NMAI057 – Linear algebra 1

Tutorial 8

Subspaces and linear independence

Date: November 24, 2021 TA: Denys Bulavka

Problem 1. Decide and **justify** for what parameters $a \in \mathbb{Z}_7$ is the set

$$S_a = \{(x, y, z)^T : x + 2y - 3z = a\}$$

a subspace of the vector space \mathbb{Z}_7^3 .

What is the cardinality of this vector space?

Solution:

For S_a to be a subspace of \mathbb{Z}_7^3 , it must contain the zero vector $(0,0,0)^T$. Thus, it must hold that $a = 0 + 2 \cdot 0 - 3 \cdot 0 = 0$. We show that for a = 0 it is a subspace. Note that it remains to decide whether the set S_a is closed under addition of vectors and multiplication by a scalar from \mathbb{Z}_7 .

Multiplication by scalar: For all $(x, y, z) \in S_0$ and $\alpha \in \mathbb{Z}_7$, it holds that $\alpha x + 2\alpha y - 3\alpha z = \alpha(x + 2y - 3z) = \alpha \cdot 0 = 0$. Thus, $\alpha(x, y, z) = (\alpha x, \alpha y, \alpha z) \in S_0$.

Addition of vectors: For all $(x, y, z) \in S_0$ and $(x', y', z') \in S_0$, it follows by distributivity, commutativity and associativity of addition over \mathbb{Z}_7 that (x + x') + 2(y + y') - 3(z + z') = (x + 2y - 3z) + (x' + 2y' - 3z) = 0 + 0 = 0. Thus, $(x + x', y + y', z + z') \in S_0$.

Finally, we compute the cardinality of S_0 . For any choice of x and y, we get a z (i.e., $z = \frac{x+2y}{3} = 5x + 3y$) satisfying x + 2y - 3z = 0. There are 7 distinct choices of x and 7 distinct choices of y and, therefore, there are $7 \cdot 7 = 49$ elements of S_0 .

To summarize, S_a is a subspace only for a=0 and in that case it has 49 elements.

Problem 2. Over \mathbb{Z}_{11} , find the intersection of the subspaces of \mathbb{Z}_{11}^4 defined as 1) the solution set of the system Ax = 0 and 2) the span of the set of vectors $\{v_1, v_2, v_3\}$, where

$$A = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 5 & 2 & 1 \end{pmatrix}, \ v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 \\ 2 \\ 3 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 0 \end{pmatrix}.$$

Solution:

First, we solve the system

$$\begin{pmatrix} 1 & 2 & 3 & 2 \\ 3 & 5 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 3 \\ 0 & -1 & -7 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & -7 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 7 & 5 \end{pmatrix}.$$

The solution set is
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 1 \\ 6 \\ 0 \\ 1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ 4 \\ 1 \\ 0 \end{pmatrix} : r, s \in \mathbb{Z}_{11} \right\}.$$

Our task is to find out which of the vectors in the solution set can be expressed as

$$a_1v_1 + a_2v_2 + a_3v_3$$
, where $a_1, a_2, a_3 \in \mathbb{Z}_{11}$. Let's denote $w_1 = \begin{pmatrix} 1 \\ 6 \\ 0 \\ 1 \end{pmatrix}$ and $w_2 = \begin{pmatrix} 0 \\ 4 \\ 1 \\ 0 \end{pmatrix}$.

In other words, we need to solve $a_1v_1 + a_2v_2 + a_3v_3 = rw_1 + sw_2$. Equivalently, $a_1v_1 + a_2v_2 + a_3v_3 + r(-w_1) + s(-w_2) = 0$:

$$\begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 2 & 2 & 0 & -6 & -4 \\ 1 & 3 & -2 & 0 & -1 \\ 1 & 1 & 0 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 2 & -2 & -4 & -4 \\ 0 & 3 & -3 & 1 & -1 \\ 0 & 1 & -1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 & -2 \\ 0 & 3 & -3 & 1 & -1 \\ 0 & 1 & -1 & 0 & 0 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 & -2 \\ 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 10 & 0 \\ 0 & 1 & 10 & 9 & 9 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}.$$

It follows that r = 0 and s = 0. Thus, the only vector in the intersection is $0 \cdot w_1 + 0 \cdot w_2$, i.e., the zero vector.

