NMAI057 - Linear algebra 1
 Tutorial 8
 Subspaces and linear independence

Date: November 24, 2021
TA: Denys Bulavka

Problem 1. Decide and justify for what parameters $a \in \mathbb{Z}_{7}$ is the set

$$
S_{a}=\left\{(x, y, z)^{T}: x+2 y-3 z=a\right\}
$$

a subspace of the vector space \mathbb{Z}_{7}^{3}.
What is the cardinality of this vector space?
Problem 2. Over \mathbb{Z}_{11}, find the intersection of the subspaces of \mathbb{Z}_{11}^{4} defined as 1) the solution set of the system $A x=0$ and 2) the span of the set of vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$, where

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
3 & 5 & 2 & 1
\end{array}\right), v_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
2 \\
3 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
1 \\
0 \\
9 \\
0
\end{array}\right) .
$$

Problem 3. Decide and justify whether the set of all univariate polynomials with coefficients in \mathbb{Z}_{3} and degree lesser or equal to 10 is a vector space (w.r.t. the natural operations of addition of vectors and multiplication by scalar).

What is the cardinality of the set?
Problem 4. Decide and justify whether the following vectors are linearly independent in \mathbb{R}^{3} :
(a) $(2,3,-5)^{T},(1,-1,1)^{T},(3,2,-2)^{T}$.
(b) $(2,0,3)^{T},(1,-1,1)^{T},(0,2,1)^{T}$.

Problem 5. Let u, v, w be linearly independent vectors in a vector space V over \mathbb{R}. Decide and justify whether the following sets of vectors are linearly independent
(a) $\{u, u+v, u+w\}$,
(b) $\{u-v, u-w, v-w\}$.

Problem 6. Let V be a vector space over a field \mathbb{F} and $X \subseteq Y \subseteq V$. Decide and justify whether the following statements are true:
(a) If X is linearly independent then Y is linearly dependent.
(b) If X is linearly independent then Y is linearly independent.
(c) If X is linearly dependent then Y is linearly dependent.
(d) If Y is linearly independent then X is linearly independent.
(e) If Y is linearly dependent then X is linearly dependent.

Problem 7. Decide and justify whether $\left\{(0,1,1,1)^{T},(1,0,1,1)^{T},(1,1,0,1)^{T},(1,1,1,0)^{T}\right\}$ is linearly independent in \mathbb{R}^{4}, respectively in \mathbb{Z}_{3}^{4}.

Problem 8. Let U, V be subspaces of a vector space W over \mathbb{F}. Prove that $U \cap V=\{o\}$ if and only if for all $x \in U+V$ there exists a unique choice of $u \in U, v \in V$ such that $x=u+v$.

Problem 9. Decide and justify whether the following sets of vectors are linearly independent in the vector space of univariate real functions $\mathbb{R} \rightarrow \mathbb{R}$ (over \mathbb{R})
(a) $\{2 x-1, x-2,3 x\}$,
(b) $\left\{x^{2}+2 x+3, x+1, x-1\right\}$,
(c) $\{\sin x, \cos x\}$,
(d) $\{\sin (x+1), \sin (x+2), \sin (x+3)\}$,
(e) $\left\{\ln (x), \log _{10}(x), \log _{2}\left(x^{2}\right)\right\}$.

