NMAI057 - Linear algebra 1
 Tutorial 8
 Subspaces and linear independence

Date: November 24, 2021
TA: Denys Bulavka

Problem 1. Decide and justify for what parameters $a \in \mathbb{Z}_{7}$ is the set

$$
S_{a}=\left\{(x, y, z)^{T}: x+2 y-3 z=a\right\}
$$

a subspace of the vector space \mathbb{Z}_{7}^{3}.
What is the cardinality of this vector space?

Solution:

For S_{a} to be a subspace of \mathbb{Z}_{7}^{3}, it must contain the zero vector $(0,0,0)^{T}$. Thus, it must hold that $a=0+2 \cdot 0-3 \cdot 0=0$. We show that for $a=0$ it is a subspace. Note that it remains to decide whether the set S_{a} is closed under addition of vectors and multiplication by a scalar from \mathbb{Z}_{7}.

Multiplication by scalar: For all $(x, y, z) \in S_{0}$ and $\alpha \in \mathbb{Z}_{7}$, it holds that $\alpha x+2 \alpha y-3 \alpha z=\alpha(x+2 y-3 z)=\alpha \cdot 0=0$. Thus, $\alpha(x, y, z)=(\alpha x, \alpha y, \alpha z) \in$ S_{0}.

Addition of vectors: For all $(x, y, z) \in S_{0}$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S_{0}$, it follows by distributivity, commutativity and associativity of addition over \mathbb{Z}_{7} that $(x+$ $\left.x^{\prime}\right)+2\left(y+y^{\prime}\right)-3\left(z+z^{\prime}\right)=(x+2 y-3 z)+\left(x^{\prime}+2 y^{\prime}-3 z\right)=0+0=0$. Thus, $\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{0}$.

Finally, we compute the cardinality of S_{0}. For any choice of x and y, we get a z (i.e., $z=\frac{x+2 y}{3}=5 x+3 y$) satisfying $x+2 y-3 z=0$. There are 7 distinct choices of x and 7 distinct choices of y and, therefore, there are $7 \cdot 7=49$ elements of S_{0}.
To summarize, S_{a} is a subspace only for $a=0$ and in that case it has 49 elements.

Problem 2. Over \mathbb{Z}_{11}, find the intersection of the subspaces of \mathbb{Z}_{11}^{4} defined as 1) the solution set of the system $A x=0$ and 2) the span of the set of vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$, where

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
3 & 5 & 2 & 1
\end{array}\right), v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
2 \\
3 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
0 \\
9 \\
0
\end{array}\right) .
$$

Solution:

First, we solve the system

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
3 & 5 & 2 & 1
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 2 & 3 & 3 \\
0 & -1 & -7 & -5
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & -1 & -7 & -5
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & 10 \\
0 & 1 & 7 & 5
\end{array}\right) . \\
& \text { The solution set is }\left\{\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)+r \cdot\left(\begin{array}{l}
1 \\
6 \\
0 \\
1
\end{array}\right)+s \cdot\left(\begin{array}{l}
0 \\
4 \\
1 \\
0
\end{array}\right): r, s \in \mathbb{Z}_{11}\right\} .
\end{aligned}
$$

Our task is to find out which of the vectors in the solution set can be expressed as $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}$, where $a_{1}, a_{2}, a_{3} \in \mathbb{Z}_{11}$. Let's denote $w_{1}=\left(\begin{array}{l}1 \\ 6 \\ 0 \\ 1\end{array}\right)$ and $w_{2}=\left(\begin{array}{l}0 \\ 4 \\ 1 \\ 0\end{array}\right)$.
In other words, we need to solve $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=r w_{1}+s w_{2}$. Equivalently, $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+r\left(-w_{1}\right)+s\left(-w_{2}\right)=0$:

$$
\begin{aligned}
\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
2 & 2 & 0 & -6 & -4 \\
1 & 3 & -2 & 0 & -1 \\
1 & 1 & 0 & -1 & 0
\end{array}\right) & \sim\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 2 & -2 & -4 & -4 \\
0 & 3 & -3 & 1 & -1 \\
0 & 1 & -1 & 0 & 0
\end{array}\right)
\end{aligned} \begin{aligned}
1 & \sim\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & -2 & -2 \\
0 & 3 & -3 & 1 & -1 \\
0 & 1 & -1 & 0 & 0
\end{array}\right) \\
& \sim\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & -2 & -2 \\
0 & 0 & 0 & 7 & 6 \\
0 & 0 & 0 & 2 & 2
\end{array}\right)
\end{aligned} \sim\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 & 0 \\
0 & 1 & -1 & -2 & -2 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 2 & 2
\end{array}\right) .
$$

It follows that $r=0$ and $s=0$. Thus, the only vector in the intersection is $0 \cdot w_{1}+0 \cdot w_{2}$, i.e., the zero vector.