Problem 3. Decide and **justify** whether the set of all univariate polynomials with coefficients in \mathbb{Z}_3 and degree lesser or equal to 10 is a vector space (w.r.t. the natural operations of addition of vectors and multiplication by scalar).

What is the cardinality of the set?

Solution:

True. Follows by a straightforward verification using the characterization of a vector space as a set which contains the zero vector and is closed under addition of vectors and multiplication by a scalar.

The cardinality of the set is 3^{11} (there are three possibilities for each coefficient for the eleven monomials $x^{10}, \ldots, x^0 = 1$).

Problem 4. Decide and **justify** whether the following vectors are linearly independent in \mathbb{R}^3 :

(a)
$$(2,3,-5)^T$$
, $(1,-1,1)^T$, $(3,2,-2)^T$.

(b)
$$(2,0,3)^T$$
, $(1,-1,1)^T$, $(0,2,1)^T$.

Solution:

(a) We are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$a \cdot \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix} + b \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + c \cdot \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Thus, the problem of verifying whether the given vectors are linearly independent is equivalent to solving the following homogeneous system of linear equations

$$\left(\begin{array}{ccc|c}
2 & 1 & 3 & 0 \\
3 & -1 & 2 & 0 \\
-5 & 1 & -2 & 0
\end{array}\right).$$

Note that the given vectors form the columns of the matrix. By solving the system, we verify that there is only the trivial solution a = b = c = 0 and the vectors are linearly independent.

(b) Similarly to (a), we form the corresponding system

$$\left(\begin{array}{ccc|c} 2 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 3 & 1 & 1 & 0 \end{array}\right).$$

The Gaussian elimination process gives

$$\left(\begin{array}{cc|cc} 2 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Thus, the system has also some non-trivial solutions and the vectors are linearly dependent. To exemplify the nontrivial solution, the parametric description of the solution set is $(-t, 2t, t)^T$ for a real parameter $t \in \mathbb{R}$. For a = -1, b = 2, and c = 1, we get

$$-1 \cdot \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix} + 2 \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + 1 \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Problem 5. Let u, v, w be linearly independent vectors in a vector space V over \mathbb{R} . Decide and **justify** whether the following sets of vectors are linearly independent

- (a) $\{u, u + v, u + w\},\$
- (b) $\{u-v, u-w, v-w\}.$

Solution:

(a) Similarly to the previous problem, we are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$o = au + b(u + v) + c(u + w) = (a + b + c)u + bv + cw.$$

Since u, v, w linearly independent, it must hold that a + b + c = 0, b = 0, and c = 0. Thus, also a = 0. We can conclude that the set $\{u, u + v, u + w\}$ is linearly independent.

(b) Analogously, we are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$o = a(u - v) + b(u - w) + c(v - w) = (a + b)u + (-a + c)v + (-b - c)w.$$

Thus, a+b=0, -a+c=0, and -b-c=0. By solving the corresponding system, we get a parametric description of the solution set as $(t, -t, t)^T$ for a real parameter $t \in \mathbb{R}$. Ve can conclude that the set $\{u-v, u-w, v-w\}$ is linearly dependent, and a non-trivial combination which is equal to the zero vector using can be obtained using for example the coefficients $(1, -1, 1)^T$.

Problem 6. Let V be a vector space over a field \mathbb{F} and $X \subseteq Y \subseteq V$. Decide and **justify** whether the following statements are true:

- (a) If X is linearly independent then Y is linearly dependent.
- (b) If X is linearly independent then Y is linearly independent.
- (c) If X is linearly dependent then Y is linearly dependent.
- (d) If Y is linearly independent then X is linearly independent.
- (e) If Y is linearly dependent then X is linearly dependent.

