NMAI057 - Linear algebra 1

Tutorial 11 - with solutions

Linear maps

Date: December 15, 2021
TA: Denys Bulavka

Problem 1. Decide and justify whether the following real functions are linear maps
(a) $f_{1}(x)=0$,
(b) $f_{2}(x)=1$,
(c) $f_{3}(x)=2 x$,
(d) $f_{4}(x)=x+1$,
(e) $f_{5}(x)=x^{2}$.

Solution:

Recall the definition of a linear map. For vector spaces U, V over a field \mathbb{F}, a map $f: U \rightarrow V$ is linear if for all $x, y \in U$ and $\alpha \in \mathbb{F}$:
(i) $f(x+y)=f(x)+f(y)$,
(ii) $f(\alpha x)=\alpha f(x)$.

We will verify the conditions from the definition for the given maps.
(a) For all $x, y \in \mathbb{R}$ a $\alpha \in \mathbb{R}$
(i) $f_{1}(x+y)=0=0+0=f_{1}(x)+f_{1}(y)$ a
(ii) $f_{1}(\alpha x)=0=\alpha 0=\alpha f_{1}(x)$.

Both conditions hold and f_{1} is linear.
(b) Analogously for f_{2} :
(i) The first condition is not satisfied since

$$
f_{2}(x+y)=1 \neq 2=1+1=f_{2}(x)+f_{2}(y) .
$$

(ii) There is no need to compute any further but we will check also the other condition

$$
f_{2}(\alpha x)=f_{2}(w)=1 \neq \alpha=\alpha 1=\alpha f_{2}(x)
$$

and for all $\alpha \in \mathbb{R}$, neither the second condition holds.
The map is not linear.
(c) For all $x, y \in \mathbb{R}$ a $\alpha \in \mathbb{R}$
(i) $f_{3}(x+y)=2(x+y)=2(x)+2(y)=f_{3}(x)+f_{3}(y)$ and
(ii) $f_{3}(\alpha x)=2 \alpha x=\alpha 2 x=\alpha f_{3}(x)$.

Both conditions hold and the map is linear.
(d) It is a linear map. The check is similar to f_{3} above.
(e) The map is not linear. Neither of the conditions hold. For example:
(i) $f_{5}(x+y)=(x+y)^{2}=x^{2}+2 x y+y^{2} \neq x^{2}+y^{2}=f_{5}(x)+f_{5}(y)$.

Problem 2. Decide and justify whether the following transformations of \mathbb{R}^{2} are linear maps
(a) $f_{6}\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}$,
(b) $f_{7}\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}-x_{2}, x_{1}-x_{2}\right)^{T}$.

Solution:

We proceed similarly to the above problem.
(a) The map f_{6} is linear. For all $\left(x_{1}, x_{2}\right)^{T},\left(y_{1}, y_{2}\right)^{T} \in \mathbb{R}^{2}$ and $\alpha \in \mathbb{R}$:
(i) $f_{6}\left(\left(x_{1}, x_{2}\right)^{T}+\left(y_{1}, y_{2}\right)^{T}\right)=f_{6}\left(\left(x_{1}+y_{1}, x_{2}+y_{2}\right)^{T}\right)=\left(x_{1}+y_{1}+x_{2}+\right.$ $\left.y_{2}, x_{1}+y_{1}-x_{2}-y_{2}\right)^{T}=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}+\left(y_{1}+y_{2}, y_{1}-y_{2}\right)^{T}=$ $f_{6}\left(\left(x_{1}, x_{2}\right)^{T}\right)+f_{6}\left(\left(y_{1}, y_{2}\right)^{T}\right)$ and
(ii) $f_{6}\left(\alpha\left(x_{1}, x_{2}\right)^{T}\right)=f_{6}\left(\left(\alpha x_{1}, \alpha x_{2}\right)^{T}\right)=\left(\alpha x_{1}+\alpha x_{2}, \alpha x_{1}-\alpha x_{2}\right)^{T}=\alpha\left(x_{1}+\right.$ $\left.x_{2}, x_{1}-x_{2}\right)^{T}=\alpha f_{6}\left(\left(x_{1}, x_{2}\right)^{T}\right)$.
(b) The map f_{7} is linear. Analogous to f_{6}.

