NMAI057 - Linear algebra 1

Tutorial 10

Vector spaces
Date: December 8, 2021
TA: Denys Bulavka

Problem 1. The system of subsets of a set $A=\{a, b, c, d, e\}$ can be viewed as a vector space over the field \mathbb{Z}_{2}. Determine

- the zero vector $\mathbf{0}$,
- opposite vector $-\mathbf{u}$ to the vector $\mathbf{u}=\{b, d, e\}$,
- the result of linear combination $\mathbf{s}=1 \cdot \mathbf{v}+1 \cdot \mathbf{w}+0 \cdot \mathbf{x}+1 \cdot \mathbf{y}$, where $\mathbf{v}=\{a, c, d\}, \mathbf{w}=\{b, c\}, \mathbf{x}=\{a, b, d, e\}$ and $\mathbf{y}=\{b, e\}$,
- whether it is possible to obtain vector $\mathbf{z}=\{a, b, e\}$ as a linear combination of vectors $\mathbf{v}, \mathbf{w}, \mathbf{x}$ and \mathbf{y}.

Problem 2. Is it possible for the structure $(\{0,1,2,3,4,5\}, \oplus, \odot)$ to form a vector space over the field \mathbb{Z}_{3}, where $\mathbf{u} \oplus \mathbf{v}=\mathbf{u}+\mathbf{v} \bmod 6$ and $a \odot \mathbf{u}=a \cdot \mathbf{u} \bmod 6$?

Problem 3. In the vector space \mathbb{R}^{4} over the field \mathbb{R} find the linear combination of vectors $(-5,5,1,-1)^{T},(2,-5,0,2)^{T},(3,2,0,-2)^{T}$ and $(2,-3,1,1)^{T}$ which does lead to vector $(-7,12,2,-4)^{T}$. Is this linear combination unique?

Problem 4. In the space \mathbb{R}^{4} determine the coordinates $[u]_{X}$ with respect to the (ordered) basis $X=\left((1,-3,7,2)^{T},(3,2,1,-4)^{T},(0,-1,4,-3)^{T},(-2,4,-3,0)^{T}\right)$ for vectors $u_{1}=(2,2,9,-5)^{T}, u_{2}=(-7,2,9,-8)^{T}$ a $u_{3}=(4,-42,31,20)^{T}$.

Problem 5. In the space of real polynomials of degree at most four with the basis $X=$ $\left(x^{4}+x^{3}, x^{3}+x^{2}, x^{2}+x, x+1, x^{4}+1\right)$ determine coordinates $[f]_{X}$ of the following vectors f :
(a) $f(x)=x^{4}-1$.
(b) $f(x)=x^{4}+x^{3}+x^{2}+x+1$.
(c) $f(x)=x^{4}+x^{2}+1$.
(d) $f(x)=x^{3}+x$.

Problem 6. Extend the set M to a basis of the vector space V
(a) $M=\left\{(1,2,0,0)^{T},(2,1,1,3)^{T},(0,1,0,1)^{T}\right\}, V=\mathbb{R}^{4}$.
(b) $M=\left\{-x^{2}, x+x^{2}, x^{3}-1\right\}$, in the space V of real polynomes of degree at most three.
(c) $M=\left\{\left(\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)\right\}$ in the space $V=\mathbb{R}^{2 \times 2}$.

Problem 7. Determine dimensions and bases of the following vector spaces.
(a) $U_{1}=\mathcal{L}\left((4,1,0,3,4,0,0)^{T},(4,3,1,0,2,3,1)^{T},(4,1,4,0,3,2,4)^{T}\right.$, $\left.(2,4,1,4,4,3,1)^{T},(0,4,3,2,2,4,3)^{T}\right)$.
(b) $V_{1}=\left\{\left(x_{1}, \ldots, x_{7}\right)^{T} \in \mathbb{Z}_{5}^{7}: x_{1}+3 x_{2}+x_{3}+2 x_{4}+3 x_{5}+x_{6}+2 x_{7}=0\right.$,
$\left.3 x_{1}+4 x_{2}+3 x_{3}+x_{4}+4 x_{5}+2 x_{6}+4 x_{7}=0,2 x_{1}+x_{2}+4 x_{3}+4 x_{5}+2 x_{7}=0\right\}$.
(c) $U_{2}=\mathcal{L}\left((1,2,4,2,3,1,2)^{T},(2,3,4,1,2,1,3)^{T},(3,4,1,1,4,1,4)^{T}\right.$,

