
NOPT042 Constraint programming: Tutorial

Jakub Buĺın

KTIML MFF UK

Fall 2021

About this tutorial

Useful links

Our tutorial’s webpage

Our tutorial on Moodle

Webpage of the lecture

Course info in the SIS

Credit requirements

Choose an appropriately complex combinatorial problem (to be approved
by me, see here for a few examples). Design an efficient MiniZinc model
for your problem. The documentation should include a description of the
problem and your model, example data including some hard instances
(both positive and negative), discussion of your chosen approach and its
comparison to other modeling strategies, results of numerical
experiments. Give a brief presentation of your work.

http://ktiml.mff.cuni.cz/~bulin/csp/
https://dl1.cuni.cz/course/view.php?id=10544
http://ktiml.mff.cuni.cz/~bartak/podminky/
https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=NOPT042&skr=2020&fak=11320
http://ktiml.mff.cuni.cz/~bartak/podminky/lectures/zapoctak.pdf

Resources

MiniZinc homepage

The MiniZinc Handbook (Chapter 2 contains a tutorial)

Coursera courses Basic and Advanced Modelling for Discrete
Optimization by the creator of MiniZinc

The MiniZinc Examples Archive

Hakan Kjellerstrand’s Library of MiniZinc Models

Past tutorials based on SICStus Prolog

https://www.minizinc.org/
https://www.minizinc.org/doc-2.4.3/en/index.html
https://www.coursera.org/learn/basic-modeling
https://www.coursera.org/learn/advanced-modeling
https://github.com/MiniZinc/minizinc-examples
http://www.hakank.org/minizinc/
http://ktiml.mff.cuni.cz/~bartak/podminky/#cviceni

Constraint programming

Discrete (‘combinatorial’, as opposed to ‘continuous’)
optimization, constraint satisfaction

a form of decision making,

many everyday problems:

solve Sudoku

schedule classes

schedule trains

coordinate multi-facility production

logistics of product transportation

. . .

Assign values to variables subject to constraints, satisfy/optimize.

You will learn to. . .

solve complex problems “without even knowing how”

state the problem in a high-level constraint modeling
language: MiniZinc

use a constraint solver to “automagically”1 solve it

techniques and tricks to build efficient constraint models

best practices, testing and debugging

define your own constraints, search heuristics

integrate constraint modeling within the Python toolchain
(bind native Python objects with MiniZinc data structures,
manipulate the solution stream, concurrent solving, . . .)

1Magic explained in the lectures.

Why constraint programming?

the ‘holy grail’ of programming: tell the computer what you
want, not how to do it

an order of magnitude easier than programming algorithms

huge engineering investment in constraint solvers, highly
optimized, often faster than your own algorithm would be
(especially in “mixed” NP-complete problems), heuristic
approach

easier for molecular biologists to learn to specify their
problems in a formal language, than for programmers to learn
molecular biology

History and (folk) etymology

prográphō (“I set forth as a public notice”), from pró
(“towards”) + gráphō (“I write”)

program of a political movement

program of a concert, broadcast programming, tv program

computer program (1940s)

Independently:

U.S. Army operational programs (1940s)

“linear programming” (1946) Maximize cTx (objective
function) subject to Ax ≤ b, x ≥ 0 (constraints).

integer programming (1964), logic programming (late 1960s),
constraint logic programming (1987), constraint programming
(early 1990s)

Modeling (USA) vs. Modelling (everywhere else)2

2MiniZinc comes from Australia, Gecode from Australia and Scandinavia

Why MiniZinc?

MiniZinc: Towards A Standard CP Modelling Language (2007)

“solvers use different, incompatible modelling languages that
express problems at varying levels of abstraction”

ECLiPSe, SICStus (Prolog); Gecode, ILOG (C/C++); Choco
(Java), Minion, OPL . . .

MiniZinc: a standard Constraint modelling language, easy
implementation (FlatZinc), benchmarking (The MiniZinc
Challenge)

high-level, modern3

3Python 1990, C# 2001, Scala 2003, Clojure 2007, Go 2009

https://www.minizinc.org/pub/nethercote_et_al_minizinc.pdf
https://www.minizinc.org/challenge.html
https://www.minizinc.org/challenge.html

Hello, World!