Solution:

The general "rule" is that linear independence is preserved "downwards" and linear dependence is preserved "upwards" w.r.t. inclusion.

- (a) False: $X = \{(1,0)^T\}$ and $Y = \{(1,0)^T, (0,1)^T\}$ are both linearly independent in \mathbb{R}^2 .
- (b) False: $X = \{(1,0)^T\}$ is linearly independent but $Y = \{(1,0)^T, (2,0)^T\}$ is linearly dependent in \mathbb{R}^2 .
- (c) True. Let $X = \{v_1, \ldots, v_\ell\}$ and $Y = \{v_1, \ldots, v_\ell, w_1, \ldots, w_k\}$ be two subsets of V. By the claim, X is linearly dependent and, thus, there exist $\alpha_1, \ldots, \alpha_\ell \in \mathbb{F}$ such that $(\alpha_1, \ldots, \alpha_\ell)^T \neq (0, \ldots, 0)^T$ and

$$\sum_{i \in [\ell]} \alpha_i x_i = o.$$

Let $\beta_{\ell+1}, \ldots, \beta_k = (0, \ldots, 0)$. It also holds that $(\alpha_1, \ldots, \alpha_\ell, \beta_1, \ldots, \beta_k) \neq (0, \ldots, 0)$ and

$$\sum_{i \in [\ell]} \alpha_i v_i + \sum_{j \in [k]} \beta_j w_j = o$$

is a non-trivial combination of vectors in Y equal to the zero vector o. Therefore, the set Y is also linearly dependent.

- (d) True. A variation of (c).
- (e) False: $Y = \{(1,0)^T, (2,0)^T\}$ is linearly dependent but $X = \{(1,0)^T\}$ is linearly independent in \mathbb{R}^2 .
- **Problem 7.** Decide and **justify** whether $\{(0,1,1,1)^T, (1,0,1,1)^T, (1,1,0,1)^T, (1,1,1,0)^T\}$ is linearly independent in \mathbb{R}^4 , respectively in \mathbb{Z}_3^4 .

Solution:

The problem can be solved similarly to Problem 4 while taking into account the underlying field (\mathbb{R} or \mathbb{Z}_3). The vectors are linearly independent in \mathbb{R}^4 and they are linearly dependent on \mathbb{Z}_3^4 . Thus, linear independence is not invariant w.r.t. the underlying field.

Problem 8. Let U, V be subspaces of a vector space W over \mathbb{F} . Prove that $U \cap V = \{o\}$ if and only if for all $x \in U + V$ there exists a unique choice of $u \in U, v \in V$ such that x = u + v.

Solution:

Suppose that there are two distinct ways to express x as

$$u_1 + v_1 = x = u_2 + v_2,$$

for some $u_1, u_2 \in U$ and $v_1, v_2 \in V$. The equality gives

$$u_1 - u_2 = v_2 - v_1.$$

Note that the vector $u_1 - u_2$ lies in the subspace U and the vector $v_2 - v_1$ lies in the subspace V.

Then v + v = x = 2v + o are two distinct ways of expressing a vector $x \in U + V$, a contradiction of the assumption of the statement. If $U \cap V\{o\}$ then $u_1 - u_2 = v_2 - v_1 = o$. And we get that $u_1 = u_2$ and $v_1 = v_2$, a contradiction to $u_1 + v_1$ and $u_2 + v_2$ being two distinct ways to express x.

To prove the other implication, suppose there exists a non-zero vector $v \in U \cap V$. Then v + v = x = 2v + o are two distinct ways of expressing a vector $x \in U + V$, a contradiction of the assumption of the statement.

