • ∗X → Y
linf ′ = .3′

linp′ X → Y •X → Y ∗ • ∗X → Y ` ∗ • ∗ •X → Y
V ′ X → Y ` •I→ Y
Dp
′ •I→ Y ` I→ Y

Tp
′ •X → Y ` X → Y

4p′ •X → Y ` • •X → Y
5p′ •X → Y ` ∗ • ∗ •X → Y
Bp
′ •(X ◦ •Y )→ Z ` Y ◦ •X → Z

Alt1p′ •(X ◦ Y )→ Z ` •X ◦ •Y → Z
T cp
′ X → Y ` •X → Y

4cp
′ • •X → Y ` •X → Y

Vp
′ X → Y ` ∗ • ∗I→ Y

Table 4. Structural rules corresponding to axiom schemata.

If A and B are only built up from propositional variables, f , ∧, ∨, [F ], and
[P ], then by classical logic and distribution of [F ] and [P ] over conjunction,
we have

A ≡
∧

i≤m
Ci and B ≡

∧
j≤n

Dj ,

where every Ci and Dj is only built up from f , ∨, [F ], and [P ]. Therefore
A ⊃ B may be replaced by the rule schemata

X → C1 . . . X → Cm
X → Dj .

These schemata are translatable into purely structural sequent rules using
the following translation η′ from formulas of the fragment under considera-
tion into structures:

η′(p) = p η′(f) = I
η′([F ]A) = •η′(A) η′([P ]A) = ∗ • ∗η′(A)
η′(A ∨B) = η′(A) ∨ η′(B)
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The resulting structural rules

X → η′(C1) . . . X → η′(Cm)
X → η′(Dj)

again may still violate condition C3. In order to avoid the obstruction of
proper display, it must be required that in the inducing schema A ⊃ B,
the schematic formula B contains each formula variable only once. A tense
logical formula schema is then said to be dually primitive if it has the form
A ⊃ B, B contains each formula variable only once, and A, B are built up
from f , ∧, ∨, [F ], and [P ].

THEOREM 35. An axiomatic extension of Kt can be properly displayed iff
it is axiomatizable by a set of dually primitive axiom schemata.

For instance, rule T ′ is equivalent to X → •Y ` X → Y and 4′ with
X → •Y ` X → • • Y . Moreover, D′ is equivalent to •X ◦ •Y → ∗I `
X → ∗Y , Alt1′ with X → Y ` X → ∗ • ∗ • Y , and V ′ with ` •I → X, see
[Wansing, 1994].

The properly displayable modal and tense logics satisfy Došen’s Principle.
They are all based on the same set of left and right introduction rules, so
that the logical operations indeed have the same proof-theoretic, operational
meaning in each of these systems. Kracht’s characterization results show
that many interesting and important intensional logics admit a cut-free dis-
play sequent calculus presentation. In Sections 3.8 and 4 other applications
of the display calculus are pointed out. Display sequent systems for various
non-normal modal logics may be found in [Belnap, 1982].

3.5 Formulas-as-types for temporal logics

It is well-known that every derivation in Gentzen’s natural deduction calcu-
lus for intuitionistic implicational logic can be encoded by a typed λ-term,
and vice versa [Howard, 1980]. In particular, every natural deduction proof
can be encoded by a closed term, and every closed term encodes a proof. It
is also well-known that every pair of non-convertible typed λ-terms defines
different functionals of finite type [Friedman, 1975]. Every type A is asso-
ciated with an infinite set DA, every term variable xA of type A denotes
an element from DA, and every term M (ABB) of type A B B denotes an
element from the set (DB)D

A

of all functions from DA to DB . Together
with the encoding, this interpretation results in a set-theoretic semantics of
proofs in intuitionistic implicational logic. In this section, we shall develop
a set-theoretic interpretation of sequent proofs in the {t, [F ], 〈P 〉,B,∧}–
fragment of the smallest normal temporal intuitionistic (or, for that pur-
pose, minimal) logic IntKt. The interpretation is based on the observation
that the modalities 〈P 〉 and [F ] form a residuated pair with respect to
derivability. The encoding of proofs by typed terms should be such that
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proof-simplification (or normalization) corresponds with a suitable reduc-
tion relation on terms, and therefore the set-theoretic semantics of terms
has to validate the equalities underlying the reduction rules. The principal
cut-elimination steps for 〈P 〉 and [F ] reveal that two pairs of term forming
operations o1 and o2 are needed such that o1(o2(M)) = M . We shall use
the following identities:⋃

Pa = a and
⋂
Sa = a,

where P is the familiar powerset operation and Sa =def {b | a ⊆ b}). Since
in general Sa is a proper class, we shall restrict the denotations of terms to
the universe Vω1 . This is enough to accommodate the sets used as domains
of the intended models in Section 3.7.

We shall first define a display sequent system DIntKt for the fragment of
IntKt under consideration, and then present an extension λt of the typed
λ-calculus. The set of types in λt is the set of all formulas in the language
L = {t, [F ], 〈P 〉,B,∧} based on a denumerable set Atom of propositional
variables. In Section 3.6 it is proved that term reduction is a homomor-
phic image of proof-simplification. Next, an encoding of terms by proofs
is presented. A set-theoretic semantics of proofs in DIntKt is obtained in
Section 3.7 by showing that every pair of non-convertible λt-terms defines
different sets in the set-theoretic universe under consideration. In particu-
lar, every term M [F ]A denotes an element from {Pa | a ∈ DA}, and every
term M 〈P 〉A denotes an element from {Sa | a ∈ DA}. Also the formulas-as-
types notion of construction for various extensions of DIntKt is dealt with
and remarks on some related work about formulas-as-types for modal logics
are made.

First, we shall define the sequent system DIntKt. We assume the fol-
lowing language of structures:

X ::= A | I | •X | X o Y.

A sequent now is an expression X → Y , provided Y 6= I. The declarative
meaning of the structure connectives can be made explicit by a translation
τ from the set of sequents into the set of L-formulas:

τ(X → Y ) := τ1(X) B τ2(Y ),

where τi (i = 1, 2) is defined as follows:

τi(A) = A τ1(I) = t

τ1(X o Y ) = τ1(X) ∧ τ1(Y ) τ2(X o Y ) = τ1(X) B τ2(Y )
τ1(•X) = 〈P 〉τ1(X) τ2(•X) = [F ]τ2(X)

Given this understanding of the structure connectives, the basic structural
rules (4) and (5) from Section 3.1 are assumed. Clearly, the Display Theo-
rem holds for this structural language and calculus.
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DEFINITION 36. The display sequent calculus DIntKt is given by the
logical rules (id) and (cut), the basic structural rules (4) and (5), the intro-
duction rules for t, B, 〈P 〉, [F ], and the rules (→ ∧)′ and (∧ →)′, together
with the following structural rules:

(empty structure) X → Y ` IoX → Y, X → Y ` X o I→ Y

IoX → Y ` X → Y, X o I→ Y ` X → Y

(associativity) (X1 oX2)oX3 → Y a` X1 o (X2 oX3)→ Y

(permutation) X o Y → Z ` Y oX → Z

(contraction) X oX → Y ` X → Y

(expansion) X → Y ` X oX → Y

(monotonicity) X → Z ` X o Y → Z, X → Z ` Y oX → Z

(necessitation) I→ X ` •I→ X.

To show that DIntKt is a display calculus for IntKt, we define an ax-
iomatic calculus HIntKt.

DEFINITION 37. The system HIntKt consists of the axiom schemata
and rules of the {t,∧,B}–fragment of positive intuitionistic logic, together
with

1. ([F ]A ∧ [F ]B) B [F ](A ∧B)

2. [F ]t

3. A B [F ]〈P 〉A

4. ` A B B
` [F ]A B [F ]B

5. ` A B B
` 〈P 〉A B 〈P 〉B

The relational semantics to be presented is a straightforward adaptation of
the semantics developed by Bošić and Došen [1984]. A comprehensive survey
of intuitionistic modal logics and their algebraic and relational semantics is
[Wolter and Zakharyaschev, 1999]. A temporal frame is defined as a struc-
ture 〈W,RI , RT 〉, where W is a non-empty set (of states), RI and RT are
binary relations on W , RI is both reflexive and transitive, and, moreover,
(i) RIRT ⊆ RTRI (i.e. the composition of RT and RI is a subset of the com-
position of RI and RT ) and (ii) R−1

I R−1
T ⊆ R

−1
T R−1

I . If F = 〈W,RI , RT 〉 is
a temporal frame, the temporal model based on F is the structure 〈F , v〉,
where v is a function from Atom ×W into {0, 1} satisfying:

(Heredity) (v(p, u) = 1 and uRIt) implies v(p, t) = 1.
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Let M = 〈W,RI , RT , v〉 be a temporal model. Verification of a formula A
at a state u ∈W (M, u |= A) is inductively defined as follows:

M, u |= p iff v(p, u) = 1
M, u |= t

M, u |= A ∧B iff M, u |= A andM, u |= B

M, u |= A B B iff (∀t ∈W )uRIt implies [M, t 6|= A orM, t |= B]
M, u |= [F ]A iff (∀t ∈W )uRT t impliesM, t |= A

M, u |= 〈P 〉A iff (∃t ∈W ) tRTu andM, t |= A

For every formula A, if A is verified at state u and uRIt, then A is also ver-
ified at t. Condition (i) ensures this general heredity property for formulas
[F ]A, and condition (ii) ensures it for formulas 〈P 〉A. A formula A is true
in a model 〈W,RT , RI , v〉 if A is verified at every u ∈ W , and A is said to
be true on a frame F , if A is valid in every model based on F . If K is a
class of models (frames), A is said to be valid in K iff A is valid in every
model (valid on every frame) in K.

THEOREM 38. HIntKt is sound and complete with respect to the class of
all temporal frames, i.e. for every L–formula A, A is provable in HIntKt
iff A is valid in the class of all temporal frames.

Proof. Soundness is shown by induction on proofs in HIntKt; for com-
pleteness see Appendix B. �

LEMMA 39. (1) If ` A in HIntKt, then ` I → A in DIntKt, and (2)
If ` X → Y in DIntKt, then ` τ(X → Y ) in HIntKt.

Proof. (1) By induction on proofs in HIntKt. We shall consider only two
example cases:

A→ A
•A→ 〈P 〉A
A→ [F ]〈P 〉A

Ao I→ [F ]〈P 〉A
I→ Ao [F ]〈P 〉A
I→ A B [F ]〈P 〉A

A→ A
[F ]A→ •A

[F ]Ao [F ]B → •A
•([F ]Ao [F ]B)→ A

B → B
[F ]B → •B

[F ]Ao [F ]B → •B
•([F ]Ao [F ]B)→ B

•([F ]Ao [F ]B)o •([F ]Ao [F ]B)→ A ∧B
•([F ]Ao [F ]B)→ A ∧B

([F ]Ao [F ]B)→ [F ](A ∧B)
([F ]A ∧ [F ]B)→ [F ](A ∧B)

([F ]A ∧ [F ]B)o I→ [F ](A ∧B)
I→ ([F ]A ∧ [F ]B)o [F ](A ∧B)
I→ ([F ]A ∧ [F ]B) B [F ](A ∧B)

(2) By induction on proofs in DIntKt. �
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COROLLARY 40. In HIntKt, ` A iff ` I→ A in DIntKt.

By induction on the complexity of X, one can prove the following

LEMMA 41. In every extension of DIntKt by structural rules, it holds
that ` X → τ1(X) and ` τ2(X)→ X.

THEOREM 42. In DIntKt, ` X → Y iff ` τ(X → Y ) in HIntKt.

Proof. Analogous to the proof of Theorem 20. �

Since DIntKt is a proper display calculus, we have the following

THEOREM 43. DIntKt enjoys strong cut-elimination.