Example (hello-world)

Install the MiniZinc bundle. Create and run “hello-world.mzn”
with the following code:

output ["Hello, world!"];

Try both the IDE and command-line interface:
minizinc hello-world.mzn

Output statement

output <list-of-strings>;

optional, at most one

concatenation: ++

\n, \t, ”\(x)”, show(x), show int(k,x), show float(k,d,x)

Pythagorean triples

Example (pythagorean-triples)

Generate all Pythagorean triples, i.e. natural numbers such that
a2 + b2 = c2, up to a fixed parameter.

Symmetry breaking4:
constraint a < b;

Generate all solutions:
minizinc -a pythagorean-triples.mzn

Parameters vs. Decision Variables

Solve statement

solve satisfy;

solve maximize 〈arithmetic expression〉;
solve minimize 〈arithmetic expression〉;

4See https://en.wikipedia.org/wiki/Symmetry-breaking constraints

https://en.wikipedia.org/wiki/Symmetry-breaking_constraints

Chinese remainder theorem

Example (chinese-remainder)

After an indecisive battle, general Han Xin wanted to know how
many soldiers of his 42000-strong army remained. In order to
prevent enemy spies hidden among his soldiers to learn the
number, he decided to use modular algebra: He ordered his soldiers
to form rows of 5 and 3 soldiers remained. Then rows of 7; 2
remained. Then rows of 9; 4 remained. Then rows of 11; 10
remained. Finally, rows of 13; 1 remained.5

What are the parameters of our problem?

Identify the decision variables (type, domains6)

What are the constraints? (implicit?)

Is it satisfaction or optimization?
5Was this necessary?
6as small as possible

Australia

Map coloring

Example (color-map)

Create a model to color the map of Australian states and
territories 7 with 4 colors (cf. The 4-color Theorem).

Q: What is wrong with this example?8

Exercise for later

1 Create a model to decide if a given graph is 4-colorable.

2 Find the chromatic number of a given graph.

Data representation?

7excluding the Australian Capital Territory, the Jervis Bay Territory, and the
external territories

8Separate model from data! (model vs. instance)

Overview of the IDE and CLI

Useful command-line options:

-h, --help, --help 〈solver-id〉
--solvers

-a, --all-solutions

-v, --verbose

-s, --statistics

-c, --compile

-o, --output-to-file

-d 〈filename〉, --data 〈filename〉
-D 〈data〉, --cmdline-data 〈data〉

Solvers and tools

Gecode a good default choice, open-source, fast, supports MiniZinc
natively, and more: include "gecode.mzn";

Chuffed lazy clause generation, combines finite domain propagation
with ideas from SAT: explain and record failure and perform
conflict directed backjumping; can find a solution fast

COIN-BC Computational Infrastructure for Operations Research: Branch
and Cut; mixed-integer programming (MIP) solver

findMUS finds “minimal unsatisfiable sets” of constraints in the model

Gist visualize the search tree, guide the search manually

See The MiniZinc Handbook::Solvers for more information.

https://www.minizinc.org/doc-2.4.3/en/solvers.html

More about the language

Identifiers: alphabetic chars, digits, 9

Relational operators:
= or ==, !=, <, >, <=, >= 10

Logical operators:
/\, \/, ->, <-, <->, xor, not

Integer arithmetic:
+,-,*,div,mod,abs(x),pow(x,y) 11

Floating point: +,-,*,/,int2float,abs,sqrt,ln,

log2,log10,exp,pow,sin,cos,tan,...

literals: 1.23, 4.5e-6, 7.8+E9

primitive types: int, float, bool, string

string for output&readability, range: 1..5: n; 0.0..1.0: p;
9starts with an alphabetic character (not a reserved word)

10Both = and == mean ‘equals’ (assignment not needed). Made by
computer scientists for computer scientists.