Note that we could have also used matrix representation of the maps and rely on properties of matrix product.

Problem 3. For the transformation $f_{6}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined above, find the matrix $\left[f_{6}\right]_{K_{2}, K_{2}}$ of f_{6} w.r.t. the standard basis $K_{2}=\left\{e_{1}=(1,0)^{T}, e_{2}=(0,1)^{T}\right\}$ of \mathbb{R}^{2}.

Solution:

Using the definition of a matrix of a linear map w.r.t. bases of the domain and range we get

$$
\left[f_{6}\right]_{K_{2}, K_{2}}=\left(\left[f_{6}\left(e_{1}\right)\right]_{K_{2}} \quad\left[f_{6}\left(e_{2}\right)\right]_{K_{2}}\right)=\left(\left[f_{6}\left((1,0)^{T}\right)\right]_{K_{2}} \quad\left[f_{6}\left((0,1)^{T}\right)\right]_{K_{2}}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Alternatively, we could have used the theorem about computation of a linear map using $\left[f_{6}\right]_{K_{2}, K_{2}}$ and derive the same result from the definition of f_{6}.

Problem 4. Consider the basis $B_{1}=\left\{(-1,0,3)^{T},(2,-2,2)^{T},(0,1,-3)^{T}\right\}$ of \mathbb{R}^{3}. Find the matrix of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ w.r.t. the basis B_{1} (i.e., $[f]_{B_{1}, B_{1}}$) if you know that f maps the basis vectors as follows (note that all vectors are scaled by a factor of 2):

$$
\begin{aligned}
& f\left((-1,0,3)^{T}\right)=(-2,0,6)^{T}, \\
& f\left((2,-2,2)^{T}\right)=(4,-4,4)^{T}, \\
& f\left((0,1,-3)^{T}\right)=(0,2,-6)^{T} .
\end{aligned}
$$

For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the matrix $[f]_{B_{1}, B_{1}}$ to compute the coordinates $[f(x)]_{B_{1}}$ of the image of x under f w.r.t. B_{1}.

Solution:

We will construct the matrix $F=[f]_{B_{1}, B_{1}}$ using its definition. To compute the first column of F, we map the first basis vector $x_{1}=(-1,0,3)^{T}$ to $f\left((-1,0,3)^{T}\right)=$ $(-2,0,6)^{T}$ and compute the coordinates of the image w.r.t. basis B_{1}. Thus, we need to solve a linear system $A x=b$ with the matrix

$$
\left(\begin{array}{ccc|c}
\mid & \mid & \mid & \mid \\
x_{1} & x_{2} & x_{3} & f\left(x_{1}\right) \\
\mid & \mid & \mid & \mid
\end{array}\right) \sim\left(\begin{array}{ccc|c}
-1 & 2 & 0 & -2 \\
0 & -2 & 1 & 0 \\
3 & 2 & -3 & 6
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),
$$

where the basis vectors from B_{1} form the columns of A and $f\left(x_{1}\right)$ is the right hand side b.

Note that we can compute all the vectors "in parallel" by manipulating the following block matrix

$$
\begin{aligned}
&\left(\begin{array}{ccc|ccc}
\mid & \mid & \mid & \mid & \mid & \mid \\
B_{U_{1}} & B_{U_{2}} & B_{U_{3}} & f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) \\
\mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right) \sim\left(\begin{array}{ccc|ccc}
\mid & \mid & \mid & \mid & \mid & \mid \\
x_{1} & x_{2} & x_{3} & f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) \\
\mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right) \sim \\
& \sim\left(\begin{array}{ccc|ccc}
-1 & 2 & 0 & -2 & 4 & 0 \\
0 & -2 & 1 & 0 & -4 & 2 \\
3 & 2 & -3 & 6 & 4 & -6
\end{array}\right) \sim\left(\begin{array}{lll|lll}
1 & 0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