Take any terminating cut-elimination algorithm elimc for DIntKt. We
may also define a binary relation s on the set of proofs in DIntKt by the
following stipulations:

A→ A B → B
AoB → A ∧B
A ∧B → A ∧B

 s A ∧B → A ∧B

A→ A B → B
A B B → AoB
A B B → A B B

 s A B B → A B B

If Π s Π′, we say that in Π′ a redundant part of Π has been removed. Let
elimr denote the terminating algorithm that removes redundant parts of a
proof in top-down left to right order, so that a redundant part is removed
only if it has no redundant part above it. Obviously, in any extension of
DIntKt, every proof of a sequent s can be converted into a proof of s con-
taining no redundant part. Let elim denote elimrelimc, i.e. the composition
of elimr and elimc. The algorithm elim is the process of proof simplification
to be considered. We assume that elim(Π) = Π if Π contains no application
of (cut) and no redundant part.

3.6 The typed λ-calculus λt

The set T of type symbols (or just types) is the set of all L-formulas. The
set V of term variables is defined as {vAi | 0 < i ∈ ω,A ∈ T}.
DEFINITION 44. The set Term of typed terms is defined as the smallest
set ∆ such that

1. V ⊆ ∆;

2. if MA, NB ∈ ∆, then 〈MA, NB〉(A∧B) ∈ ∆;

3. M (A∧B) ∈ ∆, then (M (A∧B))A0 , (M (A∧B))B1 ∈ ∆;



46 HEINRICH WANSING

4. if xA ∈ V and MB ∈ ∆, then (λxAMB)(ABB) ∈ ∆;

5. if M (ABB), NA ∈ ∆, then (M (ABB), NA)B ∈ ∆;

6. if MA ∈ ∆, then (PM)[F ]A, (SM)〈P 〉A ∈ ∆;

7. if M [F ]A ∈ ∆, then (∪M [F ]A)A ∈ ∆;

8. if M 〈P 〉A ∈ ∆, then (∩M 〈P 〉A)A ∈ ∆.

A term MA is said to be a term of type A; obviously, every term has a
unique type. If confusion is unlikely to arise, we shall often write M instead
of MA and omit parentheses not needed for disambiguation. The set fv(M)
of free variables of M , the set of subterms of M , and M [xA := NA], the
result of substituting term N of type A for every occurrence of xA in M
are inductively defined in the obvious way. If a variable x in M is not an
element of fv(M), x is said to be a bound variable of M . The set of bound
variables of M is denoted as bv(M). We shall also write M(xA1

1 , . . . , xAnn )
to express that x1, . . . , xn ∈ fv(M). If M(xA1

1 , . . . , xAnn ) and N1, . . . , Nn are
terms of types A1, . . . , An, then M(N1, . . . , Nn) is the result of substituting
in M the variables xi by Ni. We shall use ‘≡’ to denote syntactic identity
between term.

DEFINITION 45. The typed λ-calculus λt consists of the following rules
and axiom schemata:

1. λxAM = (λyAM [x := y]), if y 6∈ (fv(M) ∪ bv(M));

2. λx(M,x) = M , if x 6∈ fv(M);

3. (λxM)N = M [x := N ], if bv(M) ∪ fv(N) = ∅;

4. (〈M0,M1〉)i = Mi;

5. 〈(M)0, (M)1〉 = M ;

6. ∪PM = M ;

7. ∩SM = M ;

8. MA = MA;

9. M = N ` N = M ; M = N, N = G `M = G;

10. M = N ` (G,M) = (G,N); M = N ` (M,G) = (N,G);

11. M = N ` λxM = λxN ;

12. M = N ` PM = PN ; M = N ` ∪M = ∪N .
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DEFINITION 46. The binary relations on Term, →r (one-step reduction),
�r (reduction), and =r (equality) are defined as follows:

1. • λx(Mx)→r M , if x 6∈ fv(M);

• (λxM)N →r M [x := N ], if bv(M) ∪ fv(N) = ∅;
• (〈M,N〉)0 →r M ; (〈M,N〉)1 →r N ;

• 〈(M)0, (M)1〉 →r M ;

• ∪PM →r M ; ∩SM →r M ;

• if MABB →r N
ABB , then (M,GA)→r (N,G);

• if MA∧B →r N
A∧B , then (M)i →r (N)i;

• if MA →r N
A, then λxM →r λxN , (GABBM)→r (GN),

〈M,G〉 →r 〈N,G〉, 〈G,M〉 →r 〈G,N〉, PM →r PN ,
SM →r SN , ∩M →r ∩N , ∪M →r ∪N .

2. �r is the reflexive transitive closure of →r;

3. =r is the equivalence relation generated by �r.

DEFINITION 47. λt-terms λx(Mx) (where x 6∈ fv(M)), (λxM)N (where
bv(M) ∪ fv(N) = ∅), (〈M,N〉)0, (〈M,N〉)1, 〈(M)0, (M)1〉, ∪PM, and ∩SM
are called redexes. A term M is a normal form (nf ) if it has no redex as a
subterm, and M has a nf if there is a nf N such that M =r N . M is said
to be strongly normalizable with respect to �r (sn(M)) if every sequence
of reduction steps starting at M is finite.

THEOREM 48. Every M ∈ Term is strongly normalizable with respect to
�r.

Proof. See Appendix C. �

Let norm(M) refer to the iterated contraction of the leftmost redex in M .
Since by the previous theorem, every reduction starting at M is finite, norm
is a terminating normalization algorithm with respect to �r.

We shall now encode proofs by giving recipes for building up constructions
of sequents. Every formula occurring in an antecedent part of a sequent s
is said to be an antecedent formula component of s.

DEFINITION 49. A construction of a sequent s is a term MA such that an
occurrence of A is the succedent part of s, and every type of a free variable
of M is an antecedent formula component of s.

This notion of construction is a straightforward adaptation of the notion of
construction for ordinary natural deduction and sequent calculi. The set of
types of the free variables occurring in the term encoding a derivation Π is a
subset of the set of assumptions on which Π depends. Therefore applications
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of structural inference rules are not reflected by term modifications, and
variations of structural rules are captured by imposing conditions on variable
binding and occurrences of free variables in the encoding terms (see, for
instance, [van Benthem, 1986, Chapter 7], [van Benthem, 1991], [Helman,
1977], [Wansing, 1992]).

OBSERVATION 50. Given a proof in DIntKt of a sequent s, one can find
a construction M of s.

Proof. We define a function f from the set ΠDIntKt of proofs in DIntKt
to Term such that f(Π) is a construction of the conclusion sequent of Π.
The pairs of sequent rules and terms or term construction rules in Table 5
amount to an inductive definition of f . The variables newly introduced into
the conclusion of a term construction rule are the numerically first variables
of the types indicated not occurring in the premise term. �

Clearly, norm is a function on Term. Let Π+DIntKt denote the set of
all proofs in DIntKt containing an application of (cut) or a redundant
part, and let Π−DIntKt denote the set of all cut-free proofs in DIntKt
containing no redundant part. Let +Term denote the set of all terms that
are not normal forms, and let −Term denote the set of all terms that are
normal forms.

THEOREM 51. Let A = 〈ΠDIntKt, elim〉 and B = 〈Term,norm〉. The
function f defined in the proof of Observation 50 is a homomorphism from
A to B.

Proof. See Appendix D. �

Under the encoding of proofs by terms, surjective pairing (〈(M)0, (M)1〉
→r M) and η–reduction (λx(Mx) →r M , if x 6∈ fv(M)) correspond with
replacing proofs

A→ A B → B
AoB → A ∧B
A ∧B → A ∧B

and
A→ A B → B
A B B → AoB
A B B → A B B

by the axiomatic sequents A∧B → A∧B and A B B → A B B, respectively.
Note that there are no analogues of surjective pairing and η–reduction that
correspond with a replacement of proofs of [F ]A→ [F ]A and 〈P 〉A→ 〈P 〉A
from A → A by the axiomatic sequents [F ]A → [F ]A and 〈P 〉A → 〈P 〉A.
Moreover, since in the encoding applications of structural rules are not
reflected by term formation steps, it is in general not the case that if M =
f(Π), Π can be uniquely reconstructed from M .
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Logical rules
A→ A vA1

X → A A→ Y MA N(xA)
X → Y N [x := M ]

Structural rules
s M
s′ M

Intuitionistic connective rules
I→ t vt1

I→ X M
t→ X M

X → A Y → B MA NB

X o Y → A ∧B 〈M,N〉

AoB → X M(xA, yB)
A ∧B → X M((zA∧B)0, (zA∧B)1)

X → AoB M(xA)
X → A B B λxAM

X → A B → Y MA N(xB)
A B B → X o Y N [x := (y(ABB),M)]

Modal connective rules
•X → A M

X → [F ]A PM

A→ X

[F ]A→ •X
M(xA)

M(∪y[F ]A)

X → A

•X → 〈P 〉A
M
SM

A→ •X M(xA)
〈P 〉A→ X M(∩y〈P 〉A)

Table 5. Sequent rules and term construction rules.
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3.7 A denotational semantics of proofs

We shall now define models for λt. The completeness proof to be given
straightforwardly extends H. Friedman’s [1975] completeness proof for typed
λ–calculus. The plan of the proof is as follows: first it is shown that λt
is sound and complete with respect to the class of all models. This is
achieved by defining a canonical model that itself characterizes λt. Then a
notion of intended model is defined. In such models the typed terms have
their intended set-theoretic interpretation. In order to characterize provable
equality of terms in λt by validity in all intended models, it is shown that
for every intended model M, there exists a ‘partial homomorphism’ from
M onto the canonical model. Since such partial homomorphisms turn out
to preserve validity, λt is sound and complete with respect to the class of
all intended models.

DEFINITION 52. A structure F = 〈{DA}, {APA,B}, {PRO0
A,B},

{PRO1
A,B}, {PAIRA,B}, {PA}, {SA}, {P↓A}, {S↓A} 〉 is called a type struc-

ture frame (or just a frame) iff for all types A, B:

1. DA (the domain of type A) is a non-empty set;

2. APA,B : D(ABB) ×DA −→ DB ,
PRO0

A,B : D(A∧B) −→ DA,
PRO1

A,B : D(A∧B) −→ DB ,
PAIRA,B : DA ×DB −→ D(A∧B),
PA : DA −→ D[F ]A,
SA : DA −→ D〈P 〉A,
P↓A: D[F ]A −→ DA,
S↓A: D〈P 〉A −→ DA;

3. (extensionality) if a, b ∈ D(ABB) and (∀c ∈ DA) we have (APA,B(a, c)
= APA,B(b, c)), then a = b;

4. (pro) for all a ∈ DA, b ∈ DB :
PRO0

A,B(PAIRA,B(a, b)) = a, PRO1
A,B(PAIRA,B(a, b)) = b;

5. (pair) for all a ∈ DA∧B : PAIRA,B(PRO0
A,B(a),Pro1

A,B(a)) = a;

6. (future) for all a ∈ DA: P↓ (Pa) = a;

7. (past) for all a ∈ DA: S↓ (Sa) = a.

An assignment in a frame 〈{DA}, {APA,B}, {PRO0
A,B}, {PRO1

A,B},
{PAIRA,B}, {PA}, {SA}, {P↓A}, {S↓A} 〉 is a function f defined on the set
V of term variables such that f(xA) ∈ DA. The set of all assignments in a
given frame is denoted by Asg . If y ∈ V , then fya is defined by fya (x) = f(x),
if x 6= y, fya (y) = a.
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DEFINITION 53. Suppose that F = 〈{DA}, {APA,B}, {PRO0
A,B},

{PRO1
A,B}, {PAIRA,B}, {PA}, {SA}, {P ↓A}, {S ↓A} 〉 is a frame. Then

〈F , val〉 is said to be a type structure model (or just a model) based on F
iff val is the valuation function from Term ×Asg to

⋃
A∈TD

A such that:

1. val(x, f) = f(x);

2. APA,B(val((λxM), f), a) = val(M,fxa ), ∀a ∈ DA;

3. val((M (ABB), NB), f) = APA,B(val(M,f), val(N, f));

4. val(〈MA, NB〉, f) = PAIRA,B(val(M,f), val(N, f));

5. val((M (A∧B))i, f) = PROi
A,B(val(M,f)), i = 0, 1;

6. val((PMA)[F ]A, f) = PA(val(M,f));

7. val((SMA)〈P 〉A, f) = SA(val(M,f));

8. val((∪M [F ]A)A, f) = P↓A (val(M,f));

9. val((∩M 〈P 〉A)A, f) = S↓A (val(M,f)).