11+,- are also unary

Basic structure of a model (order does not matter)

Parameter declaration (optional keyword par)
par int: n [= 1];

int: n [=1];

Decision variable declaration (keyword var is not optional!)
var int: x [= n];

Assignment item
n = 5;

x = 3; (equivalent to constraint x = 3;)

Constraint item
constraint 〈Boolean expression〉;

Solve statement

Output statement

Include item
include 〈filename〉;

Predicate item, test item, solve annotation (later)

Crypt-arithmetic

Example (send-more-money)

Solve the crypt-arithmetic puzzle (each letter represents a different
base-10 digit):

SEND + MORE = MONEY

Example (donald-gerard-robert)

Write a better constraint model12 based on carry bits for the
puzzle DONALD + GERARD = ROBERT.

12“Some letters can be computed from other letters and invalidity of the
constraint can be checked before all letters are known” (from R. Barták’s
tutorial in Prolog, see the code), “If we don’t study the mistakes of the future,
we’re bound to repeat them for the first time.” (Ken M)

Crypt-arithmetic cont’d

Compare w/ send-more-money.cpp (for pre-MiniZinc Gecode).

Exercise for later

Design a general model for crypt-arithmetic puzzles of the form
word1 + word2 = word3.

Try your model on the following hard instance: 13

B A I J J A J I I A H F C F E B B J E A

+ D H F G A B C D I D B I F F A G F E J E

= G J E G A C D D H F A F J B F I H E E F

13From Hakan Kjellerstrand’s library (orig. source: Prolog benchmark
problem GNU Prolog, P. Van Hentenryck, adapted by D. Diaz)

http://www.hakank.org/minizinc/

Global constraints (more on this later!)

Constraints that represent high-level modelling abstractions, for
which many solvers (e.g. Gecode) implement special, efficient
inference algorithms.

Include all global constraints: include "globals.mzn";

or include individual constraints, e.g.: include

"alldifferent.mzn;"

Example (pigeonhole)

Can n pigeons fit in m holes so that every pigeon has its own hole?

predicate all different(array [$X] of var int: x)

Compare models with and without the global constraint (compiled
code, performance). Look at documentation and implementation.

Idea: dual model (switch variables&values), chanelling constraint

Optimization

Example (baking-cakes)

How many chocolate&banana cakes should we bake to get rich?

banana cake: 250g flour, 2 bananas, 75g sugar, 100g butter
(sells for $4.50)

chocolate cake: 200g flour, 75g cocoa, 150g sugar, 150g
butter (sells for $4)

Supplies: 4kg flour, 6 bananas, 500g cocoa, 2kg sugar, 500g butter

Separate data from model (.dzn file or cmd-line argument):
minizinc baking-cakes2.mzn pantry.dzn

Verify consistency of data:
constraint assert(〈boolean-expr〉,〈error-msg〉);

Better: a general production planning model (later)

Structured data types

Example (laplace)

Rectangular metal plate with different temperatures on each side:
In a stable state, temperature at each internal point is the average
of its neighbours (finite element method).

declare a 2-dimensional array of decision variables:
array[0..w, 0..h] of var float: t;

w and h are parameters (index sets have to be fixed)
int w; int h;

named range (a set):
set of int: ROW = 0..h;

aggregation function example: forall (Not a for-loop!)
constraint forall(i in ROW)(t[i,0] = left);

other aggregation functions: exists, sum, max, min, xorall, . . .

Production Planning

Example (production-planning)

We can produce different types of products. Each type of product
consumes certain amount of each resource and produces a certain
amount of profit. Goal: maximize profit subject to resource
capacity constraints.

Make your model fit the data declared here:
baking-cakes-data.dzn

More on MiniZinc IDE and CLI

I will try to use the mouse, but. . .