We can read off the result from the right block of the RREF, i.e.,

$$
F=[f]_{B_{1}, B_{1}}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

On a high level, it makes sense that the matrix is a multiple of the identity matrix, as the map simply takes the basis vectors in B_{1} and scales them by a factor of two.
We can compute the coordinates of $f(x)$ w.r.t. B_{1} using $[x]_{B_{1}}=(1,2,-1)^{T}$ as $F[x]_{B_{1}}=[f]_{B_{1}, B_{1}}[x]_{B_{1}}=[f(x)]_{B_{1}}=(2,4,-2)^{T}$.

Problem 5. For the linear map f from the previous problem, find the matrix $[f]_{B_{1}, B_{2}}$ of f w.r.t. the bases

$$
\begin{aligned}
& B_{1}=\left\{x_{1}=(-1,0,3)^{T}, x_{2}=(2,-2,2)^{T}, x_{3}=(0,1,-3)^{T}\right\} \text { and } \\
& B_{2}=\left\{y_{1}=(-1,1,0)^{T}, y_{2}=(0,1,-1)^{T}, y_{3}=(1,0,1)^{T}\right\}
\end{aligned}
$$

For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the matrix $[f]_{B_{1}, B_{2}}$ to compute the coordinates $[f(x)]_{B_{2}}$ of the image of x under f w.r.t. B_{2}.

Solution:

Again, we will construct the matrix $[f]_{B_{1}, B_{2}}$ using its definition. The computation is similar to the previous problem with the difference that we need to compute the coordinates of the images of basis vectors from B_{1} w.r.t. basis B_{2}. Thus, we need to solve the following system

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
\mid & \mid & \mid & \mid & \mid & \mid \\
y_{1} & y_{2} & y_{3} & f\left(x_{1}\right) & f\left(x_{2}\right) & f\left(x_{3}\right) \\
\mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right) \sim \\
& \sim\left(\begin{array}{ccc|ccc}
-1 & 0 & 1 & -2 & 4 & 0 \\
1 & 1 & 0 & 0 & -4 & 2 \\
0 & -1 & 1 & 6 & 4 & -6
\end{array}\right) \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & -2 & -2 \\
0 & 1 & 0 & -4 & -2 & 4 \\
0 & 0 & 1 & 2 & 2 & -2
\end{array}\right) .
\end{aligned}
$$

The matrix is $[f]_{B_{1}, B_{2}}=\left(\begin{array}{ccc}-2 & -2 & -2 \\ -4 & -2 & 4 \\ 2 & 2 & -2\end{array}\right)$.
Finally, for the given vector x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, we compute

$$
[f(x)]_{B_{2}}=[f]_{B_{1}, B_{2}}[x]_{B_{1}}=(2,-12,8)^{T}
$$

Problem 6. For the bases B_{1} and B_{2} from the previous problem, find the change of basis matrix $[i d]_{B_{1}, B_{2}}$ that transforms coordinates w.r.t. B_{1} into coordinates w.r.t. B_{2}. For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the change of basis matrix $[i d]_{B_{1}, B_{2}}$ to compute the coordinates $[x]_{B_{2}}$ of x w.r.t. B_{2}.

Solution:

We can proceed as above with the main difference that the transformation is the identical transformation. We compute the change of basis matrix as follows:

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
\mid & \mid & \mid & \mid & \mid & \mid \\
y_{1} & y_{2} & y_{3} & x_{1} & x_{2} & x_{3} \\
\mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right) \sim \\
\sim\left(\begin{array}{ccc|ccc}
-1 & 0 & 1 & -1 & 2 & 0 \\
1 & 1 & 0 & 0 & -2 & 1 \\
0 & -1 & 1 & 3 & 2 & -3
\end{array}\right) \sim\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & 1 & 0 & -2 & -1 & 2 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right) .
\end{gathered}
$$

The matrix is $[i d]_{B_{1}, B_{2}}=\left(\begin{array}{ccc}2 & -1 & -1 \\ -2 & -1 & 2 \\ 1 & 1 & -1\end{array}\right)$.
Finally, we transform the coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$ using the matrix $[i d]_{B_{1}, B_{2}}$ and we get

$$
[i d]_{B_{1}, B_{2}}[x]_{B_{1}}=[i d(x)]_{B_{2}}=[x]_{B_{2}}=(1,-6,4)^{T} .
$$

To check the result, we could also solve the corresponding system that computes the coordinates of x w.r.t. B_{2} directly.