Problem 3. Decide and justify whether the set of all univariate polynomials with coefficients in \mathbb{Z}_{3} and degree lesser or equal to 10 is a vector space (w.r.t. the natural operations of addition of vectors and multiplication by scalar).
What is the cardinality of the set?

Solution:

True. Follows by a straightforward verification using the characterization of a vector space as a set which contains the zero vector and is closed under addition of vectors and multiplication by a scalar.
The cardinality of the set is 3^{11} (there are three possibilities for each coefficient for the eleven monomials $x^{10}, \ldots, x^{0}=1$).

Problem 4. Decide and justify whether the following vectors are linearly independent in \mathbb{R}^{3} :
(a) $(2,3,-5)^{T},(1,-1,1)^{T},(3,2,-2)^{T}$.
(b) $(2,0,3)^{T},(1,-1,1)^{T},(0,2,1)^{T}$.

Solution:

(a) We are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$
a \cdot\left(\begin{array}{c}
2 \\
3 \\
-5
\end{array}\right)+b \cdot\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)+c \cdot\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Thus, the problem of verifying whether the given vectors are linearly independent is equivalent to solving the following homogeneous system of linear equations

$$
\left(\begin{array}{rrr|r}
2 & 1 & 3 & 0 \\
3 & -1 & 2 & 0 \\
-5 & 1 & -2 & 0
\end{array}\right) .
$$

Note that the given vectors form the columns of the matrix. By solving the system, we verify that there is only the trivial solution $a=b=c=0$ and the vectors are linearly independent.
(b) Similarly to (a), we form the corresponding system

$$
\left(\begin{array}{rrr|r}
2 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 \\
3 & 1 & 1 & 0
\end{array}\right) .
$$

The Gaussian elimination process gives

$$
\left(\begin{array}{rrr|r}
2 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Thus, the system has also some non-trivial solutions and the vectors are linearly dependent. To exemplify the nontrivial solution, the parametric description of the solution set is $(-t, 2 t, t)^{T}$ for a real parameter $t \in \mathbb{R}$. For $a=-1, b=2$, and $c=1$, we get

$$
-1 \cdot\left(\begin{array}{l}
2 \\
0 \\
3
\end{array}\right)+2 \cdot\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)+1 \cdot\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Problem 5. Let u, v, w be linearly independent vectors in a vector space V over \mathbb{R}. Decide and justify whether the following sets of vectors are linearly independent
(a) $\{u, u+v, u+w\}$,
(b) $\{u-v, u-w, v-w\}$.

Solution:

(a) Similarly to the previous problem, we are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$
o=a u+b(u+v)+c(u+w)=(a+b+c) u+b v+c w .
$$

Since u, v, w linearly independent, it must hold that $a+b+c=0, b=0$, and $c=0$. Thus, also $a=0$. We can conclude that the set $\{u, u+v, u+w\}$ is linearly independent.
(b) Analogously, we are looking for coefficients $a, b, c \in \mathbb{R}$ such that

$$
o=a(u-v)+b(u-w)+c(v-w)=(a+b) u+(-a+c) v+(-b-c) w .
$$

Thus, $a+b=0,-a+c=0$, and $-b-c=0$. By solving the corresponding system, we get a parametric description of the solution set as $(t,-t, t)^{T}$ for a real parameter $t \in \mathbb{R}$. Ve can conclude that the set $\{u-v, u-w, v-w\}$ is linearly dependent, and a non-trivial combination which is equal to the zero vector using can be obtained using for example the coefficients $(1,-1,1)^{T}$.