Minizinc IDE keyboard shortcuts

CTRL+R MiniZinc→Run Compile and execute
CTRL+E MiniZinc→Stop Abort execution (very useful)
CTRL+B Minizinc→Compile Compile only (to FlatZinc)

How to add MiniZinc to PATH on Windows (change the path to
match your installation):

setx PATH "%PATH%;C : \Program Files\MiniZinc\"

More on installation here:

https://www.minizinc.org/doc-2.2.3/en/installation.html

https://www.minizinc.org/doc-2.2.3/en/installation.html

The Knapsack Problem

Example (knapsack)

Given a set of items, each with a weight and a value, determine
the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is
as large as possible.

A thief breaks into a home. They can carry 23kg. What should
they take to maximize profit? There are the following items:

a TV (weighs 15kg, costs $500),

a desktop computer (weighs 11kg, costs $350)

a laptop (weighs 5kg, costs $230),

a tablet (weighs 1kg, costs $115),

an antique vase (weighs 7kg, costs $180),

a bottle of whisky (weighs 3kg, costs $75), and

a leather jacket (weighs 4kg, costs $125).

More examples using arrays

Example (n-queens)

Place n queens on an n × n chess board so that no queen is attacked by
another queen.

Example (sudoku)

Design a MiniZinc model which solves the Sudoku puzzle.

Example (magic-square)

A magic square is an n × n table filed with numbers from 1 to n2 such
that the sums of every row, column, and both main diagonals are the
same. Can a given partially pre-filled table be filled to get a magic
square?

Examples (minesweeper)

Find all mines starting from a given Minesweeper game configuration.

Arrays

Declare an array:
array [1..8,1..8] of bool: a;

array [<index-set-1>,...,<index-set-n>] of <type>

one-dim array literal: b = [1,2,3,4,5,6];

two-dim array literal: c = [|1,2|3,4|5,6|];

c = array2d(1..3, 1..2, [1, 2, 3, 4, 5, 6]); 14

indexing: b[1]; c[3,2];

concatenation: b ++ [7,8];

length of a one-dim array: length(b);

array literals indexed starting from 1:
array[0..2] of int: a = [4,5,6];

correct: a = array1d(0..2,[4,5,6])

index sets cannot be decision variables :-(

14up to array6d()

Sets

Declare a set variable:
set of <type>: <identifier>;

type can be int, bool, float, or enum15

set literals: {1,3,5} , {JUN,SEP,DEC}
or a range (over int, float or enum):
2..5 , 1.5..2.5 , JAN..MAY

set operations:
in (membership),
superset, subset (non-strict),
union, intersect (union and intersection),
diff, symdiff (difference and symmetric difference),
card (cardinality)

why not complement?

only (bounded) sets of int or enum can be decision variables
var set of 1..10: a;

15basically a range 1..n with fancy names, more later

List and set comprehension, generators

List comprehension:
[<expr> | <generator-expr>,...,<generator-expr>]

<generator-exp> is of the form:
<generator> or <generator> where <bool-expr>

<generator> is of the form:
<identifier>,...<identifier> in <array-exp>

idenfitifiers are iterators over the array16

generators and filter usually fixed (free of decision variables)17

Set comprehension:
{<expr> | <generator-expr>,...,<generator-expr>}

generators, boolean expr., generated elements must be fixed

16(the last one iterates most rapidly)
17if not, we get array[] of var opt <type> (more on option types later)

Aggregation functions and generator call expressions

Aggregation function: any function whose input is a single array

Built-in aggregation functions:

arithmetic: sum, product, min, max

boolean: forall, exists, xorall, iffall

Generator call expression:

<agg-func> (<generator-exp>) (<exp>)

this is equivalent to:

<agg-func> ([<exp> | <generator-exp>])

For example:
forall([a[i] != a[j] | i,j in 1..3 where i < j])

forall(i,j in 1..3 where i < j)(a[i] != a[j])

Enumerated types

Declare an enum:
enum: days;

Enum literal:
days = {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

a “set of constants”

used for type safety

converted to an integer range starting from 1, i.e.
Mon + Tue = 3;

enum next(days, Fri); enum prev(days, Sun);

to enum(days, 4) = Thu;

card(days)=7; min(days)=Mon; max(days)=Sun;

enum my enum = enum anon(n);