Let M = 〈F , val〉 be a model.

LEMMA 54. (1) val(M [x := N ], f) = val(M,fxval(N,f)), if bv(M)∩fv(N) =
∅. (2) val(M [x := y], fya ) = val(M,fxa ), if y 6∈ bv(M) ∪ fv(M).

Proof. (1) By induction on M , for fixed N ; (2) by (1). �

The equality M = N is said to hold inM under assignment f (M, f |= M =
N) iff val(M,f) = val(N, f). M = N is called valid in M (M |= M = N)
iff M, f |= M = N , for all f ∈ Asg . M = N is said to be valid in a class K
of models, if M |= M = N , for each M ∈ K.

OBSERVATION 55. (Soundness) If M = N is provable in λt, then M = N
is valid in the class of all models.

Proof. By induction on proofs in λt. We must show that every axiom is
valid in every model, and that the rules of inference preserve validity. We
shall consider two cases not already dealt with in [Friedman, 1975].
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〈(M)0, (M)1〉 = M :
val((〈M,N〉)0, (〈M,N〉)1〉, f)

= PAIR(val((〈M,N〉)0, f), val((〈M,N〉)1, f))
= PAIR(PRO0(PAIR(val(M,f), val(N, f))),

PRO1(PAIR(val(M,f), val(N, f))))
= PAIR(val(M,f), val(N, f)) = val(〈M,N〉, f).

∩SM = M :
val(∩SM,f)

= S↓ (val(SM,f)
= S↓ (S(val(M,f))
= val(M,f) �

Next, we define the frame F0 on which the canonical model is based. Let
|M | = {N |`λt M = N}; |M | is the equivalence class of M with respect
to provable equality in λt.

DEFINITION 56. F0 = 〈{DA}, {APA,B}, {PRO0
A,B}, {PRO1

A,B},
{PAIRA,B}, {PA}, {SA}, {P↓A}, {S↓A} 〉 is defined as follows:

• DA = {|M | |M is of type A};

• APA,B(|MABB |, | NA |) = | (M,N) |;

• PRO0
A,B(|MA∧B |) = | (M)0 |;

• PRO1
A,B(|MA∧B |) = | (M)1 |;

• PAIRA,B(|MA |, | NB |) = | 〈M,N〉 |;

• PA(|MA |) = | PM |;

• SA(|MA |) = | SM |;

• P↓A (|MA |) = | ∪M |;

• S↓A (|MA |) = | ∩M |.

LEMMA 57. F0 is a frame.

Proof. Clearly, DA is a non-empty set, and APA,B , PRO0
A,B , PRO1

A,B ,
PAIRA,B , PA, SA, P↓A, and S↓A are functions with appropriate domain and
range, for all types A and B. For (extensionality) see [Friedman, 1975]. For
(pro), (pair), (future), and (past), use the obvious equalities. �

A function g : V −→ Term is called a substitution, if g(x) and x are of the
same type. A substitution is called regular, if for pairwise distinct variables
x, y, fv(g(x)) ∩ fv(g(y)) = ∅. Let M(g) denote the result of simultaneously
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replacing in M every free occurrence of each variable x by g(x). It can
easily be shown that if M ∈ Term and Γ is a finite set of variables, then
there is an N such that `λt M = N , fv(M) = fv(N), and bv(N) ∩ Γ = ∅.
DEFINITION 58. Suppose f is an assignment in F0 and g is a regular
substitution such that f(x) = | g(x) |, for every x ∈ V . For a given term
M , choose a term N such that `λt M = N and for every x ∈ fv(N),
bv(N) ∩ fv(g(x)) = ∅. Then val(M,f) is defined by val(M,f) = | N(g) |.

It can be shown that val : Term × Asg −→
⋃
AD

A, and `λt M = N
implies val(M,f) = val(N, f), cf. [Friedman, 1975].

LEMMA 59. M0 = 〈F0, val〉 is a type structure model.

Proof. We consider those conditions not already assumed in Friedman’s
paper. Let g be a regular substitution and f(x) = | g(x) |, for f ∈ Asg .
Choose M1, N1 such that `λt M = M1, `λt N = N1, and bv(M1)∩fv(g(x))
= bv(N1) ∩ fv(g(x)) = ∅, for every x ∈ fv(M1) ∪ fv(N1).

4 : val(〈M,N〉, f) = | 〈M1, N1〉(g) | =
PAIR(|M1(g) |, | N1(g) |) = PAIR(val(M,f), val(N, f)).

5 : val((M)i, f) = | (M1)i(g) | = PROi(|M1(g) |) = PROi(val(M,f)).

6 : val((PMA)[F ]A, f) = | PM1(g) | = PA(|M1(g) |) = PA(val(M,f)).

8 : val((∪M [F ]A)A, f) = | ∪M1(g) | = P↓A (|M1(g) |) = P↓A (val(M,f)).

7 and 9 : analogous to the previous two cases. �

THEOREM 60. (Completeness) If M = N is valid in the class of all mod-
els, then `λt M = N .

Proof. Suppose 6`λt M = N . Choose M1, N1 such that `λt M = N1,
`λc N = N1, and bv(M1) ∩ fv(M1) = bv(N1)∩fv(N1) = ∅. Then val(M,f)
= |M1 | 6= | N1 | = val(N, f), for f(x) = | id(x) |, for all x ∈ V , where id is
the identity function on V . Thus, M0 6|= M = N . �

We now define the intended models. Following the terminology of Friedman,
we shall call the frames underlying an intended model ‘full temporal type
structures over infinite sets’.

DEFINITION 61. A type structure frame F = 〈{DA}, {APA,B},
{PRO0

A,B}, {PRO1
A,B}, {PAIRA,B}, {PA}, {SA}, {P↓A}, {S↓A}〉 is said

to be a full temporal type structure over infinite sets, if

• Dt is infinite, and for every p ∈ Atom, Dp is infinite;

• DA∧B = DA ×DB ;

• DABB = (DB)DA

;
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• D[F ]A = {Pa | a ∈ DA}; D〈P 〉A = {Sa | a ∈ DA};

• APA,B(a, b) = a(b);

• PRO0
A,B(〈a, b〉) = a; PRO1

A,B(〈a, b〉) = b;

• PAIRA,B(a, b) = 〈a, b〉;

• PA(a) = Pa; SA(a) = Sa;

• P↓A (a) = ∪a; S↓A (a) = ∩a.

DEFINITION 62. Let F = 〈 {DA}, {APA,B}, {PRO0
A,B}, {PRO1

A,B},
{PAIRA,B}, {PA}, {SA}, {P ↓A}, {S ↓A} 〉, F∗ = 〈{D∗A}, {AP∗A,B},
{PRO∗0A,B}, {PRO∗1A,B}, {PAIR∗A,B}, {P∗A}, {S∗A}, {P↓∗A}, {S↓∗A} 〉 be frames,
and letM = 〈F , val〉 andM∗ = 〈F∗, val∗〉 be models. A family of functions
{fA} is called a partial homomorphism from M onto M∗ iff

1. for each type A, fA is a partial function from DA onto D∗A;

2. if fABB(a) exists, then fB(APA,B(a, b)) = AP∗A,B(fABB(a), fA(b)),
for all b in the domain of fA,

3. if fA(a), fB(b) exist,
then fA∧B(PAIRA,B(a, b)) = PAIR∗A,B(fA(a), fB(b));

4. if fA∧B(a) exists, then fA(PRO0
A,B(a)) = PRO∗0A,B(fA∧B(a));

5. if fA∧B(a) exists, then fB(PRO1
A,B(a)) = PRO∗1A,B(fA∧B(a));

6. if fA(a) exists, then
f[F ]A(PA(a)) = P∗A(fA(a)); f〈P 〉A(SA(a)) = S∗A(fA(a));

7. if f[F ]A(a), f〈P 〉A(b) exist, then
fA(P↓A (a)) = P↓∗A (f[F ]A(a)); fA(S↓A (b)) = S↓∗A (f〈P 〉A(b)).

LEMMA 63. Let M, M∗ be as in the previous definition, and let {fA}
be a partial homomorphism from M onto M∗. If g, g∗ are assignments
in F and F∗ respectively, and fA(g(xA)) = g∗(x), then fA(val(MA, g)) =
val∗(M, g∗).

Proof. By induction on M . We consider the cases not already dealt with
in [Friedman, 1975]. Note that we may assume fA(g(xA)) = g∗(x), since
fA is onto.

• M ≡ 〈NA, GB〉: fA∧B(val(〈N,G〉, g))
= fA∧B(PAIR(val(N, g), val(G, g)))
= PAIR∗A,B(fA(val(N, g)), fB(val(G, g)))
= PAIR∗A,B(val∗(N, g∗), val∗(G, g∗)) by the induction hypothesis
= val∗(〈N,G〉, g∗).
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• M ≡ (NA∧B)i: f(val((N)i, g)) = f(PROi(val(N, g)))
= PRO∗i(fA∧B(val(N, g)))
= PRO∗i(val∗(N, g∗)) by the induction hypothesis
= val∗((N)i, g∗).

• M ≡ PNA: f[F ]A(val(PN, g)) = f[F ]A(PA(val(N, g)))
= P∗A(fA(val(N, g))) = P∗A(val∗(N, g∗)) = val∗(PN, g∗).

• M ≡ ∪N [F ]A: fA(val(∪N, g)) = fA(P↓A (val(N, g)))
= P↓∗A (f[F ]A(val(N, g))) = P↓∗A (val∗(N, g∗)) = val∗(∪N, g∗).

• M ≡ SN,∩N : analogous to the previous two cases. �

COROLLARY 64. Let M = 〈F , val〉, M∗ = 〈F∗, val∗〉 be models. If there
is a partial homomorphism from M onto M∗, then M |= M = N implies
M∗ |= M = N .

Proof. Suppose M |= MB = NB , {fA} is a partial homomorphism from
M ontoM∗, and g∗ is an assignment inM∗. We choose an assignment g in
M such that for every A ∈ T , g∗(x) = fA(g(xA)). By the previous lemma,
val∗(M, g∗) = fB(val(M, g) = fB(val(N, g) = val∗(N, g∗) �

THEOREM 65. Let M be a model based on a full temporal type structure
over infinite sets. Then `λt M = N iff M |= M = N .

Proof. It suffices to show that M |= M = N implies M0 |= M = N . To
prove this, we define by induction on A a partial homomorphism {fA} from
M onto M0 as follows:

• A = p, A = t, p ∈ Atom:
fA is any function from DA onto M0’s domain DA.
(Such a function exists, since DA is infinite and DA is denumerable.)

• A = (B ∧ C):
If fB(b), fC(c) exist, then fB∧C(〈b, c〉) = fB∧C(PAIR(b, c)) is defined
as PAIRB,C(fB(b), fC(c)).

• A = (B B C):
fBBC(a) is defined as the unique member of D(BBC) (if it exists) such
that fC(a(b)) = APB,C(fBBC(a), fB(b)), for all b in the domain of fB .

• A = [F ]A:
f[F ]A(a) = f[F ]A(PA(b)) for some b ∈ DA is defined as PA(fA(b)) if
fA(b) exists.