Problem 6. Let V be a vector space over a field \mathbb{F} and $X \subseteq Y \subseteq V$. Decide and justify whether the following statements are true:
(a) If X is linearly independent then Y is linearly dependent.
(b) If X is linearly independent then Y is linearly independent.
(c) If X is linearly dependent then Y is linearly dependent.
(d) If Y is linearly independent then X is linearly independent.
(e) If Y is linearly dependent then X is linearly dependent.

Solution:

The general "rule" is that linear independence is preserved "downwards" and linear dependence is preserved "upwards" w.r.t. inclusion.
(a) False: $X=\left\{(1,0)^{T}\right\}$ and $Y=\left\{(1,0)^{T},(0,1)^{T}\right\}$ are both linearly independent in \mathbb{R}^{2}.
(b) False: $X=\left\{(1,0)^{T}\right\}$ is linearly independent but $Y=\left\{(1,0)^{T},(2,0)^{T}\right\}$ is linearly dependent in \mathbb{R}^{2}.
(c) True. Let $X=\left\{v_{1}, \ldots, v_{\ell}\right\}$ and $Y=\left\{v_{1}, \ldots, v_{\ell}, w_{1} \ldots, w_{k}\right\}$ be two subsets of V. By the claim, X is linearly dependent and, thus, there exist $\alpha_{1}, \ldots, \alpha_{\ell} \in \mathbb{F}$ such that $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)^{T} \neq(0, \ldots, 0)^{T}$ and

$$
\sum_{i \in[\ell]} \alpha_{i} x_{i}=o .
$$

Let $\beta_{\ell+1}, \ldots, \beta_{k}=(0, \ldots, 0)$. It also holds that $\left(\alpha_{1}, \ldots, \alpha_{\ell}, \beta_{1}, \ldots, \beta_{k}\right) \neq$ $(0, \ldots, 0)$ and

$$
\sum_{i \in[\ell]} \alpha_{i} v_{i}+\sum_{j \in[k]} \beta_{j} w_{j}=o
$$

is a non-trivial combination of vectors in Y equal to the zero vector o. Therefore, the set Y is also linearly dependent.
(d) True. A variation of (c).
(e) False: $Y=\left\{(1,0)^{T},(2,0)^{T}\right\}$ is linearly dependent but $X=\left\{(1,0)^{T}\right\}$ is linearly independent in \mathbb{R}^{2}.

Problem 7. Decide and justify whether $\left\{(0,1,1,1)^{T},(1,0,1,1)^{T},(1,1,0,1)^{T},(1,1,1,0)^{T}\right\}$ is linearly independent in \mathbb{R}^{4}, respectively in \mathbb{Z}_{3}^{4}.

Solution:

The problem can be solved similarly to Problem 4 while taking into account the underlying field (\mathbb{R} or \mathbb{Z}_{3}). The vectors are linearly independent in \mathbb{R}^{4} and they are linearly dependent on \mathbb{Z}_{3}^{4}. Thus, linear independence is not invariant w.r.t. the underlying field.

Problem 8. Let U, V be subspaces of a vector space W over \mathbb{F}. Prove that $U \cap V=\{o\}$ if and only if for all $x \in U+V$ there exists a unique choice of $u \in U, v \in V$ such that $x=u+v$.

Solution:

Suppose that there are two distinct ways to express x as

$$
u_{1}+v_{1}=x=u_{2}+v_{2},
$$

for some $u_{1}, u_{2} \in U$ and $v_{1}, v_{2} \in V$. The equality gives

$$
u_{1}-u_{2}=v_{2}-v_{1} .
$$

Note that the vector $u_{1}-u_{2}$ lies in the subspace U and the vector $v_{2}-v_{1}$ lies in the subspace V.
Then $v+v=x=2 v+o$ are two distinct ways of expressing a vector $x \in U+V$, a contradiction of the assumption of the statement. If $U \cap V\{o\}$ then $u_{1}-u_{2}=$ $v_{2}-v_{1}=o$. And we get that $u_{1}=u_{2}$ and $v_{1}=v_{2}$, a contradiction to $u_{1}+v_{1}$ and $u_{2}+v_{2}$ being two distinct ways to express x.
To prove the other implication, suppose there exists a non-zero vector $v \in U \cap V$. Then $v+v=x=2 v+o$ are two distinct ways of expressing a vector $x \in U+V$, a contradiction of the assumption of the statement.