Problem 7. How about transforming the coordinates $[x]_{B_{2}}$ of x w.r.t. B_{2} into coordinates w.r.t. B_{1} ? Find the change of basis matrix $[i d]_{B_{2}, B_{1}}$ that transforms coordinates w.r.t. B_{2} into coordinates w.r.t. B_{1}.

For x with coordinates $[x]_{B_{2}}=(1,-6,4)^{T}$, use the matrix $[i d]_{B_{2}, B_{1}}$ to compute the coordinates $[x]_{B_{1}}$ of x w.r.t. B_{1}.

Solution:

We simply need to swap the blocks of the matrix constructed in the previous problem.
$\left(\begin{array}{ccc|ccc}\mid & \mid & \mid & \mid & \mid & \mid \\ x_{1} & x_{2} & x_{3} & y_{1} & y_{2} & y_{3} \\ \mid & \mid & \mid & \mid & \mid & \mid\end{array}\right) \sim\left(\begin{array}{ccc|ccc}-1 & 2 & 0 & -1 & 0 & 1 \\ 0 & -2 & 1 & 1 & 1 & 0 \\ 3 & 2 & -3 & 0 & -1 & 1\end{array}\right) \sim\left(\begin{array}{lll|lll}1 & 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 3 & 4\end{array}\right)$.
The matrix is $[i d]_{B_{2}, B_{1}}=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 1 & 3 & 4\end{array}\right)$.
The coordinates $[x]_{B_{1}}$ are then computed as

$$
[i d]_{B_{2}, B_{1}}[x]_{B_{2}}=[i d(x)]_{B_{1}}=[x]_{B_{1}}=(1,2,-1)^{T} .
$$

Problem 8. Consider $f: \mathbb{Z}_{5}^{3} \rightarrow \mathbb{Z}_{5}^{3}$ defined by the matrix

$$
[f]_{B, K_{3}}=\left(\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
4 & 0 & 3
\end{array}\right)
$$

w.r.t. the standard basis K_{3} of \mathbb{Z}_{5}^{3} and the basis $B=\left\{(3,2,1)^{T},(1,3,4)^{T},(2,2,2)^{T}\right\}$ of \mathbb{Z}_{5}^{3}.
Compute the matrix $[f]_{K_{3}, K_{3}}$ of f w.r.t. to the standard basis K_{3} of \mathbb{Z}_{5}^{3}.

Solution:

Since $f=f \circ i d$, we can compute
$[f]_{K_{3}, K_{3}}=[f]_{B, K_{3}}[i d]_{K_{3}, B}=[f]_{B, K_{3}}\left([i d]_{B, K_{3}}\right)^{-1}=\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1 \\ 4 & 0 & 3\end{array}\right)\left(\begin{array}{lll}3 & 1 & 2 \\ 2 & 3 & 2 \\ 1 & 4 & 2\end{array}\right)^{-1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0\end{array}\right)$.
Problem 9. Consider $g: \mathbb{Z}_{7}^{2} \rightarrow \mathbb{Z}_{7}^{3}$ defined by the matrix

$$
[g]_{K_{2}, K_{3}}=\left(\begin{array}{cc}
1 & 3 \\
4 & 0 \\
2 & 6
\end{array}\right)
$$

w.r.t. to the standard bases K_{2} of \mathbb{Z}_{7}^{2} and K_{3} of \mathbb{Z}_{7}^{3}.