- **Problem 9.** Decide and **justify** whether the following sets of vectors are linearly independent in the vector space of univariate real functions $\mathbb{R} \to \mathbb{R}$ (over \mathbb{R})
 - (a) $\{2x-1, x-2, 3x\},\$
 - (b) $\{x^2 + 2x + 3, x + 1, x 1\},\$
 - (c) $\{\sin x, \cos x\},\$
 - (d) $\{\sin(x+1), \sin(x+2), \sin(x+3)\},\$
 - (e) $\{\ln(x), \log_{10}(x), \log_2(x^2)\}.$

Solution:

(a) Denote f(x) = 2x - 1, g(x) = x - 2, and h(x) = 3x. We are looking for $a, b, c \in \mathbb{R}$ such that $a \cdot f(x) + b \cdot g(x) + c \cdot h(x) = 0$ for all $x \in \mathbb{R}$, i.e.,

$$a \cdot (2x-1) + b \cdot (x-2) + c \cdot 3x = (2a+b+3c) \cdot x + (-a-2b) = 0.$$

The equality holds for all $x \in \mathbb{R}$ if and only if

$$2a + b + 3c = 0$$
$$-a - 2b = 0.$$

A non-trivial solution of the system is for example $(-2,1,1)^T$. Thus, the functions are linearly dependent.

(b) Similarly, we are looking for $a, b, c \in \mathbb{R}$ such that

$$a \cdot (x^2 + 2x + 3) + b \cdot (x + 1) + c \cdot (x - 1) = a \cdot x^2 + (2a + b + c) \cdot x + (b - c) = 0.$$

This corresponds to the homogeneous system

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{array}\right),$$

which has only the trivial solution (0,0,0). Therefore, the functions are linearly independent.

- (c) We try to satisfy the equation $a \sin x + b \cos x = 0$. Note that for x = 0, we get b = 0 since $\sin 0 = 0$ and $\cos 0 = 1$. For $x = \frac{\pi}{2}$, we get a = 0 since $\sin \frac{\pi}{2}$ and $\cos \frac{\pi}{2} = 1$. Thus, the only coefficients which make the functions to sum up to the identically zero function (i.e., for all $x \in \mathbb{R}$) are a = 0 and b = 0 and the functions are linearly independent.
- (d) Standard identities for $\sin x$ give:

$$\sin(x+1) = \sin(x) \cdot \cos(1) + \cos(x) \cdot \sin(1),$$

$$\sin(x+2) = \sin(x) \cdot \cos(2) + \cos(x) \cdot \sin(2),$$

$$\sin(x+3) = \sin(x) \cdot \cos(3) + \cos(x) \cdot \sin(3).$$

When checking the linear independence of the functions, we get the equation:

$$0 = a \cdot \sin(x+1) + b \cdot \sin(x+2) + c \cdot \sin(x+3)$$

= $(a \cdot \cos(1) + b \cdot \cos(2) + c \cdot \cos(3)) \cdot \sin(x)$
+ $(a \cdot \sin(1) + b \cdot \sin(2) + c \cdot \sin(3)) \cdot \cos(x)$.

Since sin and cos are linearly independent, it must hold that

$$a\cos(1) + b\cos(2) + c\cos(3) = 0,$$

 $a\sin(1) + b\sin(2) + c\sin(3) = 0.$

We get a homogeneous system with two equations in three unknowns which must have a non-trivial solution. Thus, the functions are linearly dependent.

(e) We can use the following identities $\log_{10}(2x) = \frac{\ln x + \ln 2}{\ln 10}$ and $\log_2(x^2) = \frac{2 \ln x}{\ln 2}$. Thus, in the equation $a \cdot \ln(x) + b \cdot \log_{10}(2x) + c \cdot \log_2(x^2) = 0$, the first term and the last term are multiples of each other. For example $(a, b, c) = (-2, 0, \ln 2)$ is a non-trivial solution of the equation. Thus, the functions are linearly dependent.