• A = 〈P 〉A:
f〈P 〉A(a) = f〈P 〉A(SA(b)) for some b ∈ DA is defined as SA(fA(b)) if
fA(b) exists.
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That {fA} is a partial homomorphism follows from the definition of {fA}
and the following equations:

fA(PRO0
A,B(〈a, b〉))

= fA(a)
= PRO0

A,B(PAIRA,B(fA(a), fB(b)))
= PRO0

A,B(fA∧B(PAIRA,B(a, b)))
= PRO0

A,B(fA∧B(〈a, b〉))

fB(PRO1
A,B(〈a, b〉))

= fB(b)
= PRO1

A,B(PAIRA,B(fA(a), fB(b)))
= PRO1

A,B(fA∧B(PAIRA,B(a, b)))
= PRO1

A,B(fA∧B(〈a, b〉))

fA(P↓A (Pa))
= fA(a)
= P↓A (f[F ]A(Pa))

fA(S↓A (Sa))
= fA(a)
= S↓A (f〈P 〉A(Sa))

It remains to be shown that fA is onto, for every type A. For A = t and
A = p ∈ Atom, this follows from the definitions of ft, fp and F0. For
the remaining cases we consider two examples. A = [F ]B. Assume d =
| PM | ∈ D[F ]B . Choose a ∈ D[F ]B such that a = Pb for b ∈ DB and
b = f−1

B (| MB |). Since fB is onto, such an element a from D[F ]B exists.
Then f[F ]B(a) = f[F ]B(PB(b)) = PB(fB(b)) = | PM | = d. Consider now
A = (B B C), and assume d ∈ D(BBC). Choose a ∈ D(BBC) such that for
every b in the domain of fB , a(b) ∈ f−1

C (Ap(d, fB(b))). Then f(BBC)(a) =
d. Since fC and fB may be assumed to be onto, the set of such a ∈ D(BBC)

is non-empty. �

Whereas the encoding of substructural subsystems of DIntKt obtained
by giving up all or part of DIntKt’s structural rules will require modifica-
tions of the notion of construction, in order to encode structural extensions
of DIntKt, the notion of construction need not be altered. Various ex-
tensions of HIntKt can be presented as structural extensions of DIntKt.
The following axiom schemata are those schematic axioms from Table 3,
which are in L. Each axiom schema Ax in this table corresponds with the
associated structural rule Ax′ in the sense that an L–formula A is provable
in HIntKt + Ax iff I→ A is provable in DIntKt + Ax′.

In the literature, several proposals have been made to extend the formulas-
as-types notion of construction from positive logic to modal logics based on
it. We shall here briefly point to five such approaches.

1. Gabbay and de Queiroz [1992] interpret the necessity modality 2 “as a
sort of second-order universal quantification (quantification over structured
collections of formulas)” [Gabbay and de Quieroz, 1992, p. 1359]. Using the
framework of Labelled Natural Deduction [de Queiroz and Gabbay, 1999],
proofs in various modal logics are encoded by imposing conditions on ab-
straction over possible-world variables [de Queiroz and Gabbay, 1997]. How-
ever, Gabbay and de Queiroz do not consider a Friedman-style completeness
proof for the λ–calculi under consideration.
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name axiom schema name structural rule

T [F ]A B A T ′ X → •Y ` X → Y

4 [F ]A B [F ][F ]A 4′ X → •Y ` X → • • Y
V [F ]A V ′ X → Y ` •I→ Y

T c A B [F ]A T c ′ X → Y ` X → •Y
4c [F ][F ]A B [F ]A 4c ′ X → • • Y ` X → •Y
Dp t B 〈P 〉t Dp

′ •I→ Y ` I→ Y

Tp A B 〈P 〉A Tp
′ •X → Y ` X → Y

4p 〈P 〉〈P 〉A B 〈P 〉A 4p
′ •X → Y ` • •X → Y

Bp (A ∧ 〈P 〉B) B 〈P 〉(B ∧ 〈P 〉A) Bp
′ •(X o •Y )→ Z ` Y o •X → Z

Alt1p (〈P 〉A ∧ 〈P 〉B) B 〈P 〉(A ∧B) Alt1p
′ •(X o Y )→ Z ` •X o •Y → Z

Tp
c 〈P 〉A B A Tp

c ′ X → Y ` •X → Y

4p
c 〈P 〉A B 〈P 〉〈P 〉A 4p

c ′ • •X → Y ` •X → Y

Table 6. Axioms in L.

2. Borghuis [1993; 1994; 1998] investigates the formulas-as-types-notion of
construction for several normal modal propositional logics based on CPL.
Fitch-style natural deduction proofs in these modal logics are interpreted in
a second-order λ–calculus. In this approach, unary type-forming operators
are introduced to encode applications of import and export rules for 2 in
Fitch-style natural deduction. The operations k̂ and ǩ encoding the export
and import rules for 2 in the smallest normal modal logic K, for example,
satisfy the following reduction rule: k̂(ǩM)→r M . Borghuis proves strong
normalization results for the modal typed λ–calculi under consideration.
However, the term-forming operations used to encode applications of import
and export rules for 2 are not provided with a set-theoretic interpretation.

3. Martini and Masini [1996] consider formulas-as-types for 2-sequent cal-
culi, cf. Section 2.2. They introduce two unary term-forming operations
gen and ungen to encode applications of 2–introduction and 2–elimination
rules. A strong normalization theorem is proved for the typed λ–calculus
encoding proofs in the 2-sequent calculus for the modal logic S4. However,
the typed terms do not receive a set-theoretic interpretation.

4. Recently, Sasaki [1999] suggested understanding a λ–term of type 2A
as either denoting an element from the domain associated with A, or being
undefined. A term MAB2B would then denote a partial function from DA

to DB . Sasaki defines an extended typed λ–calculus with various formation
rules for obtaining terms of type 2A. Moreover, natural deduction proofs in
the extension of the intuitionistic modal logic IntK by the axiom schemata

Tc A B 2A and 4c 22A B 2A
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are encoded by terms in the extended typed λ–calculus. Unfortunately, no
denotational semantics for this λ–calculus is developed.

5. The approach that comes closest to the one presented here is Restall’s
[1999, Chapter 7], who also applies Belnap’s display calculus. Introductions
of [F ] on the right (left) of the sequent arrow are encoded using a unary
operator up (down), lifting (lowering) terms of type A ([F ]A) to terms of
type [F ]A (A), just like the operation P (∪). Backward-looking possibility
is treated quite differently. Introductions of 〈P 〉 (in Restall’s notation –♦)
on the right are encoded using a unary type-lifting operation • (not to be
confused with the structure connective •). Introductions on the left are
encoded by a unary term-forming operation turning terms NB , M 〈P 〉A into
the term let M be •x in N of type B. Whereas the term down upN reduces
in one step to N , let •G be •x in N reduces in one step to N [x := G]. Restall
proves normalization for the extended typed λ–calculus under consideration,
however, no set-theoretic interpretation of up, down, •, and let M be •x in
is suggested.

In the literature on functional programming there are various proposals for
providing an operational semantics of proofs in modal logics, notably in in-
tuitionistic S4. Natural deduction in the framework of Martin-Löf’s type
theory is considered in [Davis and Pfenning, 2000] and [Pfenning, 2000].
Also, further references can be found in these papers.

3.8 Bi-intuitionistic logic

Suppose a connective f1 is introduced in a finite-set-to-formula sequent
calculus, whereas another connective f2 is introduced in a formula-to-finite-
set sequent system. Then the right introduction rules for f1 and the left
introduction rules for f2 satisfy the segregation condition. However, if we
just combine the sets of rules of both sequent calculi, neitherAf1B norAf2B
is introduced in the most general context, namely in an arbitrary finite
set of formulas, because there are no structure operations like in display
logic that allow keeping track of succedent (antecedent) formulas on the
left (right) of →. This leads to a problem encountered in formulating an
ordinary sequent calculus for bi-intuitionistic logic BiInt, the combination
of intuitionistic logic and dual-intuitionistic logic. It can be shown that in
the ordinary finite-set-to-formula sequent calculus no binary operation ] is
definable such that ] satisfies (in the finite-set-to-formula setting) the dual
Deduction Theorem characteristic of coimplication: A → B iff A]B → ∅,
see [Goré, 2000]. Bi-intuitionistic logic extends the language of intuitionistic
logic by coimplication, the residual of disjunction, and conegation. The
syntax of BiInt is given by:

A ::= p | aA | `A | A ∧B | A ∨B | A B B | A J B.
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In the presence of a falsity constant f , intuitionistic negation a can be
defined by aA := (A B f), and in the presence of a truth constant t,
conegation ` can be defined by `A := (t J A).

Bi-intuitionistic logic has a natural algebraic and possible-worlds seman-
tics, see [Rauszer, 1980]. The possible-worlds semantics adds to Kripke
models for intuitionistic logic evaluation clauses for conegation and coimpli-
cation. A frame is a pair 〈I,v〉, where I a is non-empty set (of states), and
v is a reflexive and transitive binary relation on I. A structure 〈I,v, v〉 is
a bi-intuitionistic model if v is a function assigning to every propositional
variable p a subset v(p) of I and, moreover, for every t, u ∈ I, if t v u and
t ∈ v(p), then u ∈ v(p). Verification of a formula A in the model M =
〈I,v, v〉 at state t (in symbols M, t |= A) is inductively defined as follows:

M, t |= p iff t ∈ v(p), for every propositional variable p;
M, t |= aA iff for all u ∈ I, t v u impliesM, u 6|= A
M, t |= `A iff there exists u ∈ I, u v t, andM, u 6|= A
M, t |= A ∧B iff M, t |= A andM, t |= B;
M, t |= A ∨B iff M, t |= A orM, t |= B;
M, t |= A B B iff for all u ∈ I, if t v u thenM, u 6|= A orM, u |= B;
M, t |= A J B iff there is a u ∈ I, u v tM, u |= A andM, u 6|= B;

where M, t 6|= A is the (classical) negation of M, t |= A. A formula A is
valid in M = 〈I,v, v〉 if for every t ∈ I, M, t |= A; and A is valid on a
frame F = 〈I,v〉 if A is valid in every model 〈F , v〉 based on F . A formula
A is said to be valid in a class K of models (frames) if A is valid in every
model (frame) from K.

The axiomatic system HBiInt consists of axiom schemata for intuition-
istic logic Int, modus ponens, the rule

from A infer a`A

and the following axiom schemata:

1. A B (B ∨ (A J B))

2. (A J B) B `(A B B)

3. ((A J B) J C) B (A J (B ∨ C))

4. a(A J B) B (A B B)

5. (A B (B J B)) B aA

6. aA B (A B (B J B))

7. ((B B B) J A) B `A

8. `A B ((B B B) J A)
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THEOREM 66. A formula A in the language of BiInt is valid in the class
of all models iff A is provable in HBiInt.

In the present section, we shall apply the modal display calculus and use
a modal translation of BiInt into S4t to give a display sequent calculus for
BiInt based on the structure connectives I, ∗, ◦, and •, cf. [Goré, 1995],
[Wansing, 1998, Chapter 10]. A direct display sequent system for BiInt not
relying on a modal translation has been presented in [Goré, 2000]. Some-
times making a detour via a modal translation may be useful. In [Wansing,
1999], a modal translation into S4 has been used to give a cut-free display
sequent calculus for a certain constructive modal logic of consistency, for
which no other proof system is known. In view of the possible-worlds se-
mantics for BiInt and the familiar modal translation of Int into S4 (see
[Gödel, 1933]), a faithful modal translation m of BiInt into S4t can be
straightforwardly defined as follows:

1. m(p) = [F ]p, for every propositional variable p;

2. m(t) = t;

3. m(f) = f ;

4. m(A]B) = m(A)]m(B), ] ∈ {∧,∨};

5. m(A B B) = [F](m(A) ⊃ m(B));

6. m(A J B) = 〈P 〉¬(m(A) ⊃ m(B)).

THEOREM 67. ([ Lukowski, 1996]) A formula A in the language of BiInt
is provable in HBiInt iff m(A) is provable in S4t.