Even more about MiniZinc

conditional statement:
if <bool-exp> then <exp-1> else <exp-2> endif

type coercion: bool → int, int → float, and bool → float
(two-step), coercion is automatic, for both parameters and
decision variables (functions bool2int, int2float)

the built-in function fix : coerce a decision variable to a
parameter, in output statements

have a look at the MiniZinc Cheatsheet.

https://github.com/MiniZinc/MiniZincIDE/blob/master/MiniZincIDE/cheat_sheet.mzn

How to implement a CP solver

Gecode: (one of) the best constraint solvers

A recent talk about Gecode:

https://chschulte.github.io/talks/Gecode%202018.pdf

Source code (300k lines):

https://github.com/Gecode/gecode

Maybe have a look at a more lightweight solver, like
Java-based MiniCP:

https://github.com/Damoy/MiniCP

. . . or code your own CP solver using ideas from the lecture!

https://chschulte.github.io/talks/Gecode%202018.pdf
https://github.com/Gecode/gecode
https://github.com/Damoy/MiniCP

A simple planning problem

Example (swimmers)

18 In medley swimming relay, a team of four swimmers must swim
4x100m, each swimmer using a different style: breaststroke,
backstroke, butterfly, or freestyle. The table below gives their
average times for 100m in each style. Which swimmer should swim
which stroke to minimize total time?

Swimmer Free Breast Fly Back
A 54 54 51 53
B 51 57 52 52
C 50 53 54 56
D 56 54 55 53

Things to try: Write a general model, generate larger instances,
and try to make your model as efficient as possible.

18From: W. Winston, Operations Research: Applications & Algorithms

Modelling functions

The swimmers problem is an example of the Assignment Problem:
https://en.wikipedia.org/wiki/Assignment problem

In general, how to model a function (mapping) f : A→ B?

as an array:
array[A] of var B: f;

injective:
constraint alldifferent(f);

surjective: a partition of A into classes labelled by B
array[B] of var set of A: classes;

constraint partition set(classes, A);

bijective:
array[B] of var A: invf;

constraint inverse(f, invf);

https://en.wikipedia.org/wiki/Assignment_problem

More on modelling functions

partial function: a dummy value for undefined inputs

dual model: switch the role of variables and values (not a
function unless f injective, see above)

channelling: combine the primal and dual models
constraint int set channel(f, classes);

assignment is a very common part of practical modeling

(technically, every CSP is an assignment problem)

there are global constraints for everything
https://www.minizinc.org/doc-2.5.0/en/lib-globals.html

https://www.minizinc.org/doc-2.5.0/en/lib-globals.html

A simple scheduling problem

Example (moving19)

Four friends are moving. The table shows how much time and how
many people are necessary to move each item. Schedule the
moving to minimize total time. (When to start moving each item?)

Item Time (min) People
piano 45 4
chair 10 1
bed 25 3

table 15 2
couch 30 3

cat 15 1

Things to try: Write a general model, generate larger instances,
and try to make your model as efficient as possible.

19Adapted from R. Barták’s practical; check the SICStus Prolog model.

The Cummulative global constraint

Requires that a set of tasks given by start times s, durations d ,
and resource requirements r , never require more than a global
resource bound b at any one time.

predicate cumulative(

array [int] of var int: s,

array [int] of var int: d,

array [int] of var int: r,

var int: b)

Assuming that for all i , d [i] ≥ 0 and r [i] ≥ 0.

Example (moving-trolleys)

Schedule moving furniture so that each piece of furniture has
enough people and enough trolleys available during the move.

Modelling the Boolean Satisfiability Problem (SAT)

Example (sat)

Is a given CNF formula satisfiable?

a literal is either a variable or the negation of a variable,

a clause is a disjunction of literals,

a formula is in conjunctive normal form (CNF) if it is a
conjunction of clauses.

DIY SAT solver

Do-it-yourself SAT solver which understands the DIMACS CNF
format, using Python and MiniZinc (the minizinc python package).

https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html
https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html

Python minizinc package

Install:
pip install minizinc

Homepage:
https://pypi.org/project/minizinc/

Documentation:
https://minizinc-python.readthedocs.io/en/latest/

Useful for processing input and output, executing many
instances, statistics20, constraint solving as a blackbox inside
a more complex system, . . .

