NMAI057 - Linear algebra 1

Tutorial 11 - with solutions

Linear maps

Date: December 15, 2021
TA: Denys Bulavka

Problem 1. Decide and justify whether the following real functions are linear maps
(a) $f_{1}(x)=0$,
(b) $f_{2}(x)=1$,
(c) $f_{3}(x)=2 x$,
(d) $f_{4}(x)=x+1$,
(e) $f_{5}(x)=x^{2}$.

Problem 2. Decide and justify whether the following transformations of \mathbb{R}^{2} are linear maps
(a) $f_{6}\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}+x_{2}, x_{1}-x_{2}\right)^{T}$,
(b) $f_{7}\left(\left(x_{1}, x_{2}\right)^{T}\right)=\left(x_{1}-x_{2}, x_{1}-x_{2}\right)^{T}$.

Problem 3. For the transformation $f_{6}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined above, find the matrix $\left[f_{6}\right]_{K_{2}, K_{2}}$ of f_{6} w.r.t. the standard basis $K_{2}=\left\{e_{1}=(1,0)^{T}, e_{2}=(0,1)^{T}\right\}$ of \mathbb{R}^{2}.

Problem 4. Consider the basis $B_{1}=\left\{(-1,0,3)^{T},(2,-2,2)^{T},(0,1,-3)^{T}\right\}$ of \mathbb{R}^{3}. Find the matrix of $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ w.r.t. the basis B_{1} (i.e., $[f]_{B_{1}, B_{1}}$) if you know that f maps the basis vectors as follows (note that all vectors are scaled by a factor of 2):

$$
\begin{aligned}
& f\left((-1,0,3)^{T}\right)=(-2,0,6)^{T} \\
& f\left((2,-2,2)^{T}\right)=(4,-4,4)^{T} \\
& f\left((0,1,-3)^{T}\right)=(0,2,-6)^{T}
\end{aligned}
$$

For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the matrix $[f]_{B_{1}, B_{1}}$ to compute the coordinates $[f(x)]_{B_{1}}$ of the image of x under f w.r.t. B_{1}.

Problem 5. For the linear map f from the previous problem, find the matrix $[f]_{B_{1}, B_{2}}$ of f w.r.t. the bases

$$
\begin{aligned}
& B_{1}=\left\{x_{1}=(-1,0,3)^{T}, x_{2}=(2,-2,2)^{T}, x_{3}=(0,1,-3)^{T}\right\} \text { and } \\
& B_{2}=\left\{y_{1}=(-1,1,0)^{T}, y_{2}=(0,1,-1)^{T}, y_{3}=(1,0,1)^{T}\right\} .
\end{aligned}
$$

For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the matrix $[f]_{B_{1}, B_{2}}$ to compute the coordinates $[f(x)]_{B_{2}}$ of the image of x under f w.r.t. B_{2}.

Problem 6. For the bases B_{1} and B_{2} from the previous problem, find the change of basis matrix $[i d]_{B_{1}, B_{2}}$ that transforms coordinates w.r.t. B_{1} into coordinates w.r.t. B_{2}. For x with coordinates $[x]_{B_{1}}=(1,2,-1)^{T}$, use the change of basis matrix $[i d]_{B_{1}, B_{2}}$ to compute the coordinates $[x]_{B_{2}}$ of x w.r.t. B_{2}.

Problem 7. How about transforming the coordinates $[x]_{B_{2}}$ of x w.r.t. B_{2} into coordinates w.r.t. B_{1} ? Find the change of basis matrix $[i d]_{B_{2}, B_{1}}$ that transforms coordinates w.r.t. B_{2} into coordinates w.r.t. B_{1}.

For x with coordinates $[x]_{B_{2}}=(1,-6,4)^{T}$, use the matrix $[i d]_{B_{2}, B_{1}}$ to compute the coordinates $[x]_{B_{1}}$ of x w.r.t. B_{1}.

Problem 8. Consider $f: \mathbb{Z}_{5}^{3} \rightarrow \mathbb{Z}_{5}^{3}$ defined by the matrix

$$
[f]_{B, K_{3}}=\left(\begin{array}{lll}
1 & 3 & 1 \\
2 & 2 & 1 \\
4 & 0 & 3
\end{array}\right)
$$

w.r.t. the standard basis K_{3} of \mathbb{Z}_{5}^{3} and the basis $B=\left\{(3,2,1)^{T},(1,3,4)^{T},(2,2,2)^{T}\right\}$ of \mathbb{Z}_{5}^{3}.
Compute the matrix $[f]_{K_{3}, K_{3}}$ of f w.r.t. to the standard basis K_{3} of \mathbb{Z}_{5}^{3}.
Problem 9. Consider $g: \mathbb{Z}_{7}^{2} \rightarrow \mathbb{Z}_{7}^{3}$ defined by the matrix

$$
[g]_{K_{2}, K_{3}}=\left(\begin{array}{ll}
1 & 3 \\
4 & 0 \\
2 & 6
\end{array}\right)
$$

w.r.t. to the standard bases K_{2} of \mathbb{Z}_{7}^{2} and K_{3} of \mathbb{Z}_{7}^{3}.

Compute the matrix $[g]_{B_{2}, B_{3}}$ of g w.r.t. the bases $B_{2}=\left\{(1,4)^{T},(3,1)^{T}\right\}$ of \mathbb{Z}_{7}^{2} and $B_{3}=\left\{(1,1,2)^{T},(1,0,3)^{T},(6,0,5)^{T}\right\}$ of \mathbb{Z}_{7}^{3}.

Problem 10. Consider $h: \mathbb{Z}_{5}^{2} \rightarrow \mathbb{Z}_{5}^{3}$ defined by the matrix

$$
[h]_{B_{2}, B_{3}}=\left(\begin{array}{ll}
4 & 3 \\
2 & 4 \\
3 & 1
\end{array}\right)
$$

w.r.t. the bases $B_{2}=\left\{(4,3)^{T},(1,4)^{T}\right\}$ of \mathbb{Z}_{5}^{2} and $B_{3}=\left\{(1,1,1)^{T},(1,4,0)^{T},(4,0,1)^{T}\right\}$ of \mathbb{Z}_{5}^{3}.
Compute the matrix $[h]_{K_{2}, K_{3}}$ of h w.r.t. the standard bases K_{2} of \mathbb{Z}_{5}^{2} and K_{3} of \mathbb{Z}_{5}^{3}.

Problem 11. For the linear maps f and h defined above, compute the matrix $[f \circ h]_{K_{2}, K_{3}}$ of the composed map $f \circ h: \mathbb{Z}_{5}^{2} \rightarrow \mathbb{Z}_{5}^{3}$ w.r.t. the standard bases K_{2} of \mathbb{Z}_{5}^{2} and K_{3} of \mathbb{Z}_{5}^{3}.