DEFINITION 68. The display sequent system DBiInt consists of (id),
(cut), the basic structural rules (1) – (4) of Section 1.3, rules (→ t), (t→),
(→ f), (f →), (→ ∧), (∧ →), (→ ∨), (∨ →), the structural rules from
Table 2 and:

(→ a) •X → ∗A ` X → aA
(a→) ∗A→ X ` aA→ •X
(→ `) X → ∗A ` •X → `A
(`→) ∗A→ •X ` `A→ X

(→B)m •X ◦A→ B ` X → A B B
(B→)m X → A B → Y ` A B B → •(∗X ◦ Y )
(→J)m X → A B → ∗X ` •X → A J B
(J→)m ∗ •X ◦A→ B ` A J B → X

(persistence) p→ X ` •p→ X
(reflexivity) X → •Y ` X → Y
(transitivity) X → •Y ` X → • • Y
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It can be shown that the persistence rule for arbitrary formulas is an ad-
missible rule of DBiInt. This can be used to prove weak completeness of
DBiInt with respect to HBiInt.

LEMMA 69. In DBiInt, A→ X ` •A→ X.

Proof. By induction on A; for example:

A→ A
∗A→ ∗A
aA→ • ∗A
aA→ • • ∗A
•aA→ • ∗A
• •aA→ ∗A
•aA→ aA aA→ X (cut)
•aA→ X

A→ A
∗A→ ∗A
∗A→ ∗A ◦B
∗(∗A ◦B)→ A

B → B
B → ∗A ◦B

B → ∗ ∗ (∗A ◦B)
• ∗ (∗A ◦B)→ A J B
∗(∗A ◦B)→ •(A J B)
∗(∗A ◦B)→ • • (A J B)
∗ • •(A J B)→ ∗A ◦B
A ◦ ∗ • •(A J B)→ B

∗ • •(A J B) ◦A→ B

A J B → •(A J B)
•(A J B)→ A J B A J B → X

•(A J B)→ X

�

THEOREM 70. In DBiInt ` I→ A iff in HBiInt ` A.

Proof. ⇐: By induction on proofs in HBiInt. As an example, we here
consider only the proof of one axiom schema of HBiInt:
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B → B
∗ • ∗ • I ◦B → B

A→ A B J B → ∗ • I
A B (B J B)→ •(∗A ◦ ∗ • I)
A B (B J B)→ ∗A ◦ ∗ • I (reflexivity)

A B (B J B)→ ∗ • I ◦ ∗A
•I ◦ (A B (B J B))→ ∗A
•I ◦ (A B (B J B))→ • ∗A (persistence)

•(•I ◦ (A B (B J B)))→ • ∗A
•I ◦ (A B (B J B))→ aA
I→ (A B (B J B)) B aA

⇒: We define the translations τ1 and τ2 from structures into tense logical
formulas as in Section 1.3, except that now τ1(A) = τ2(A) = m(A). By
induction on proofs in DBiInt, it can be shown that ` X → Y in DBiInt
implies ` τ1(X) ⊃ τ2(Y ) in S4t. Therefore, ` I → A in DBiInt implies
` m(A) in S4t. By the previous theorem we have ` A in HBiInt. �

THEOREM 71. Strong cut-elimination holds for DBiInt.

Proof. DBiInt is a proper display calculus. As to the fulfillment of con-
dition C8, the derivation on the left, for example, reduces to the derivation
on the right, using contraction:

X → A B → ∗X ∗ • Y ◦A→ B
•X → A J B A J B → Y

•X → Y

∗ • Y ◦A→ B
X → A A→ •Y ◦B
X → •Y ◦B
∗ • Y ◦X → B B → ∗X
∗ • Y ◦X → ∗X
X → •Y ◦ ∗X
X ◦X → •Y
X → •Y
•X → Y

�

COROLLARY 72. DBiInt ∪ DS4t is a conservative extension of both
DBiInt and DS4t.

As in Section 3.1, let for modal formulas A the translations τi (i = 1, 2)
be defined by τi(A) = A.

LEMMA 73. In DBiInt ∪ DS4t, (i) ` X → τ1(X) and (ii) ` τ2(X) →
X.
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Proof. Both (i) and (ii) are proved simultaneously by induction on X. In
particular we have to verify that for every formula of the language of BiInt,
` A→ m(A) and ` m(A)→ A. But this is the case, see for example:

A→ m(A) m(B)→ B

m(A) ⊃ m(B)→ ∗A ◦B
∗(∗A ◦B)→ ∗(m(A) ⊃ m(B))
∗(∗A ◦B)→ ¬(m(A) ⊃ m(B))
• ∗ (∗A ◦B)→ 〈P 〉¬(m(A) ⊃ m(B))
∗(∗A ◦B)→ •〈P 〉¬(m(A) ⊃ m(B))
∗ • 〈P 〉¬(m(A) ⊃ m(B))→ ∗A ◦B
∗ • 〈P 〉¬(m(A) ⊃ m(B))→ B ◦ ∗A
∗ • 〈P 〉¬(m(A) ⊃ m(B)) ◦A→ B

A J B → 〈P 〉¬(m(A) ⊃ m(B))

m(A)→ A

m(A)→ A ◦m(B)
∗A ◦m(A)→ m(B)
∗A→ m(A) ⊃ m(B)
∗(m(A) ⊃ m(B))→ A

¬(m(A) ⊃ m(B))→ A

B → m(B)
B ◦m(A)→ m(B)
B → m(A) ⊃ m(B)
∗(m(A) ⊃ m(B))→ ∗B
¬(m(A) ⊃ m(B))→ ∗B
B → ∗¬(m(A) ⊃ m(B))

•¬(M(A) ⊃ m(B))→ A J B
¬(M(A) ⊃ m(B))→ •(A J B)
〈P 〉¬(M(A) ⊃ m(B))→ A J B

�

THEOREM 74. In DBiInt ` X → Y iff τ1(X) ⊃ τ2(Y ) is valid on every
frame (understood as a frame for S4t).

Proof. (⇒): This follows by induction on proofs in DBiInt. (⇐): Suppose
that τ1(X) ⊃ τ2(Y ) is valid on every frame. Hence τ1(X) ⊃ τ2(Y ) is a
theorem of S4t and hence ` τ1(X) → τ2(Y ) in DBiInt ∪ DS4t. By
the previous lemma, ` X → Y in DBiInt ∪ DS4t and by Corollary 72,
` X → Y in DBiInt. �

One advantage of the translation-based sequent system DBiInt is
that by abandoning combinations of the structural rules (persistence),
(reflexivity), and (transitivity), one obtains cut-free sequent calculus pre-
sentations of the subsystems of BiInt that arise from giving up the corre-
sponding semantic requirements: persistence of atomic information, reflex-
ivity, and transitivity of the relation v. Also seriality of v, a weakening of
reflexivity, is expressible by a purely structural sequent rule, see condition
D′ in Table 4.
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4 INTERRELATIONS AND EXTENSIONS

While the existence of a rich inventory of types of proof systems for modal
and other logics may be welcomed, for instance, from the point of view
of designing and combining logics, there also exists the need of comparing
different approaches and investigating their interrelations and their relative
advantages and disadvantages. Mints [1997], for example, presents cut-
free systems of indexed sequents for certain extensions of K and defines
a translation of these sequent systems into equivalent display calculi. In
this final section a translation of multiple-sequent systems into higher-arity
sequent systems and a translation of hypersequents into display sequents
are defined, showing that multiple-sequent systems can be simulated within
higher-arity proof systems and that the method of hypersequents can be
simulated within display logic. Moreover, one interesting aspect of extend-
ing the sequent-style proof systems for modal and temporal propositional
logics to sequent calculi for modal and temporal predicate logics is consid-
ered, namely avoiding the provability of the Barcan formula and its converse.
We also briefly refer to recent work on display calculi for extended modal
languages. Finally, the relation between display logic and Dunn’s Gaggle
Theory is pointed out.

4.1 Translation of multiple-sequent systems

The translation σ in Section 2.4 reveals a straightforward relation between
Indrzejczak’s multiple-sequent systems and higher-arity sequent systems for
modal logics. The intended meaning of the multiple-sequents can be ex-
pressed by four-place sequents using a translation µ:

µ(Γ→ ∆) = δ(Γ)→∅∅ δ(∆)

µ(Γ2→∆) = δ(Γ)→
∨
δ(∆)

∅ ∅

µ(Γ3→∆) = ∅ →¬
∧
δ(Γ)

∅ δ(∆).

If S is a multiple-sequent system, then let µ(S) be the result of the µ-
translation of the rules of S. Let µ∗ denote the translation of four-place
sequents into modal formulas stated in Section 2.3. If s1, . . . , sn/s is a rule
of MC, then µ∗(µ(s1)), . . . , µ∗(µ(sn))/µ∗(µ(s)) is validity preserving in C.
For the rule [TR], for instance, we have µ∗(µ([TR])) =∧

δ(∆) ⊃ 2
∨
δ(Γ)

3¬
∨
δ(Γ) ⊃ ¬

∧
δ(∆)

=
∧
δ(∆) ⊃ 2

∨
δ(Γ)

3
∧
δ(Γ∗) ⊃

∨
δ(∆∗)

Moreover, (RR) is derivable and CPL is contained in µ(MC). Hence,

OBSERVATION 75. The system µ(MC) is sound and complete with re-
spect to C: ` Γ→ ∆ in µ(MC) iff µ∗(µ(Γ→ ∆)) is valid in C.
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The translation µ is also faithful for the extension of MC by the rules
[nec], [D], [T ], and [4] and extensions of C by the necessitation rule and the
axiom schemata D, T and 4.

4.2 Translation of hypersequents

In order to characterize various non-classical logics by means of hyperse-
quential calculi, Avron [1996] uses different semantical readings of hyper-
sequents. Basically a distinction can be drawn between interpreting the
sequent arrow of a component in a hypersequent as material implication
or as a constructive implication not definable in terms of Boolean nega-
tion and disjunction. This difference in interpretation requires different
translations of hypersequents into display sequents. If the sequent arrow is
interpreted constructively, a suitable translation may, for example, exploit
a faithful embedding of the logic under consideration into a normal modal
or temporal logic. In such a case, the sequent arrow is interpreted as strict
material implication. In [Wansing, 1998, Chapter 11] translations of hyper-
sequents into display sequents are defined that simulate hypersequents in
Avron’s hypersequential calculi GL3, GS5, and GLC for  Lukasiewicz 3-
valued logic L3, S5, and Dummett’s superintuitionistic logic LC, also called
Gödel-Dummett logic. We shall here consider only the translations suitable
for S5 and LC. The treatment of GL3 is slightly more involved, because L3
comprises connectives from different ‘families’ of logical operations. To deal
with this composite character of L3 in display logic, the structure connec-
tive ◦ is replaced by two binary structure operations ◦c and ◦i, see [Wansing,
1998]. If ∆ = {A1, . . . , An}, let ∗∆ = {∗A1, . . . , ∗An}. Since ◦ is assumed
to be associative and commutative, we may put (◦∆) = A1 ◦ . . . ◦ An. If
∆ = ∅, let ∗∆ = (◦∆) = I. Recall the notion of hypersequent from Section
2.5.

DEFINITION 76. The translation η0 of ordinary sequents into display
structures is defined by

η0(∆→ Γ) = •((◦ ∗∆) ◦ (◦Γ)),

and the translation η of non-empty hypersequents into display sequents is
defined by

η(s1 | . . . | sn) = I→ η0(s1) ◦ . . . ◦ η0(sn).

THEOREM 77. For every hypersequent H, ` η(H) in DS5 iff ` H in
GS5.

In the hypersequential system GLC the components of a hypersequent
are restricted to be ordinary Gentzen sequents with at most a single con-
clusion. Dummett’s LC is the logic of linearly ordered intuitionistic Kripke
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models. An axiomatization of LC is obtained from an axiomatization HInt
of Int by adding the axiom schema (A B B) ∨ (B B A). It is well-known
that the modal translation m defined in Section 3.8 (restricted to the lan-
guage of intuitionistic logic, i.e. the language of LC) is a faithful embedding
of LC into S4.3, the logic of linearly ordered modal Kripke models.