See also: IPython/Jupyter notebook iminizinc magic
https://github.com/MiniZinc/iminizinc

But in this practical, we mostly care about modelling one
(more complex) problem well.

20Phase transitions in discrete optimization; scheduling: predict running time

https://pypi.org/project/minizinc/
https://minizinc-python.readthedocs.io/en/latest/
https://github.com/MiniZinc/iminizinc

Moving with trolleys

Example (moving-trolleys)

Schedule moving furniture so that each piece of furniture has
enough people and enough trolleys available during the move.

A possible instance:

OBJECTS = {piano, fridge, doublebed, singlebed,

wardrobe, chair1, chair2, table};
available handlers = 4;

available trolleys = 3;

duration = [60, 45, 30, 30, 20, 15, 15, 15];

handlers = [3, 2, 2, 1, 2, 1, 1, 2];

trolleys = [2, 1, 2, 2, 2, 0, 0, 1];

Stable relationships

Example (stable-marriage)

Given n men and n women, where each person has ranked all
members of the opposite sex in order of preference, marry the men
and women together such that there are no two people of opposite
sex who would both rather have each other than their current
partners. (When there are no such pairs, the matching is stable.)

Try the instance A:YXZ, B:ZYX, C:XZY, X:BAC, Y:CBA, Z:ACB

Example (stable-roommate)

Given 2n people, where each person has ranked all others in order
of preference, pair the people together such that there are no two
people who would both rather have each other than their current
partners.

Try the instance A:BCD, B:CAD, C:ABD, D:ABC

How to model general constraints

The table constraint enforces that a tuple of variables takes a value
from an array of tuples. Since there are no tuples in MiniZinc this
is encoded using arrays:
table(array[int] of var int:x, array[int,int] of int:t)

(Alternatively, there is a version with boolean arrays.)

Example (Graph homomorphism)

Given a pair of graphs G ,H, find all homomorphisms from G to H.

Graph homomorphism is a function f : V (G)→ V (H) such that

{u, v} ∈ E (G) =⇒ {f (u), f (v)} ∈ E (H)

Generalizes graph k-coloring (c : G → Kk)

Easier version: oriented graphs

How would you model the Graph Isomorphism Problem?

Defining predicates

Predicates are defined by a statement of the form

predicate <name> (<arg-def>,...,<arg-def>) = <bool-exp>

where each <arg-def> is a type declaration, except index sets
don’t have to be fixed, i.e. we can write: array[int] of var int

predicate no overlap(var int:s1, int:d1, var int:s2,

int:d2) = s1 + d1 <= s2 \/ s2 + d2 <= s1;

We can declare a predicate but define it in a seperate file(s):
predicate edge(var VERTEX: u, var VERTEX: v);

% include "edge-from-list.mzn";

% include "edge-from-incidence-matrix.mzn";

Test constraints, assert

Using the keyword test we can define new constraints that only
involve parameters and unlike predicates can be used inside the
test of a conditional expression:
test even(int:x) = x mod 2 = 0;

A new form of the assert command for use in predicates:
assert (<bool-exp>, <string-exp>, <exp>)

If the first argument is true, it returns the third argument,
otherwise it prints the second argument.

predicate lookup(array[int] of var int:x,int:i,var int:y)

= assert(i in index set(x),"index out of range",y = x[i]);

Defining functions

Similar to predicates, but return type doesn’t have to be bool:

function <type>:<name>(<arg-def>,...,<arg-def>)=<exp>

Example: the Manhattan metric
function var int: manhattan(var int:x1, var int:y1, var

int:x2, var int:y2) = abs(x2 - x1) + abs(y2 - y1);

Local variables and constraints:
let {...} in <exp>

Example: square root function var int: mysqrt(var int:x) =

let { var 0..infinity: y; constraint x = y * y; } in y;