Compute the matrix $[g]_{B_{2}, B_{3}}$ of g w.r.t. the bases $B_{2}=\left\{(1,4)^{T},(3,1)^{T}\right\}$ of \mathbb{Z}_{7}^{2} and $B_{3}=\left\{(1,1,2)^{T},(1,0,3)^{T},(6,0,5)^{T}\right\}$ of \mathbb{Z}_{7}^{3}.

Solution:

Note that $g=i d \circ g \circ i d$ and we can compute

$$
[g]_{B_{2}, B_{3}}=[i d]_{K_{3}, B_{3}}[g]_{K_{2}, K_{3}}[i d]_{B_{2}, K_{2}}=\left([i d]_{B_{3}, K_{3}}\right)^{-1}[g]_{K_{2}, K_{3}}[i d]_{B_{2}, K_{2}},
$$

where we can easily construct the last two change of basis matrices

$$
[i d]_{B_{2}, K_{2}}=\left(\begin{array}{ll}
1 & 3 \\
4 & 1
\end{array}\right),[i d]_{B_{3}, K_{3}}=\left(\begin{array}{lll}
1 & 1 & 6 \\
1 & 0 & 0 \\
2 & 3 & 5
\end{array}\right) .
$$

To complete the computation, we need to only compute the corresponding inverse and multiply the matrices:

$$
[g]_{B_{2}, B_{3}}=\left(\begin{array}{lll}
1 & 1 & 6 \\
1 & 0 & 0 \\
2 & 3 & 5
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 3 \\
4 & 0 \\
2 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
4 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 5 \\
0 & 0 \\
5 & 6
\end{array}\right) .
$$

Problem 10. Consider $h: \mathbb{Z}_{5}^{2} \rightarrow \mathbb{Z}_{5}^{3}$ defined by the matrix

$$
[h]_{B_{2}, B_{3}}=\left(\begin{array}{ll}
4 & 3 \\
2 & 4 \\
3 & 1
\end{array}\right)
$$

w.r.t. the bases $B_{2}=\left\{(4,3)^{T},(1,4)^{T}\right\}$ of \mathbb{Z}_{5}^{2} and $B_{3}=\left\{(1,1,1)^{T},(1,4,0)^{T},(4,0,1)^{T}\right\}$ of \mathbb{Z}_{5}^{3}.
Compute the matrix $[h]_{K_{2}, K_{3}}$ of h w.r.t. the standard bases K_{2} of \mathbb{Z}_{5}^{2} and K_{3} of \mathbb{Z}_{5}^{3}.

Solution:

Similarly to above, note that $h=i d \circ h \circ i d$ and we can compute

$$
\begin{aligned}
{[h]_{K_{2}, K_{3}} } & =[i d]_{B_{3}, K_{3}}[h]_{B_{2}, B_{3}}[i d]_{K_{2}, B_{2}}=[i d]_{B_{3}, K_{3}}[h]_{B_{2}, B_{3}}\left([i d]_{B_{2}, K_{2}}\right)^{-1} \\
& =\left(\begin{array}{lll}
1 & 1 & 4 \\
1 & 4 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
2 & 4 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
3 & 4
\end{array}\right)^{-1}=\left(\begin{array}{ll}
3 & 2 \\
2 & 3 \\
2 & 3
\end{array}\right) .
\end{aligned}
$$

Problem 11. For the linear maps f and h defined above, compute the matrix $[f \circ h]_{K_{2}, K_{3}}$ of the composed map $f \circ h: \mathbb{Z}_{5}^{2} \rightarrow \mathbb{Z}_{5}^{3}$ w.r.t. the standard bases K_{2} of \mathbb{Z}_{5}^{2} and K_{3} of \mathbb{Z}_{5}^{3}.

Solution:

Since we know both matrices, we can compute the required matrix as their product:

$$
[f \circ h]_{K_{2}, K_{3}}=[f]_{K_{3}, K_{3}}[h]_{K_{2}, K_{3}}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 3 & 0
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
2 & 3 \\
2 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 & 3 \\
2 & 3 \\
4 & 1
\end{array}\right) .
$$

