NMAI057 - Linear algebra 1

Tutorial 12

Linear maps - image, kernel, and isomorphism

Date: January 5, 2021

TA: Denys Bulavka

Problem 1. Decide and justify whether the map $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined as

$$
f(x, y, z)=(x+y-2 z, y-z, x-y)^{T}
$$

is in isomorphism of \mathbb{R}^{3} onto itself (so-called automorphism).
Problem 2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear map defined by the images of basis B :

$$
\begin{aligned}
& f(2,1,1)=(1,2,3)^{T}, \\
& f(1,3,5)=(3,2,1)^{T}, \\
& f(7,1,4)=(1,1,1)^{T} .
\end{aligned}
$$

Decide and justify whether:
(a) f is injective - if not then find distinct vectors $u, v \in \mathbb{R}^{3}$ such that $f(u)=$ $f(v)$,
(b) f is surjective (onto) - if not then find a vector without a preimage, i.e., $u \in \mathbb{R}^{3}$ such that for all $v \in \mathbb{R}^{3}$ it holds that $f(v) \neq u$.

Compute the dimension and find a basis for both the image and kernel of f.
Problem 3. Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be isomorphisms. Prove that their composition $g \circ f: U \rightarrow W$ is also an isomorphism. In particular, show that:
(a) $g \circ f$ is injective,
(b) $g \circ f$ is surjective.

Problem 4. Decide and justify whether the following vector spaces are isomorphic:
(a) $\mathbb{R}^{2 \times 2}$ and \mathbb{R}^{4},
(b) \mathbb{R}^{4} and \mathcal{P}^{3} (the space of all real polynomials of degree at most three),
(c) $\mathbb{R}^{m \times n}$ and $\mathbb{R}^{n \times m}$,
(d) \mathbb{R}^{n} over \mathbb{R} and \mathbb{C}^{n} over \mathbb{R},
(e) \mathbb{R}^{2} and $\left\{v \in \mathbb{R}^{4} \mid x_{1}+x_{2}=x_{3}+x_{4}=0\right\}$,
(f) the space of all real polynomials and the space of all real sequences,
(g) \mathbb{R}^{4} and the space of all linear maps (forms) $f: \mathbb{R}^{4} \rightarrow \mathbb{R}$.

Problem 5. For the linear map $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ defined as $A \mapsto A-A^{T}$, decide and justify which of the given vectors are elements of the image of f and which are elements of the kernel of f :
(a)

$$
I_{2}
$$

(b)

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

(c)

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Problem 6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map. Denote $f^{1}=f, f^{2}=f \circ f, \ldots, f^{n}=f \circ f^{n-1}$. Prove that $\operatorname{Ker}\left(f^{n}\right) \subseteq \operatorname{Ker}\left(f^{n+1}\right)$.

Problem 7. Decide and justify whether the given linear map is injective and surjective:
(a) $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{3}$ defined as $f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a+b+c, a+b, a)^{T}$,
(b) $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{4}$ defined as $f\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=(a+b+c+d, a+b+c, a+b, a)^{T}$,
(c) $f: \mathcal{P}^{2} \rightarrow \mathbb{R}^{4}$ defined as $f\left(a x^{2}+b x+c\right)=(a+b, 2 b-c, a-b+c, a+b)^{T}$,
(d) $f: \mathcal{P}^{2} \rightarrow \mathbb{R}^{3}$ defined as $f\left(a x^{2}+b x+c\right)=(a+b, 2 b-c, a-b+c)^{T}$,
(e) $f: \mathcal{P}^{2} \rightarrow \mathbb{R}^{3}$ defined as $f\left(a x^{2}+b x+c\right)=(a+b, 2 b-c, a-b+2 c)^{T}$.

Problem 8. Prove that for all $A \in \mathbb{R}^{n \times p}, B \in \mathbb{R}^{p \times n}$,

$$
\operatorname{dim}(\operatorname{Ker}(A) \cap \mathcal{C}(B))=\operatorname{rank}(B)-\operatorname{rank}(A B)
$$

where $\mathcal{C}(B)$ denotes the column space of B.