Problem 9. Decide and justify whether the following sets of vectors are linearly independent in the vector space of univariate real functions $\mathbb{R} \rightarrow \mathbb{R}$ (over \mathbb{R})
(a) $\{2 x-1, x-2,3 x\}$,
(b) $\left\{x^{2}+2 x+3, x+1, x-1\right\}$,
(c) $\{\sin x, \cos x\}$,
(d) $\{\sin (x+1), \sin (x+2), \sin (x+3)\}$,
(e) $\left\{\ln (x), \log _{10}(x), \log _{2}\left(x^{2}\right)\right\}$.

Solution:

(a) Denote $f(x)=2 x-1, g(x)=x-2$, and $h(x)=3 x$. We are looking for $a, b, c \in \mathbb{R}$ such that $a \cdot f(x)+b \cdot g(x)+c \cdot h(x)=0$ for all $x \in \mathbb{R}$, i.e.,

$$
a \cdot(2 x-1)+b \cdot(x-2)+c \cdot 3 x=(2 a+b+3 c) \cdot x+(-a-2 b)=0 .
$$

The equality holds for all $x \in \mathbb{R}$ if and only if

$$
\begin{aligned}
2 a+b+3 c & =0 \\
-a-2 b & =0 .
\end{aligned}
$$

A non-trivial solution of the system is for example $(-2,1,1)^{T}$. Thus, the functions are linearly dependent.
(b) Similarly, we are looking for $a, b, c \in \mathbb{R}$ such that $a \cdot\left(x^{2}+2 x+3\right)+b \cdot(x+1)+c \cdot(x-1)=a \cdot x^{2}+(2 a+b+c) \cdot x+(b-c)=0$.
This corresponds to the homogeneous system

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right),
$$

which has only the trivial solution $(0,0,0)$. Therefore, the functions are linearly independent.
(c) We try to satisfy the equation $a \sin x+b \cos x=0$. Note that for $x=0$, we get $b=0$ since $\sin 0=0$ and $\cos 0=1$. For $x=\frac{\pi}{2}$, we get $a=0$ since $\sin \frac{\pi}{2}$ and $\cos \frac{\pi}{2}=1$. Thus, the only coefficients which make the functions to sum up to the identically zero function (i.e., for all $x \in \mathbb{R}$) are $a=0$ and $b=0$ and the functions are linearly independent.
(d) Standard identities for $\sin x$ give:

$$
\begin{aligned}
\sin (x+1) & =\sin (x) \cdot \cos (1)+\cos (x) \cdot \sin (1), \\
\sin (x+2) & =\sin (x) \cdot \cos (2)+\cos (x) \cdot \sin (2), \\
\sin (x+3) & =\sin (x) \cdot \cos (3)+\cos (x) \cdot \sin (3) .
\end{aligned}
$$

When checking the linear independence of the functions, we get the equation:

$$
\begin{aligned}
0= & a \cdot \sin (x+1)+b \cdot \sin (x+2)+c \cdot \sin (x+3) \\
= & (a \cdot \cos (1)+b \cdot \cos (2)+c \cdot \cos (3)) \cdot \sin (x) \\
& +(a \cdot \sin (1)+b \cdot \sin (2)+c \cdot \sin (3)) \cdot \cos (x) .
\end{aligned}
$$

Since sin and cos are linearly independent, it must hold that

$$
\begin{aligned}
a \cos (1)+b \cos (2)+c \cos (3) & =0 \\
a \sin (1)+b \sin (2)+c \sin (3) & =0
\end{aligned}
$$

We get a homogeneous system with two equations in three unknowns which must have a non-trivial solution. Thus, the functions are linearly dependent.
(e) We can use the following identities $\log _{10}(2 x)=\frac{\ln x+\ln 2}{\ln 10}$ and $\log _{2}\left(x^{2}\right)=\frac{2 \ln x}{\ln 2}$. Thus, in the equation $a \cdot \ln (x)+b \cdot \log _{10}(2 x)+c \cdot \log _{2}\left(x^{2}\right)=0$, the first term and the last term are multiples of each other. For example $(a, b, c)=(-2,0, \ln 2)$ is a non-trivial solution of the equation. Thus, the functions are linearly dependent.