$$
\left.(4,0,2,3,3,4,1)^{T},(4,3,1,3,2,3,2)^{T}\right)
$$

(d) $V_{2}=\left\{\left(x_{1}, \ldots, x_{7}\right)^{T} \in \mathbb{Z}_{5}^{7}: x_{1}+2 x_{2}+x_{3}+x_{5}+2 x_{6}+3 x_{7}=0\right.$,

$$
\left.4 x_{1}+2 x_{2}+x_{3}+3 x_{4}+2 x_{5}+x_{7}=0, x_{1}+x_{2}+3 x_{3}+x_{6}=0\right\}
$$

Problem 8. Prove that if V is a subspace of a finitely generated space W then there exist bases X and Y, resp., of V and W, resp., such that $X \subseteq Y$.

Problem 9. Determine, whether the spaces U_{i} and V_{i} are in an inclusion. If so, find a basis of the larger one that extend a basis of the smaller one. These subspaces of \mathbb{Z}_{5}^{7} are defined as follows:
(a) $U_{1}=\mathcal{L}\left((4,1,0,3,4,0,0)^{T},(4,3,1,0,2,3,1)^{T},(4,1,4,0,3,2,4)^{T}\right.$,

$$
\left.(2,4,1,4,4,3,1)^{T},(0,4,3,2,2,4,3)^{T}\right) V_{1}=\left\{\left(x_{1}, \ldots, x_{7}\right)^{T} \in \mathbb{Z}_{5}^{7}: x_{1}+\right.
$$ $3 x_{2}+x_{3}+2 x_{4}+3 x_{5}+x_{6}+2 x_{7}=0$,

$$
\left.3 x_{1}+4 x_{2}+3 x_{3}+x_{4}+4 x_{5}+2 x_{6}+4 x_{7}=0,2 x_{1}+x_{2}+4 x_{3}+4 x_{5}+2 x_{7}=0\right\}
$$

(b) $U_{2}=\mathcal{L}\left((1,2,4,2,3,1,2)^{T},(2,3,4,1,2,1,3)^{T},(3,4,1,1,4,1,4)^{T}\right.$,
$\left.(4,0,2,3,3,4,1)^{T},(4,3,1,3,2,3,2)^{T}\right) V_{2}=\left\{\left(x_{1}, \ldots, x_{7}\right)^{T} \in \mathbb{Z}_{5}^{7}: x_{1}+\right.$ $2 x_{2}+x_{3}+x_{5}+2 x_{6}+3 x_{7}=0$,
$\left.4 x_{1}+2 x_{2}+x_{3}+3 x_{4}+2 x_{5}+x_{7}=0, x_{1}+x_{2}+3 x_{3}+x_{6}=0\right\}$
Problem 10. Prove that if V and W are finitely generated, then

$$
\operatorname{dim}(V)+\operatorname{dim}(W)=\operatorname{dim}(V \cap W)+\operatorname{dim}(\mathcal{L}(V \cup W))
$$

Problem 11. Let V ve the set of all real symmetric matrices of order three with zeros on the diagonal. Show that V is a subspace of $\mathbb{R}^{3 \times 3}$. Determine the dimension of V and find some basis of this subspace.

Problem 12. The coordinates of a vector u with respect to the ordered basis $X=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ are $[u]_{X}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)^{T}$. Determine the coordinates of the same vector with respect to the basis $Y=\left(v_{1}+v_{4}, v_{2}+v_{3}, v_{4}, v_{2}\right)$.

