NMAI057 - Linear algebra 1

Tutorial 9 - with solutions

Row space, column space, and kernel

Date: December 1, 2021
TA: Denys Bulavka

Problem 1. Compute the dimension and find the basis for the row space $\mathcal{R}(A)$, the column space $\mathcal{C}(A)$, and the kernel $\operatorname{Ker}(A)$ of the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 4 & 1 & 3 \\
3 & 6 & 1 & 4
\end{array}\right)
$$

Solution:

First, we transform the matrix to the RREF:

$$
\left(\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 4 & 1 & 3 \\
3 & 6 & 1 & 4
\end{array}\right) \sim\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The non-zero rows in $\operatorname{RREF}(A)$ form a basis of the row space $\mathcal{R}(A)$, i.e., the vectors $(1,2,0,1)^{T},(0,0,1,1)^{T}$.

We choose the basis of the column space $\mathcal{C}(A)$ from the columns of the matrix A by selecting the columns with the same index as the ones that have a pivot in $\operatorname{RREF}(A)$, i.e., the first and third columns of A form a basis of $\mathcal{C}(A)$.
We find the basis of the kernel of A by solving the system $A x=o$. Any solution of this system can be expressed parametrically in terms of $x_{2}, x_{4} \in \mathbb{R}$ as

$$
\left(-2 x_{2}-x_{4}, x_{2},-x_{4}, x_{4}\right)^{T}=(-2,1,0,0)^{T} x_{2}+(-1,0,-1,1)^{T} x_{4} .
$$

Thus, a basis of $\operatorname{Ker}(A)$ is formed by the vectors $(-2,1,0,0)^{T},(-1,0,-1,1)^{T}$.
Problem 2. Over $\mathbb{R}, \mathbb{Z}_{5}$, and \mathbb{Z}_{7}, decide and justify whether for $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ it holds that
(a) $(1,2)^{T} \in \operatorname{Ker}(A)$,
(b) $(1,2)^{T} \in \mathcal{C}(A)$.

Solution:

Recall the definition of kernel and the column space

$$
\begin{aligned}
\operatorname{Ker}(A) & =\left\{x \in \mathbb{F}^{n}: A x=o\right\}, \\
\mathcal{C}(A) & =\operatorname{span}\left\{A_{* 1}, \ldots, A_{* n}\right\}=\left\{A x: x \in \mathbb{F}^{n}\right\} .
\end{aligned}
$$

Thus, it is sufficient to justify whether the vector $(1,2)^{T}$ is a solution for the system $A x=o$ over the given field, respectively whether $A x=(1,2)^{T}$ for some $x \in \mathbb{F}^{2}$.

Over \mathbb{R} :
(a) $(1,2)^{T}$ is not an element of $\operatorname{Ker}(A)$ since

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\binom{1}{2}=\binom{5}{5} \neq\binom{ 0}{0} .
$$

(b) $(1,2)^{T}$ is an element of $\mathcal{C}(A)$ since for

$$
\left(\begin{array}{cc|c}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 2 & 1 \\
0 & -5 & -1
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 0 & \frac{3}{5} \\
0 & 1 & \frac{1}{5}
\end{array}\right)
$$

there exists a solution. Specifically, $(1,2)^{T}=\frac{3}{5}(1,3)^{T}+\frac{1}{5}(2,1)^{T}$.
Over \mathbb{Z}_{5} :
(a) $(1,2)^{T}$ is an element of $\operatorname{Ker}(A)$ since

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\binom{1}{2}=\binom{0}{0}
$$

(b) $(1,2)^{T}$ is not an element of $\mathcal{C}(A)$ since for

$$
\left(\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 0 & 4
\end{array}\right)
$$

there is no solution over \mathbb{Z}_{5}.
Over \mathbb{Z}_{7} :
(a) $(1,2)^{T}$ is not an element of $\operatorname{Ker}(A)$ since

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\binom{1}{2}=\binom{5}{5} \neq\binom{ 0}{0} .
$$

(b) $(1,2)^{T}$ is an element of $\mathcal{C}(A)$ since for

$$
\left(\begin{array}{ll|l}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & 1 \\
0 & 2 & 6
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right)
$$

there exists a solution over \mathbb{Z}_{7}. Specifically, $(1,2)^{T}=2(1,3)^{T}+3(2,1)^{T}$ over \mathbb{Z}_{7}.

Problem 3. Construct a matrix A such that:
(a) $\mathcal{R}(A)$ contains vectors $(1,1)^{T},(1,2)^{T}$ and $\mathcal{C}(A)$ contains $(1,0,0)^{T},(0,0,1)^{T}$.
(b) The basis of both $\mathcal{R}(A)$ and $\mathcal{C}(A)$ is $(1,1,1)^{T}$ and the basis of $\operatorname{Ker}(A)$ is $(1,-2,1)^{T}$.

Solution:

(a) The dimensions of the vectors in the row space and the column space imply that the matrix is of order 3×2. The required properties are satisfied, fir example, by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) .
$$

(b) In this case, we should construct a 3×3 matrix for which

$$
\operatorname{dim} \mathcal{R}(A)=\operatorname{dim} \mathcal{C}(A)=\operatorname{rank}(A)=\operatorname{dim} \operatorname{Ker}(A)=1
$$

However, by the theorem about the relationship between rank and the dimension of the kernel of a matrix, for all matrices $A \in \mathbb{F}^{m \times n}$ it must hold that

$$
\operatorname{dim} \operatorname{Ker}(A)+\operatorname{rank}(A)=n
$$

We conclude that a matrix satisfying the required properties does not exist.
Problem 4. Decide and justify whether for all $A, B \in \mathbb{R}^{n \times n}$ it holds that
(a) $\mathcal{C}(A)=\mathcal{C}(B)$ implies $\operatorname{RREF}(A)=\operatorname{RREF}(B)$,
(b) $\operatorname{RREF}(A)=\operatorname{RREF}(B)$ implies $\mathcal{C}(A)=\mathcal{C}(B)$.

