NMAI057 - Linear algebra 1
 Tutorial 9

Row space, column space, and kernel
Date: December 1, 2021
TA: Denys Bulavka

Problem 1. Compute the dimension and find the basis for the row space $\mathcal{R}(A)$, the column space $\mathcal{C}(A)$, and the $\operatorname{kernel} \operatorname{Ker}(A)$ of the matrix

$$
A=\left(\begin{array}{llll}
1 & 2 & 2 & 3 \\
2 & 4 & 1 & 3 \\
3 & 6 & 1 & 4
\end{array}\right)
$$

Problem 2. Over $\mathbb{R}, \mathbb{Z}_{5}$, and \mathbb{Z}_{7}, decide and justify whether for $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right)$ it holds that
(a) $(1,2)^{T} \in \operatorname{Ker}(A)$,
(b) $(1,2)^{T} \in \mathcal{C}(A)$.

Problem 3. Construct a matrix A such that:
(a) $\mathcal{R}(A)$ contains vectors $(1,1)^{T},(1,2)^{T}$ and $\mathcal{C}(A)$ contains $(1,0,0)^{T},(0,0,1)^{T}$.
(b) The basis of both $\mathcal{R}(A)$ and $\mathcal{C}(A)$ is $(1,1,1)^{T}$ and the basis of $\operatorname{Ker}(A)$ is $(1,-2,1)^{T}$.

Problem 4. Decide and justify whether for all $A, B \in \mathbb{R}^{n \times n}$ it holds that
(a) $\mathcal{C}(A)=\mathcal{C}(B)$ implies $\operatorname{RREF}(A)=\operatorname{RREF}(B)$,
(b) $\operatorname{RREF}(A)=\operatorname{RREF}(B)$ implies $\mathcal{C}(A)=\mathcal{C}(B)$.

Problem 5. Choose a basis B of $V=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ from vectors

$$
v_{1}=(3,1,5,4)^{T}, v_{2}=(2,2,3,3)^{T}, v_{3}=(1,-1,2,1)^{T}, v_{4}=(1,3,1,1)^{T} .
$$

For the vectors not in your basis B, compute their coordinates w.r.t. B.
Problem 6. Decide and justify whether for all $A, B \in \mathbb{R}^{m \times n}$ it holds that $\operatorname{rank}(A+B) \leq$ $\operatorname{rank}(A)+\operatorname{rank}(B)$.
(Hint: What is the relationship between $\mathcal{C}(A)+\mathcal{C}(B)$ and $\mathcal{C}(A+B)$?)
Problem 7. In terms of inclusion, what is the relationship between $\operatorname{Ker}(A B)$ and $\operatorname{Ker}(B)$ for matrices
(a) $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,
(b) $A \in \mathbb{R}^{n \times n}$ regular and $B \in \mathbb{R}^{n \times p}$?