Reflection functions

Array index sets:

index set(<1-D array>)

index set 1of2(<2-D array>)

index set 2of2(<2-D array>)

Domain reflection:

dom(<exp>) returns a safe approximation to the possible
values of the expression

lb(<exp>) a safe lower bound

ub(<exp>) a safe upper bound

and versions for arrays:
dom array(<array-exp>)

lb array(<array-exp>)

ub array(<array-exp>)

Balanced diet

Example (balanced-diet)

Plan a meal consisting of a main dish, a side dish, and a dessert.
Each item has a kilojoule count, protein in grams, salt in
milligrams, and fat in grams, as well as cost in cents.

The goal is to find the cheapest possible meal which has:

at least the given minimum kilojoule count,

at least the given minimum amount of protein,

at most the given maximum amount of salt, and

at most the given maximum amount of fat.

See balanced-diet.dzn for a sample instance.

Rostering

Example (nurse-roster)

Schedule the shifts of num nurses nurses over num days days.

Each nurse is scheduled for each day as either: (d) on day shift,
(n) on night shift, or (o) off. In each four day period a nurse must
have at least one day off, and no nurse can be scheduled for 3
night shifts in a row.

We require req day nurses on day shift each day, and req night

nurses on night shift, and that each nurse takes at least
min night night shifts.

Nurse rostering condition as a DFA

d n o
1 2 3 1
2 4 4 1
3 4 5 1
4 6 6 1
5 6 0 1
6 0 0 1

The regular constraint

Is a sequence of symbols accepted by a DFA?

regular(array[int] of var int: x, int: Q, int: S,

array[int,int] of int: d, int: q0, set of int: F)

Constrains that the sequence of values in array x (which must all be in
{1, . . . ,S} is accepted by the DFA of Q states with input alphabet
{1, . . . ,S} and transition function

d : {1, . . . ,Q} × {1, . . . ,S} → {0, . . . ,Q}

and initial state q0 ∈ {1, . . . ,Q} and accepting states F . State 0 is

reserved to be a fail state.

See also regular nfa .

The seesaw problem21

Example (seesaw)

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a
10-foot long seesaw such that they are at least 2 feet apart and the
seesaw is balanced.

Write a general model for any number of people.
Possible decision variables?

1 Position on the seesaw for each person.

2 Distances between persons, position of the first person, and
order of persons.

3 Person or empty for each position on the seesaw.

Multiple modeling?

How to improve performance of our model?
21From R. Barták’s practical

Symmetry breaking22

Add constraints to choose only one of symmetric variants of a
(partial) assignment; many useful global constraints

Bin packing: when trying to pack items into bins, any two
bins that have the same capacity are symmetric.

Graph colouring: When trying to assign colours to nodes in
a graph such that adjacent nodes must have different colours,
we typically model colours as integer numbers. However, any
permutation of colours is again a valid graph colouring.

Vehicle routing: if the task is to assign customers to certain
vehicles, any two vehicles with the same capacity may be
symmetric (this is similar to the bin packing example).

Rostering/time tabling: two staff members with the same
skill set may be interchangeable, just like two rooms with the
same capacity or technical equipment.

22From The MiniZinc Handbook

Search annotations

Specify how to search: solve::<annotation>

int search(<variables>,<varchoice>,<constrainchoice>)

<variables> is a 1-dim array of var int ,

<varchoice> is a variable choice annotation, and

<constrainchoice> is a choice of how to constrain a
variable.

Example: n-queens
solve::int search(q, first fail, indomain min)

satisfy;

Similarly we have bool search,set search .

Search annotations: variable choice

input order choose in order from the array

first fail choose the variable with the smallest domain
size

smallest choose the variable with the smallest value in its
domain

dom w deg choose the variable with the smallest value of
domain size divided by weighted degree, which is the number
of times it has been in a constraint that caused failure earlier
in the search.

See the documentation for more.

Search annotations: constrain choice

indomain min assign the variable its smallest domain value

indomain median assign the variable its median domain
value

indomain random assign the variable a random value from
its domain

indomain split bisect the variables domain excluding the
upper half.