Solution:

(a) The statement does not hold. For example, the matrices

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
$$

have equal column spaces

$$
\operatorname{span}\left\{(1,0)^{T},(0,0)^{T}\right\}=\mathcal{C}(A)=\mathcal{C}(B)=\operatorname{span}\left\{(0,0)^{T},(1,0)^{T}\right\}
$$

but their RREFs are distinct (they are both already in RREF).
(b) Neither the reverse implication holds. For example, the matrices

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

have $\operatorname{RREF}(A)=\operatorname{RREF}(B)=A$ but

$$
\operatorname{span}\left\{(1,0)^{T},(0,0)^{T}\right\}=\mathcal{C}(A) \neq \mathcal{C}(B)=\operatorname{span}\left\{(0,1)^{T},(0,0)^{T}\right\} .
$$

Problem 5. Choose a basis B of $V=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ from vectors

$$
v_{1}=(3,1,5,4)^{T}, v_{2}=(2,2,3,3)^{T}, v_{3}=(1,-1,2,1)^{T}, v_{4}=(1,3,1,1)^{T}
$$

For the vectors not in your basis B, compute their coordinates w.r.t. B.

Solution:

We form a matrix using the given vectors as columns and reduced it to the RREF

$$
\left(\begin{array}{cccc}
3 & 2 & 1 & 1 \\
1 & 2 & -1 & 3 \\
5 & 3 & 2 & 1 \\
4 & 3 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The columns containing pivots are the first, third, and fourth one. Thus, the basis of $\mathcal{C}(A)=V$ is formed by the vectors $v_{1}=(3,1,5,4)^{T}, v_{2}=(2,2,3,3)^{T}$ a $v_{4}=(1,3,1,1)^{T}$.
From the third column of $\operatorname{RREF}(A)$ we get the coordinates of v_{3} w.r.t. the basis $B=\left\{v_{1}, v_{2}, v_{4}\right\}$, it holds that

$$
v_{3}=(1,-1,2,1)^{T}=1 \cdot(3,1,5,4)^{T}+(-1) \cdot(2,2,3,3)^{T}
$$

and $\left[v_{3}\right]_{B}=(1,-1,0)$.
Problem 6. Decide and justify whether for all $A, B \in \mathbb{R}^{m \times n}$ it holds that $\operatorname{rank}(A+B) \leq$ $\operatorname{rank}(A)+\operatorname{rank}(B)$.
(Hint: What is the relationship between $\mathcal{C}(A)+\mathcal{C}(B)$ and $\mathcal{C}(A+B)$?)

Solution:

Consider the space generated by the union of the columns of matrices A and B, i.e., the space $\mathcal{C}(A)+\mathcal{C}(B)$. The dimension of this space is at most

$$
\operatorname{dim} \mathcal{C}(A)+\operatorname{dim} \mathcal{C}(B)=\operatorname{rank}(A)+\operatorname{rank}(B)
$$

Moreover, the space $\mathcal{C}(A)+\mathcal{C}(B)$ contains all the vectors generated by the columns of matrix $A+B$. Thus, $\mathcal{C}(A+B)$ is a subspace of $\mathcal{C}(A)+\mathcal{C}(B)$. Therefore, we can conclude that

$$
\operatorname{rank}(A+B)=\operatorname{dim} \mathcal{C}(A+B) \leq \operatorname{dim} \mathcal{C}(A)+\mathcal{C}(B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)
$$

Problem 7. In terms of inclusion, what is the relationship between $\operatorname{Ker}(A B)$ and $\operatorname{Ker}(B)$ for matrices
(a) $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,
(b) $A \in \mathbb{R}^{n \times n}$ regular and $B \in \mathbb{R}^{n \times p}$?

Solution:

(a) For all $x \in \operatorname{Ker}(B)$, by definition of kernel, it holds that $B x=o$. Moreover, x is contained in the kernel of $A B$ since

$$
(A B) x=A(B x)=A o=o,
$$

and we get the inclusion $\operatorname{Ker}(B) \subseteq \operatorname{Ker}(A B)$. The reverse inclusion does not hold in general. For example, for $A=0_{n \times n}$ and $B=I_{n}$, the vector $y=(1,0, \ldots, 0)^{T}$ is contained in the kernel of $A B$ but not in the kernel of B.
(b) For regular matrices A, the reverse inclusion $\operatorname{Ker}(A B) \subseteq \operatorname{Ker}(B)$ holds and, thus, $\operatorname{Ker}(A B)=\operatorname{Ker}(B)$. For all $x \in \operatorname{Ker}(A B)$, it holds that $(A B) x=o$. By regularity of A, there exists and inverse matrix A^{-1} such that

$$
B x=\left(A^{-1} A\right) B x=A^{-1}((A B) x)=A^{-1} o=o
$$

which implies that $x \in \operatorname{Ker}(B)$.

