NMAI057 – Linear algebra 1

Tutorial 11 – with solutions

Linear maps

Date: December 15, 2021

TA: Denys Bulavka

Problem 1. Decide and justify whether the following real functions are linear maps

- (a) $f_1(x) = 0$,
- (b) $f_2(x) = 1$,
- (c) $f_3(x) = 2x$,
- (d) $f_4(x) = x + 1$,
- (e) $f_5(x) = x^2$.

Problem 2. Decide and justify whether the following transformations of \mathbb{R}^2 are linear maps

- (a) $f_6((x_1, x_2)^T) = (x_1 + x_2, x_1 x_2)^T$,
- (b) $f_7((x_1, x_2)^T) = (x_1 x_2, x_1 x_2)^T$.

Problem 3. For the transformation $f_6: \mathbb{R}^2 \to \mathbb{R}^2$ defined above, find the matrix $[f_6]_{K_2,K_2}$ of f_6 w.r.t. the standard basis $K_2 = \{e_1 = (1,0)^T, e_2 = (0,1)^T\}$ of \mathbb{R}^2 .

Problem 4. Consider the basis $B_1 = \{(-1,0,3)^T, (2,-2,2)^T, (0,1,-3)^T\}$ of \mathbb{R}^3 . Find the matrix of $f: \mathbb{R}^3 \to \mathbb{R}^3$ w.r.t. the basis B_1 (i.e., $[f]_{B_1,B_1}$) if you know that f maps the basis vectors as follows (note that all vectors are scaled by a factor of 2):

$$f((-1,0,3)^T) = (-2,0,6)^T,$$

$$f((2,-2,2)^T) = (4,-4,4)^T,$$

$$f((0,1,-3)^T) = (0,2,-6)^T.$$

For x with coordinates $[x]_{B_1} = (1, 2, -1)^T$, use the matrix $[f]_{B_1, B_1}$ to compute the coordinates $[f(x)]_{B_1}$ of the image of x under f w.r.t. B_1 .

Problem 5. For the linear map f from the previous problem, find the matrix $[f]_{B_1,B_2}$ of f w.r.t. the bases

$$B_1 = \{x_1 = (-1, 0, 3)^T, x_2 = (2, -2, 2)^T, x_3 = (0, 1, -3)^T\}$$
 and $B_2 = \{y_1 = (-1, 1, 0)^T, y_2 = (0, 1, -1)^T, y_3 = (1, 0, 1)^T\}.$

For x with coordinates $[x]_{B_1} = (1, 2, -1)^T$, use the matrix $[f]_{B_1, B_2}$ to compute the coordinates $[f(x)]_{B_2}$ of the image of x under f w.r.t. B_2 .

Problem 6. For the bases B_1 and B_2 from the previous problem, find the change of basis matrix $[id]_{B_1,B_2}$ that transforms coordinates w.r.t. B_1 into coordinates w.r.t. B_2 . For x with coordinates $[x]_{B_1} = (1,2,-1)^T$, use the change of basis matrix $[id]_{B_1,B_2}$ to compute the coordinates $[x]_{B_2}$ of x w.r.t. B_2 .

1

Problem 7. How about transforming the coordinates $[x]_{B_2}$ of x w.r.t. B_2 into coordinates w.r.t. B_1 ? Find the change of basis matrix $[id]_{B_2,B_1}$ that transforms coordinates w.r.t. B_2 into coordinates w.r.t. B_1 .

For x with coordinates $[x]_{B_2} = (1, -6, 4)^T$, use the matrix $[id]_{B_2, B_1}$ to compute the coordinates $[x]_{B_1}$ of x w.r.t. B_1 .

Problem 8. Consider $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5^3$ defined by the matrix

$$[f]_{B,K_3} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \\ 4 & 0 & 3 \end{pmatrix}$$

w.r.t. the standard basis K_3 of \mathbb{Z}_5^3 and the basis $B = \{(3, 2, 1)^T, (1, 3, 4)^T, (2, 2, 2)^T\}$ of \mathbb{Z}_5^3 .

Compute the matrix $[f]_{K_3,K_3}$ of f w.r.t. to the standard basis K_3 of \mathbb{Z}_5^3 .

Problem 9. Consider $g: \mathbb{Z}_7^2 \to \mathbb{Z}_7^3$ defined by the matrix

$$[g]_{K_2,K_3} = \begin{pmatrix} 1 & 3\\ 4 & 0\\ 2 & 6 \end{pmatrix}$$

w.r.t. to the standard bases K_2 of \mathbb{Z}_7^2 and K_3 of \mathbb{Z}_7^3 .

Compute the matrix $[g]_{B_2,B_3}$ of g w.r.t. the bases $B_2 = \{(1,4)^T, (3,1)^T\}$ of \mathbb{Z}_7^2 and $B_3 = \{(1,1,2)^T, (1,0,3)^T, (6,0,5)^T\}$ of \mathbb{Z}_7^3 .

Problem 10. Consider $h: \mathbb{Z}_5^2 \to \mathbb{Z}_5^3$ defined by the matrix

$$[h]_{B_2,B_3} = \begin{pmatrix} 4 & 3 \\ 2 & 4 \\ 3 & 1 \end{pmatrix}$$

w.r.t. the bases $B_2 = \{(4,3)^T, (1,4)^T\}$ of \mathbb{Z}_5^2 and $B_3 = \{(1,1,1)^T, (1,4,0)^T, (4,0,1)^T\}$ of \mathbb{Z}_5^3 .

Compute the matrix $[h]_{K_2,K_3}$ of h w.r.t. the standard bases K_2 of \mathbb{Z}_5^2 and K_3 of \mathbb{Z}_5^3 .

Problem 11. For the linear maps f and h defined above, compute the matrix $[f \circ h]_{K_2,K_3}$ of the composed map $f \circ h \colon \mathbb{Z}_5^2 \to \mathbb{Z}_5^3$ w.r.t. the standard bases K_2 of \mathbb{Z}_5^2 and K_3 of \mathbb{Z}_5^3 .