See the documentation for more.

Restart (and warm start)

Return to the top of the search tree (for nonedeterministic search
strategies).

restart constant(n) restart after n nodes searched

restart linear(n) k-th restart after kn nodes

restart geometric(b,n) k-th restart after n · bk nodes

Example:
solve::int search(q, first fail, indomain random)

::restart linear(1000) satisfy;

Warm start: supply a partial or suboptimal solution, or ranges for
variables to start with (currently not supported in Gecode)

Choosing between models23

The better model is likely to have some of the following features:

smaller number of variables, or at least those that are not
functionally defined by other variables

smaller domain sizes of variables

more succinct, or direct, definition of the constraints of the
model

uses global constraints as much as possible

In reality all this has to be tempered by how effective the search is
for the model. Usually the effectiveness of search is hard to judge
except by experimentation.

23From The MiniZinc Handbook

Globalizer

The Holy Grail: anyone with domain knowledge can write
(efficient!) models. Analyze the model and suggest global

constraints.24

https://www.minizinc.org/doc-2.5.0/en/globalizer.html

Under development

Only supports a subset of the language, no set or enum types,
no command line data.

Example: queens.mzn
gcc(queens,[1,1,1,1,1,1,1,1]);) %no longer supported

Instead:

global cardinality(queens,[i|i in 1..n],[1|i in

1..n]);

Global cardinality constraints

24K. Leo et al, “Globalizing Constraint Models”, CP’2013.

https://www.minizinc.org/doc-2.5.0/en/globalizer.html
https://www.minizinc.org/doc-2.5.0/en/lib-globals.html#counting-constraints

Modelling with sets

A subset X ⊆ {1, . . . , n}:
var set of 1..n: x;

array[1..n] of var bool: ch;

constraint link set to booleans(x,ch);

% i in x <-> ch[i]

fixed cardinality subset:
var set of 1..n: x; constraint card(x) = k;

array[1..k] of var 1..n: x;

constraint all different(x);

bounded cardinality subset:
var set of 1..n: x; card(x)>=l; card(x) <= u;

array[1..u] of var 0..n: x;

constraint alldifferent except 0(x);

Many global constraints have variants for sets, e.g.:
all different(array [$X] of var set of int: S);

all disjoint(array [$X] of var set of int: S);

MiniZinc and IPython

iminizinc extension: https://github.com/MiniZinc/iminizinc

See the Jupyter notebook.

https://github.com/MiniZinc/iminizinc

Golomb’s ruler25

Example (golomb)

A Golomb ruler is an imaginary ruler with n marks such that the
distance between every two marks is different. Find the shortest
possible ruler for a given n.

Try symmetry breaking, adding implicit constraints, and better
search strategies.

25See R. Barták’s practical

https://en.wikipedia.org/wiki/Golomb_ruler

The law of leaky abstractions

https://en.wikipedia.org/wiki/Leaky abstraction

the following constraint

dist[i,j] >= (j-i)*(j-i+1) div 2

is roughly twice faster than

dist[i,j] >= (j-i)*(j-i+1) / 2

https://en.wikipedia.org/wiki/Leaky_abstraction

Optimization levels

-O0: Disable optimize (–no-optimize)

-O1: Single pass (default)

-O2: Two pass

-O3: Two pass with Gecode

-O4: 03 and shaving

-O5: 03 and singleton arc consistency

Higher levels are expensive: better for small yet hard problems
(unsatisfiable or solutions rare)

Ramsay’s partition

Example (ramsay-partition)

Partition the integers 1 to n into three parts, such that for no part
are there three different numbers with two adding to the third. For
which n is it possible?

See also Folkman’s Theorem.

https://en.wikipedia.org/wiki/Folkman%27s_theorem

Minimum common string partition

Example (mcsp)

Find a common partition of two finite strings x , y (into
non-overlapping substrings) with the minimum number of blocks.

Example: x = AGACTG , y = ACTAGG , valid partition:
{A,A,C ,T ,G ,G}, best partition: {ACT ,AG ,G}