THEOREM 78. For every formula A in the language of LC, ` A in LC
iff ` m(A) in S4.3.

DEFINITION 79. The translation ζ0 of a single-conclusion ordinary se-
quent s = A1, . . . , An → B is defined by

ζ0(s) = •(∗A1 ◦ •(∗A2 ◦ . . . • (∗An ◦B) . . .)).

If s = A1, . . . , An → ∅, then ζ(s) = •(∗A1 ◦ •(∗A2 ◦ . . . • (∗An ◦ I) . . .)). If s
= ∅ → B, then ζ(s) = •(∗I ◦ B), and if s = ∅ → ∅, ζ(s) = •(∗I ◦ I). The
translation ζ of hypersequents with at most single-conclusion components
into display sequents is defined by

ζ(s1 | . . . | sn) = I→ ζ0(s1) ◦ . . . ◦ ζ0(sn).

THEOREM 80. For every hypersequent H with at most single-conclusion
components, ` ζ(H) in DLC iff ` H in GLC.

4.3 Predicate logics and other logics

Modal predicate logic is still a largely unexplored area. As to sequent
systems for modal predicate logics, one notorious problem is providing
introduction rules for the modal operators and the quantifiers such that
neither the Barcan formula (BF) ∀x2A ⊃ 2∀xA nor its converse (BFc)
2∀xA ⊃ ∀x2A are provable on the strength of only these rules. It is well-
known that (BF) corresponds to the assumption of constant domains and
(BFc) to the persistence of individuals along the accessibility relation; cf.
for example [Fitting, 1993]. One way of avoiding the provability of the Bar-
can formula and its converse is described in [Wansing, 1998, Chapter 12].
The idea is to exploit the well-known similarity between 2 [3] and ∀x [∃x]
to develop display introduction rules for ∀x [∃x]; i.e., instead of thinking of
the modal operators as quantifiers, one thinks of the quantifiers as modal
operators, see also [Andreka et al., 1998]. The addition of quantifiers to
display logic is briefly discussed in [Belnap, 1982]:

Quantifiers may be added with the obvious rules:

(UQ) Aa ` X
(x)Ax ` X

X ` Aa
X ` (x)Ax

provided, for the right rule, that a does not occur free in the
conclusion. . . . The rule for the existential quantifier would be
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dual. . . . [A]s yet this addition provides no extra illumination.
I think that is because these rules for quantifiers are “structure
free” (no structure connectives are involved; . . .). One upshot is
that adding these quantifiers to modal logic brings along Bar-
can and its converse . . . willy-nilly, which is an indication of
an unrefined account; alternatives therefore need investigating.
[Belnap, 1982, p. 408 f.]

Using the structure-independent rules (UQ), we would have the following
proofs of (BF) and (BFc):

A→ A
2A→ •A (UQ)

∀x2A→ •A
•∀x2A→ A (UQ)

•∀x2A→ ∀xA
∀x2A→ 2∀xA
I ◦ ∀x2A→ 2∀xA
I→ ∀x2A ⊃ 2∀xA

A→ A (UQ)

∀xA→ A
2∀xA→ •A
•2∀xA→ A
2∀xA→ 2A (UQ)

2∀xA→ ∀x2A
I ◦2∀xA→ ∀x2A
I→ 2∀xA ⊃ ∀x2A

Structure-dependent introduction rules for ∀x and ∃x are, however, avail-
able. For every binary relation Rx on a non-empty set S of states, we may
define the following functions on the powerset of S:

∀xA := {a | ∀b (aRxb ⇒ b ∈ A)}, ∃x̆A := {a | ∃b (bRxa & b ∈ A)},
∀x̆A := {a | ∀b (bRxa ⇒ b ∈ A)}, ∃xA := {a | ∃b (aRxb & b ∈ A)}.

We then have

∃x̆A ⊆ B iff A ⊆ ∀xB, ∃xA ⊆ B iff A ⊆ ∀x̆ B,

and for every individual variable x, we may introduce a structure connective
•x, which in succedent position is to be understood as ∀x and in antecedent
position as a backward-looking existential quantifier ∃x̆ . Semantically, what
is required to account for these quantifiers is a generalization of the Tarskian
semantics for first-order logic, see [Andreka et al., 1998]. LetM be any first-
order model and let α, β, . . . range over variable assignments inM. Tarski’s
truth definition for the existential quantifier is:

M |= ∃xA[α] iff for some assignment β on |M|:
α =x β andM |= A[β],

where α =x β means that α and β differ at most with respect to the object
assigned to x. In the more general semantics the concrete relations =x

between variable assignments are replaced by abstract binary relations Rx
of ‘variable update’ between ‘states’ α, β, γ, . . . from a set of states S.
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Assuming an interpretation of atoms containing free variables, the truth
definition for the existential quantifier becomes:

M, α |= ∃xA iff for some β ∈ S : αRxβ andM, β |= A

Thus, to every individual variable x there is associated a transition relation
Rx on states. The resulting minimal predicate logic, KFOL, is nothing
but the ω-modal version of the minimal normal modal logic K. In order
to obtain an axiomatization of KFOL, one may just take any axiomatic
presentation of K and replace every occurrence of 3 and 2 by one of ∃x
and ∀x, respectively. The basic structural rules for the structure connective
•x are:

X → •xY a` •xX → Y.

In analogy to the case for 2 and 3, we obtain the following structure-
dependent introduction rules for ∀x and ∃x:

(→ ∀x) •xX → A ` X → ∀xA (→ ∃x) X → A ` ∗ •x ∗X → ∃xA
(∀x→) A→ X ` ∀xA→ •xX (∃x→) ∗ •x ∗A→ X ` ∃xA→ X

In addition to these introduction rules we need further structural assump-
tion in order to take care of the necessitation rules in axiomatic presentations
of normal modal and tense logics:

(MN•x) I→ X ` I→ •xX X → I ` X → •xI

The structural account of the quantifiers as modal operators blocks the
above proofs of (BF) and (BFc). In the presence of additional structural
sequent rules, however, these schemata become derivable:

OBSERVATION 81. BF and BFc correspond to the structural rules

rBF X → •x • Y ` X → • •x Y ; rBFc X → ••x ` X → •x • Y.
The apparatus of display logic has also been applied to other extensions of

normal modal propositional logic. A result of Kracht concerns the undecid-
ability of decidability of display calculi. Consider the fusion or ‘independent
sum’ of Kf and Kf, i.e. the bimodal logic Kf ⊗ Kf of two functional ac-
cessibility relations R1, R2. In this system there are two pairs of modal
operators, say, [1], 〈1〉 and [2], 〈2〉 each satisfying the D and the Alt1 axiom
schemata. The structural language of sequents for this logic comes with two
unary operations •1 and •2 satisfying the display equivalence

•iX → Y a` X → •iY,

i = 1, 2. Clearly, Kf ⊗ Kf has many properly displayable extensions. Using
an encoding of Thue-processes into frames of Kf ⊗ Kf, Grefe and Kracht
[1996] have proved a theorem about the undecidability of decidability.
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THEOREM 82. (Grefe and Kracht) It is undecidable whether or not a dis-
play calculus is decidable.

According to Kracht, Theorem 82 indicates a serious weakness of dis-
play logic. In any case, the theorem provides insight into the expressive
power of display logic; it shows that the subformula property and the strong
cut-elimination theorem for displayable logics fail to guarantee decidabil-
ity. Undecidability of the decidability of properly displayable extensions
of Kf ⊗Kf is a remarkable property of this particular family of bimodal
logics, but is not a defect of the modal display calculus, at least insofar as
the proof of the theorem also shows that it is undecidable whether or not
a finite axiomatic calculus is decidable. Would it be desirable to have a
proof-theoretic framework in which only decidable logics can be presented?
A weakness of display logic is that it does not lend itself easily to obtain de-
cidability proofs. Restall [1998] uses a display presentation to prove, among
other things, decidability of certain relevance logics which are not known to
have the finite model property. In [Wansing, 1998, Chapter 6] display logic
is used to prove decidability of Kf and deterministic dynamic propositional
logic without Kleene star.

Display calculi for logics with relative accessibility relations can be found
in [Demri and Goré, 2000] and for nominal tense logics in [Demri and Goré,
1999]. In both cases the calculi are obtained using modal translations.

4.4 Gaggle Theory

The generality of display logic has been highlighted by Restall [1995], who
observes a close relation between display logic and J. Michael Dunn’s Gaggle
Theory [1990; 1993; 1995]. The relation between gaggle theory and display
logic has also been investigated and worked out by Goré [1998]. A gaggle
is an algebra G = 〈G,≤,OP〉, where ≤ is a distributive lattice ordering on
G, and OP is a founded family of operations. The latter means that there
is an f ∈ OP such that for every g ∈ OP, f and g satisfy the abstract
law of residuation, see Section 3. If one only requires that ≤ is a partial
order, and every f ∈ OP has a trace, then G is said to be a tonoid. Restall
defines the notion of mimicing structure. An n-place logical operation f
mimics antecedent structure if there is a possibly complex n-place structure
connective ] such that the following rules are admissible:

s = ](A1, . . . , An)→ X ` f(A1, . . . , An)→ X

C(X1, A1) . . . C(Xn, An) ` ](A1, . . . , An)→ f(A1, . . . , An)

where ](A1, . . . , An) is an antecedent part of s, C(Xi, Ai) = Xi → Ai, if
Ai is an antecedent part of ](A1, . . . , An), and C(Xi, Ai) = Ai → Xi, if Ai
is a succedent part of ](A1, . . . , An). Dually, f mimics succedent structure
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if there is a possibly complex n-place structure connective ] such that the
following rules are admissible:

s = X → ](A1, . . . , An) ` X → f(A1, . . . , An)
C(X1, A1) . . . C(Xn, An) ` f(A1, . . . , An)→ ](A1, . . . , An)

where ](A1, . . . , An) is a succedent part of s, C(Xi, Ai) = Xi → Ai, if Ai is
an antecedent part of ](A1, . . . , An), and C(Xi, Ai) = Ai → Xi, if Ai is a
succedent part of ](A1, . . . , An).

THEOREM 83. (Restall [1995]) If a logical operation f in a display calculus
presentation DΛ of a logic Λ mimics structure, then f is a tonoid operator
on the Lindenbaum algebra of Λ.

If every logical operation of DΛ mimics structure, mutual provability is
a congruence relation and Λ has an algebraic semantics. Dunn’s represen-
tation theorem for tonoids supplies also a Kripke-style relational semantics.

5 APPENDICES

5.1 Appendix A

The proof of Theorem 23 takes its pattern from the proof of strong nor-
malization for typed λ-calculus (see for instance [Hindley and Seldin, 1986,
Appendix 2]) and follows the argument given in [Roorda, 1991, Chapter 2,
reprinted in [Troelstra, 1992]]. This proof has been extracted from the proof
of strong cut-elimination for classical predicate logic in [Dragalin, 1988, Ap-
pendix B]. Suppose that Π is a proof containing an application of cut. A
(one-step) reduction of Π is the proof Σ resulting by applying a primitive
reduction to a subproof of Π. If Π reduces to Σ, this is denoted by Π > Σ
(or Σ < Π). Π is said to be reducible iff there is a Σ such that Π > Σ.

LEMMA 84. If a proof cannot be reduced, then it is cut-free.

Proof. Since the case distinction in the definition of primitive reductions
is exhaustive, every proof that contains an application of cut is reducible.

�

DEFINITION 85. We inductively define the set of inductive proofs.

a Every instantiation of an axiomatic rule is an inductive proof.

b If Π ends in an inference inf different from cut, and every premise si
of inf has an inductive proof Πi in Π, then Π is inductive.

c Π =
Π1 Π2

(3) cut is inductive, if every Σ such that Π > Σ is inductive.
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LEMMA 86. If Π is inductive, and Π > Σ, then Σ is inductive.

