NMAI057 – Linear algebra 1

Tutorial 9

Row space, column space, and kernel

Date: December 1, 2021

TA: Denys Bulavka

Problem 1. Compute the dimension and find the basis for the row space $\mathcal{R}(A)$, the column space $\mathcal{C}(A)$, and the kernel Ker(A) of the matrix

$$A = \begin{pmatrix} 1 & 2 & 2 & 3 \\ 2 & 4 & 1 & 3 \\ 3 & 6 & 1 & 4 \end{pmatrix}.$$

Problem 2. Over \mathbb{R} , \mathbb{Z}_5 , and \mathbb{Z}_7 , decide and justify whether for $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$ it holds that

- (a) $(1,2)^T \in \operatorname{Ker}(A)$,
- (b) $(1,2)^T \in \mathcal{C}(A)$.

Problem 3. Construct a matrix A such that:

- (a) $\mathcal{R}(A)$ contains vectors $(1,1)^T, (1,2)^T$ and $\mathcal{C}(A)$ contains $(1,0,0)^T, (0,0,1)^T$.
- (b) The basis of both $\mathcal{R}(A)$ and $\mathcal{C}(A)$ is $(1,1,1)^T$ and the basis of Ker(A) is $(1,-2,1)^T$.

Problem 4. Decide and justify whether for all $A, B \in \mathbb{R}^{n \times n}$ it holds that

- (a) $\mathcal{C}(A) = \mathcal{C}(B)$ implies $\operatorname{RREF}(A) = \operatorname{RREF}(B)$,
- (b) $\operatorname{RREF}(A) = \operatorname{RREF}(B)$ implies $\mathcal{C}(A) = \mathcal{C}(B)$.
- **Problem 5.** Choose a basis B of $V = \text{span}\{v_1, v_2, v_3, v_4\}$ from vectors

$$v_1 = (3, 1, 5, 4)^T, v_2 = (2, 2, 3, 3)^T, v_3 = (1, -1, 2, 1)^T, v_4 = (1, 3, 1, 1)^T.$$

For the vectors not in your basis B, compute their coordinates w.r.t. B.

- **Problem 6.** Decide and justify whether for all $A, B \in \mathbb{R}^{m \times n}$ it holds that $\operatorname{rank}(A + B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$. (*Hint: What is the relationship between* $\mathcal{C}(A) + \mathcal{C}(B)$ and $\mathcal{C}(A + B)$?)
- **Problem 7.** In terms of inclusion, what is the relationship between Ker(AB) and Ker(B) for matrices
 - (a) $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$,
 - (b) $A \in \mathbb{R}^{n \times n}$ regular and $B \in \mathbb{R}^{n \times p}$?