Proof. By induction on the construction of Π. If Π is inductive by a,
then no reduction can be performed. If Π is inductive by b, then every
reduction on Π takes place in the Πi’s, which are inductive. Hence, by the
induction hypothesis, Σ is inductive due to b. If Π is inductive by c, then
Σ is inductive by definition. �

DEFINITION 87. Let Π be an inductive proof. The size ind(Π) of Π is in-
ductively defined as follows (the clauses correspond to those in the previous
definition):

a ind(Π) = 1;

b ind(Π) =
∑
i ind(Πi) + 1;

c ind(Π) =
∑

Σ<Π ind(Σ) + 1.

A proof Π is said to be strongly normalizable iff every sequence of reductions
starting at Π terminates.

LEMMA 88. Every inductive proof is strongly normalizable.

Proof. By induction on ind(Π). If ind(Π) = 1, no reduction is feasible.
If Π is inductive by b, then every reduction is in the premises Πi, and we
can apply the induction hypothesis. If Π is inductive by c, then every proof
to which Π reduces is inductive and therefore every such proof is strongly
normalizable, by the induction hypothesis. But then Π is also strongly
normalizable. �

LEMMA 89. Let Π be an inductive proof and let inf be the final inference
of Π. If Π > Π′ by reducing a proof Πj of a premise sequent of inf, then
ind(Π) > ind(Π′).

Proof. By induction on ind(Π). If ind(Π) = 1, then Π cannot be reduced.
Whence Π is inductive by b or c. If Π is inductive by c, then by definition,
ind(Π) > ind(Π′). If Π is inductive by b, then Πj is inductive by definition.
If Πj is inductive by a, it cannot be reduced. If Πj is inductive by b, then
the reduction of Πj to Π′j takes place in the proof of some premise sequent of
the final inference of Πj . By the induction hypothesis, ind(Πj) > ind(Π′j).
Hence ind(Π) > ind(Π′). If Πj is inductive by c, then by definition, ind(Πj)
> ind(Π′j) and thus ind(Π) > ind(Π′). �

LEMMA 90. Suppose Π ends in an application inf of cut, and Π1 and Π2

are the proofs of the premises of inf. If Π1 and Π2 are inductive, then so is
Π.
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Proof. We must show that every Σ < Π is inductive. For this purpose,
we define two complexity measures for Π: r(Π), the rank of Π, and h(Π),
the height of Π. r(Π) is the number of symbols in the cut-formula. h(Π) is
defined by:

h(Π) = ind(Π1) + ind(Π2).

We use induction on r(Π) and, for fixed rank, induction on h(Π).

Case 1. Σ is obtained by reduction in Π1 or Π2, say Π1 > Π′1. It follows
from Lemma 89 that ind(Π′1) < ind(Π1). Then h(Σ) < h(Π). Since Π1

and Π2 are inductive, by Lemma 86, Σ has inductive premises, and by the
induction hypothesis for h(Π), Σ is inductive.

Case 2. Σ is obtained by reducing inf. Then this reduction was either a
principal or a parametric move.

Principal move.
Case 1. Since Σ proves one of (1) or (2), Σ is inductive by assumption.

Case 2. Since for every new proof Π′ ending in an application of cut, r(Π)
> r(Π′), Σ is inductive by the induction hypothesis for r(Π).

Parametric move. Suppose A is parametric in the inference ending in (1)
(the case for (2) is analogous). If the tree of parametric ancestors of the
displayed occurrence of A in (1) contains at most one element Au that is
not parametric in inf, we have Figure 1, and we may assume that there is
no application of cut on the path from (1) to Z → A.

Let Π′ =
Π1

Z → A Π2

Z → Y
and Π′′ =

Π1

Z → A
.

Consider Π and Π′. Clearly, r(Π) = r(Π′), hence we use induction on the
height. Since both Π1 and Π′′ are inductive by b, ind(Π′′) < ind(Π1).
Hence h(Π′) < h(Π). By the induction hypothesis for h(Π), Π′ is inductive,
and thus Σ is inductive by definition. If the primitive reduction of Π to
Σ requires cutting with Π2 more than once, analogously every new Π′ and
hence Σ can be shown to be inductive.

If the tree of parametric ancestors of the displayed occurrence of A in (1)
contains more than one element Au that is not parametric in inf, Σ = Πl∗

or Σ = Πlr∗. Since for every new proof Π′ ending in an application of cut,
r(Π) > r(Π′), Σ is inductive by the induction hypothesis for r(Π). �

COROLLARY 91. Every proof is inductive.

Now Theorem 23 follows by Lemma 88 and Corollary 91, and cut is an
admissible rule by Lemma 84.
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5.2 Appendix B

To prove completeness of HIntKt with respect to the class of all temporal
models we shall adopt completely standard methods as applied, for example,
in [Schütte 1969, pp. 48–51]. Suppose ∆ and Γ are finite sets of formulas,
where Γ is empty or a singleton, and let p be a new propositional variable
not already in Atom. The formula ∆ B Γ is defined as follows:

∆ B Γ =


∧

∆ B B if ∆ 6= ∅, Γ = {B}
t B B if ∆ = ∅, Γ = {B}∧

∆ B p if ∆ 6= ∅, Γ = ∅
t B p if ∆ = Γ = ∅

The pair (∆,Γ) is said to be consistent if ∆ B Γ is unprovable in HIntKt
based on L+ = L ∪ {p}. In what follows, let A ∈ L. Let sub(A) denote
the finite set of all subformulas of A. If C = (A1 B . . . (An−1 B An) . . .),
then sub∗({C}) = (

⋃
1≤i≤nsub(Ai)) \ {p}; sub∗(∅) = ∅. The pair (∆,Γ) is

called A-complete, if ∆ ∪ sub∗(Γ) = sub(A). A pair (∆∗,Γ∗) is called an
expansion of (∆,Γ), if ∆∗ is a finite superset of ∆, and either Γ∗ = Γ or Γ∗

has the shape (A1 B . . . (An−1 B An) . . .) and n > 1.

LEMMA 92. If (∆,Γ) is consistent, then so is (∆ ∪ {A},Γ) or (∆, {A B
B}), where B = p if Γ = ∅, and Γ = {B} otherwise.

Proof. Suppose neither (∆ ∪ {A},Γ) nor (∆, {A B B}) are consistent.
Then both (

∧
∆ ∧ A) B B and

∧
∆ B (A B B) are derivable in HIntKt

based on L+. But then also
∧

∆ B B is derivable, and hence (∆,Γ) is not
consistent; a contradiction. �

COROLLARY 93. Every consistent pair (∆,Γ) such that ∆, sub∗(Γ) ⊆
sub(A) can be expanded to an A–complete consistent pair.

Let ∆ ⊆ sub(A). Then ∆ is said to be A–designated, if some A–complete
pair (∆,Γ), where sub∗(Γ) = sub(A) \ ∆ is consistent. By soundness of
HIntKt based on L+, the formula t B p fails to be provable. Therefore
(∅, ∅) is consistent. By the previous corollary, for every formula A, (∅, ∅)
can be expanded to an A–complete consistent pair. Hence, for every A, the
set D(A) of all A–designated subsets of sub(A) is non-empty.

LEMMA 94. If C ∈ sub(A), then C belongs to an A–designated set ∆ iff
∆ B {C} is provable in HIntKt.

Proof. If C ∈ ∆, then clearly ∆ B {C} is provable in HIntKt. If C 6∈ ∆,
then C ∈ sub(A) \∆, and since ∆ is A–designated, (∆, {C}) is consistent.
In other words, ∆ B {C} is not provable in HIntKt. �
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DEFINITION 95. For every formula A, the structure MA = 〈WA, RAI ,
RAT , v

A〉 is called the canonical model for A if

WA = D(A)
RAI = ⊆

uRAT t iff [F ]B ∈ u implies B ∈ t
vA(p, u) = 1 iff p ∈ u.

As we have seen, the set WA is non-empty, and it can easily be shown that
MA is indeed a temporal model.

LEMMA 96. Let u, t ∈ D(A). For every formula B, ([F ]B ∈ u implies
B ∈ t) iff for every formula C, (C ∈ u implies 〈P 〉C ∈ t).

Proof. First, suppose (i) for all B, [F ]B ∈ u implies B ∈ t but (ii) there is
a formula C ∈ u such that 〈P 〉C 6∈ t. By (i), [F ]〈P 〉C 6∈ u. By the previous
lemma, u B [F ]〈P 〉C is not provable in HIntKt. Since C B [F ]〈P 〉C
is provable, also u B C fails to be provable. But then, by the previous
lemma, C 6∈ u, which contradicts (ii). Suppose now (iii) for all C, C ∈ u
implies 〈P 〉C ∈ t but (iv) there is a formula [F ]B ∈ u such that B 6∈ t. By
(iii), 〈P 〉[F ]B ∈ t, and by the previous lemma, t B 〈P 〉[F ]B is provable in
HIntKt. Since 〈P 〉[F ]B B B is provable, also t B B is provable. Hence
B ∈ t, a contradiction with (iv). �

LEMMA 97. (Verification Lemma) Consider MA = 〈WA, RAI , R
A
T , v

A〉.
For every C ∈ sub(A) and every u ∈ D(A), MA, u |= C iff C ∈ u.

Proof. By induction on C. We shall consider only two cases. Let
∧
u

denote t, if u = ∅, and note that for all B ∈ u, ` 〈P 〉
∧
u B 〈P 〉B. Hence

for every u, t ∈ WA we have: (*) if 〈P 〉
∧
u ∈ t, then for every B ∈ u,

〈P 〉B ∈ t.
1. C = [F ]B.
⇒: Suppose [F ]B 6∈ u. This is the case iff

∧
u B [F ]B cannot be proved

iff 〈P 〉
∧
u B B cannot be proved

iff (〈P 〉
∧
u, {B}) is consistent

iff (∃t ∈ D(A)) u ⊆ t, 〈P 〉
∧
u ∈ t, B 6∈ t by Corollary 93

only if (∃t ∈ D(A)) uRAT t, B 6∈ t by Lemma 96 and (*)
iff M, u 6|= [F ]B by the ind. hyp.

⇐: Suppose [F ]B ∈ u. Then for all t ∈ WA, uRAT t implies B ∈ t. By the
induction hypothesis, Mc, u |= [F ]B.
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2. C = 〈P 〉B.
⇒: Suppose MA, u |= 〈P 〉B. This is the case iff

(∃t ∈WA) tRAT u andMA, t |= B
only if (∃t ∈WA) (B ∈ t implies 〈P 〉B ∈ u), B ∈ t by Lem. 96,

ind. hyp.
only if 〈P 〉B ∈ u.

⇐: Suppose 〈P 〉B ∈ u. Put t′ := {C | 〈P 〉C ∈ u}. Clearly, the pair (t′, ∅)
is consistent. Hence

(∃t ∈WA) t′ ⊆ t,
∧
t′ ∈ t by Corollary 85

only if (∃t ∈WA) tRAT u andMA, t |= B by Lemma 88 and the
ind. hyp.

iff MA, u |= 〈P 〉B

�

COROLLARY 98. If A is valid in every temporal model, then A is provable
in HIntKt.

Proof. Suppose A is not provable in HIntKt. Then the pair (∅, {A}) is
consistent, and, by the previous corollary, there exists a u ∈ D(A) such that
A 6∈ u. By the Verification Lemma, MA, u 6|= A. �

COROLLARY 99. HIntKt is decidable.

Proof. This follows easily by the fact that sub(A) is finite. �

5.3 Appendix C

In order to prove strong normalization for λt, we shall follow R. de Vri-
jer’s [1987] proof of strong normalization for typed λ–calculus with pairing
and projections satisfying surjective pairing. Let h(M) (the height of the
reduction tree of M) be the length of a reduction sequence of M that has
maximal length.

DEFINITION 100. MA ∈ Term is said to be computable iff

1. sn(M);

2. if A = B B C, M �r N1, and NB
2 is computable, then (N1, N2)C is

computable;

3. if A = B ∧ C and M �r 〈N1, N2〉, then NB
1 , N

C
2 are computable;

4. if A = [F ]B and M �r PN , then NB is computable;

5. if A = 〈P 〉B and M �r SN , then NB is computable.
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The set of all computable terms is denoted by C.

By this definition, every computable term is strongly normalizable. The
aim is to show that every term is computable.

LEMMA 101.

(a) If M ∈ C and M �r N , then N ∈ C.

(b) C is closed under repeated formation of application terms (M,N).

(c) If x ∈ V , then x ∈ C.

(d) If for every NA ∈ C, (M (ABB), N) ∈ C, then M ∈ C.

(e) If (MA∧B)0 ∈ C and (MA∧B)1 ∈ C, then M ∈ C.

(f) If N1, N2 ∈ C, and G ∈ C, for every G such that 〈N1, N2〉 →r G,
then 〈N1, N2〉 ∈ C.

(g) If N ∈ C and G ∈ C, for all G such that (N)i →r G, then (N)i ∈ C.

(h) If N ∈ C, and G ∈ C, for all G such that PN →r G, then PN ∈ C.

(i) If N ∈ C, and G ∈ C, for all G such that SN →r G, then SN ∈ C.

(j) If N ∈ C, and G ∈ C, for all G such that ∪N →r G, then ∪N ∈ C.

(k) If N ∈ C, and G ∈ C, for all G such that ∩N →r G, then ∩N ∈ C.

Proof. (a): By induction on h(M). (b) By reflexivity of �r and Clause 2
in the definition of C. (c): By induction on A ∈ T . If A = B B C, the claim
follows by (b). (d): If for every NA ∈ C, (M,N) ∈ C, then sn(M), since by
(c) and the assumption (M,xB) ∈C. Now suppose M �r N1, N2 ∈ C, and
for every N , (M,N) ∈ C. Then (M,N2)� (N1, N2) and, by (a), (N1, N2) ∈
C. Thus M ∈ C. (e): Since sn((M)i), also sn(M). Suppose M �r 〈N0, N1〉.
Then (M)i �r (〈N0, N1〉)i →r Ni. Since (M)i ∈ C and C is closed under
�r, also Ni ∈ C. (f): Obviously, for every M , sn(M) iff sn(N), for each
N such that M →r N . Moreover, suppose that 〈N1, N2〉 �r 〈G1, G2〉.
This is the case iff 〈N1, N2〉 ≡ 〈G1, G2〉 or there is a term M∗ such that
〈N1, N2〉 →r M

∗, and M∗ �r 〈G1, G2〉. In both cases G1, G2 ∈ C. (g):
By induction on the type A of (N)i. If A is atomic, Clauses 2–5 in the
definition of C hold trivially. A = 〈P 〉B: Suppose (N)i �r SM . If N ≡
〈M1,M2〉, then (N)i →r Mi, and Mi ∈ C. If SM 6≡ Mi, then Mi �r SM ,
and SM ∈ C, by closure of C under �r. If N 6≡ 〈M1,M2〉, then there is a
term M∗ ∈ C such that (N)i →r M

∗ and M∗ �r SM . In each subcase,
M ∈ C. The cases A = [F ]B and A = B ∧C are analogous. If A = B B C,
we may use closure of C under application. (h): Suppose PN �r PG.
This holds iff N ≡ G or there is a term M∗ such that PN →r M

∗ and
M∗ �r PG. In both cases G ∈ C. (i): Analogous to (h). (j): By induction
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on the type A of ∪N . The only interesting case is A = [F ]B. Suppose
∪N �r PM . If N ≡ PN1, then ∪N →r N1 and N1 ∈ C. If PM 6≡ PN1,
then N1 �r PM , and PM ∈ C. In each case M ∈ C. (k): Analogous to (j).

�

THEOREM 102. If M ∈ Term is λ–free, then M ∈ C.

Proof. By induction on M . (1): M is a variable: Lemma 101 (c). (2)
M ≡ (N1, N2): Lemma 101 (b) and the induction hypothesis. (3) M =
〈NA

1 , N
B
2 〉: In view of Lemma 101 (f), it is enough to show that G ∈ C, for

every G such that 〈N1, N2〉 →r G. There are tow subcases. (i): N1 ≡ (G)0

and N2 ≡ (G)1. Then the claim follows by (e). (ii): G ≡ 〈N1, N
∗〉 and

N2 →r N
∗ or G ≡ 〈M∗, N2〉 and N1 →r M

∗. We may use induction on
h(N1) + h(N2). (4) M ≡ (N)i. In view of Lemma 101 (g), it is enough
to show that G ∈ C, for every G such that M →r G. There are tow cases.
(i) N ≡ 〈N0, N1〉 and G ≡ Ni. Then we may use the induction hypothesis.
(ii) G ≡ (N∗)i, N →r N

∗, and we may use induction on h(N). (5) M ≡
PN : In view of Lemma 101 (h), it is enough to show that G ∈ C, for every
G such that M →r G. If M →r G, then G ≡ PN∗, N →r N

∗, and we may
use induction on h(N). (6) M ≡ SN : Analogous to (5), using Lemma 101
(i). (7) M ≡ ∩N : Given Lemma 101 (k), it suffices to show that G ∈ C, for
every G such that M →r G. There are two cases. (i) N ≡ SG1 and G ≡ G1.
Then we may use the induction hypothesis. (ii) G ≡ ∩N∗, N →r N

∗, and
we may use induction on h(N). (8) M ≡ ∪N : Analogous to (7), using
Lemma 101 (j). �

Strong normalizability of all terms is derived from computability of all terms
under substitution.

DEFINITION 103. MA ∈ Term is said to be computable under substi-
tution iff any substitution of free variables in M by computable terms of
suitable type results in a computable term.

Let Cs denote the set of all terms computable under substitution.

THEOREM 104. Every λt–term M is computable under substitution.

Proof. By induction on M . For term variables the claim is obvious. More-
over, since C is closed under application, Cs is also closed under application.
If M ≡ 〈N1, N2〉, M ≡ (N)i, M ≡ PN , or M ≡ SN , the claim follows by
the induction hypothesis. If M ≡ λxAN , it must be show that λxN ∈ Cs

if N ∈ Cs. Suppose that λxN∗ is the result of substituting a computable
term for a free variable in λxN , and suppose that GA is a computable term
such that (M,G) does not have a type B B C. Then, by Lemma 101 (f) –
(k), ((λxN∗)G) ∈ C, if for every term H, ((λxN∗)G) →r H implies H ∈ C.
Since by assumption N ∈ Cs, we have N∗ ∈ C. Therefore we may use
induction on h(N∗) + h(G) to show that ((λxN∗)G) ∈ C. There are three



78 HEINRICH WANSING
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−Term

Figure 2. Normalization as a homomorphic image of proof-simplification.

subcases. (i) H ≡ N∗[x := G] and x ∈ fv(N∗). Then N∗ ∈ C∗ implies
H ∈ C. (ii) H ≡ N∗[x := G] and x 6∈ fv(N∗). Then H ≡ N∗ ∈ C. (iii) H is
obtained from ((λxN∗)G) by executing one reduction step either in N∗ or
G. In this case we may use the induction hypothesis. �

COROLLARY 105. If M is a λt–term, then M is strongly normalizable.

5.4 Appendix D

It has to be shown that f is a homomorphism from A to B, i.e., for every
Π ∈ Π+DIntKt, we have f(elim(Π)) = norm(f(Π)), see Figure 2. The
proof is by induction on Π. If the rule applied to obtain the conclusion
sequent sc of Π is an axiomatic sequent A → A, then f(elim(Π)) = f(Π),
and f(Π) is a nf. If the rule applied to obtain sc is such that the term
construction step associated with it cannot generate a redex, we may apply
the induction hypothesis. We shall consider the remaining cases.

Case 1. Π =
Π′

AoB → X
A ∧B → X

A redex could be generated if the free variables xA, yB in the construction
of AoB → X occur in the context 〈x, y〉. But then X = A∧B, AoB → X
has been derived from {A → A,B → B}, and elim(Π) = A ∧ B → A ∧ B.
The claim holds, since 〈(vA∧B1 )0, (vA∧B1 )1〉 →r v

A∧B
1 .

Case 2. Π =
Π′

X → AoB
X → A B B

A redex could be generated if the free variable xA in the construction of
X → A o B occurs in the context (NABB , xA). But then X = A B B,
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X → A o B has been derived from {A → A,B → B}, and elim(Π) =
A B B → A B B. The claim holds, since λvA1 (vABB1 , vA1 ) →r v

ABB
1 .

Case 3. Π =
Π1 Π2

X → A A→ Y
X → Y

Suppose the exhibited application of cut in Π is not principal. If this appli-
cation is reduced in one step, either the f–images of the resulting proof and
Π are the same, or some principal cuts have been performed on subformulas
of A. Thus, there are five remaining cases to be considered.

Case 3.1 (t):

Π
I→ X

I→ t t→ X
I→ X

is converted into
Π

I→ X

↓ f ↓ f

M

vt1 M

M →r M

Case 3.2 (∧):

Π1

X → A
Π2

Y → B

X o Y → A ∧B

Π3

AoB → Z

A ∧B → Z

X o Y → Z

is conv. into

Π3

Π1 AoB → Z
X → A A→ B o Z

X → B o Z

Π2 X oB → Z

Y → B B → X o Z

Y → X o Z

X o Y → Z

↓ f ↓ f

MA
1 MB

2 N(xA, yB)

〈M1,M2〉 N((zA∧B)0, (zA∧B)1)

N(xA, yB)

MA
1 N

N(M1)

N(M1)

MB
2 N(M1)

N(M1,M2)

N((〈M1,M2〉)0, (〈M1,M2〉)1) �r N(M1,M2)
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Case 3.3 (B):

Π1

X → AoB

X → A B B

Π2 Π3

Y → A B → Z
A B B → Y o Z

X → Y o Z

is conv. into

Π1

X → AoB Π3

X oA→ B B → Z

Π2 X oA→ Z
Y → A A→ X o Z

Y → X o Z
X o Y → Z
X → Y o Z

↓ f ↓ f

MB(xA) NA
1 N2(yB)

λxAM N2(zABB), N1)

MB(xA)

MB N2(yB)

N2(M)

N2(M)

NA
1 N2(M(xA))

N2(M(N1))

N2(M(N1))

N2(λxAM,N1) →r N2(M(N1))

Case 3.4 ([F ]):

Π1

•X → A

X → [F ]A

Π2

A→ Y

[F ]A→ •Y
X → •Y

is converted into

Π1 Π2

•X → A A→ Y
•X → Y
X → •Y

↓ f ↓ f

MA N(xA)
PM N(∪y[F ]A)

MA N(xA)
N(M)

N(∪PM) →r N(M)

Case 3.5 (〈P 〉): analogous to the previous case. �
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[Bošic and Došen, 1984] M. Bošic and K. Došen, Models for normal intuitionistic modal
logics, Studia Logica 43 (1984), 217–245.

[Braüner, 2000] T. Braüner, A Cut-Free Gentzen Formulation of the Modal Logic S5,
Logic Journal of the IGPL 8 (2000), 629–643.

[Bull and Segerberg, 1984] R. Bull and K. Segerberg, Basic Modal Logic. In: D. Gab-
bay and F. Guenthner (eds), Handbook of Philosophical Logic, Vol. II, Extensions of
Classical Logic, Reidel, Dordrecht, 1984, 1–88.

[Cerrato, 1993] C. Cerrato, Modal sequents for normal modal logics, Mathematical
Logic Quarterly 39 (1993), 231–240.

[Cerrato, 1996] C. Cerrato, Modal sequents, in: H. Wansing (ed), Proof Theory of
Modal Logic, Kluwer Academic Publishers, Dordrecht, 1996, 141–166.

[Chellas, 1980] B. Chellas, Modal Logic: An Introduction, Cambridge University Press,
Cambridge, 1980.

[Davis and Pfenning, 2000] R. Davies and F. Pfenning, A Modal Analysis of Staged
Computation, 2000, to appear in: Journal of the ACM.
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