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THE JOURNAL OF PHILOSOPHY 
VOLUME LXXII, NO. i6, SEPTEMBER I8, 1975 

4.- _*4 _ j, 

ON SECOND-ORDER LOGIC * J SHALL discuss some of the relations between second-order 
logic, first-order logic, and set theory. I am interested in two 
quasi-terminological questions, viz., the extent to which second- 

order logic is (or is to be counted as) logic, and the extent to which 
it is set theory. It is of little significance whether second-order logic 
may bear the (honorific) label 'logic' or must bear 'set theory'. What 
matter, of course, are the reasons that can be given on either side. 
It seems to be commonly supposed that the arguments of Quine and 
others for not regarding second- (and higher-) order logic as logic 
are decisive, and it is against this view that I want to argue here. I 
shall be concerned mainly with Quine's critique of second-order 
logic and with some of the reasons that can be offered in support of 
applying neither, one, or both of the terms 'logic' and 'set theory' 
to second-order logic.' 

The first of Quine's animadversions upon second-order logic that 
I shall discuss is to be found in the section of his Philosophy of Logic' 
called "Set Theory in Sheep's Clothing." Much of this section is 
devoted to dispelling two confusions which we can easily agree with 

* I am grateful to Richard Cartwright, Oswaldo Chateaubriand, Fred Katz, 
and James Thomson for helpful criticism. 

I My motive in taking up this issue is that there is a way of associating a truth 
of second-order logic with each truth of arithmetic; this association can plausibly 
be regarded as a "reduction" of arithmetic to set theory. [It is described in 
Chapter 18 of Computability and Logic by Richard Jeffrey and myself (New York: 
Cambridge, 1974).] I am inclined to think that the existence of this association 
is the heart of the best case that can be made for logicism and that unless second- 
order logic has some claim to be regarded as logic, logicism must be considered to 
have failed totally. I see the reasons offered in this paper on behalf of this claim 
as part of a partial vindication of the logicist thesis. I don't believe we yet have 
an assessment that is as just as it could be of the extent to which Frege, 
Dedekind, and Russell succeeded in showing logic to be the ground of mathe- 
matical truth. 

2 Englewood Cliffs, N. J.: Prentice-Hall, 1970; parenthetical page references to 
Quine are to this book. 
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510 THE JOURNAL OF PHILOSOPHY 

Quine in deploring: that of supposing that '(3 F)' and '(F)' say that 
some (all) predicates (i.e., predicate-expressions) are thus and so, 
and that of supposing that quantification over attributes has rele- 
vant ontological advantages over quantification over sets. What I 
wish to dispute is his assertion that the use of predicate letters as 
quantifiable variables is to be deplored, even when the values of 
those variables are sets, on the ground that predicates are not names 
of their extensions. Quine writes, "Predicates have attributes as 
their 'intensions' or meanings (or would if there were attributes) 
and they have sets as their extensions; but they are names of 
neither. Variables eligible for quantification therefore do not belong 
in predicate positions. They belong in name positions" (67). 

Let us grant that predicates are not names. Why must we then 
suppose, as the "therefore" in Quine's sentence would indicate we 
must, that variables eligible for quantification do not belong in 
predicate positions? Quine earlier (66/7) gives this argument: 

Consider first some ordinary quantifications: '(3 x) (x walks)', 
'(x) (x walks)', '(3 x) (x is prime)'. The open sentence after the quanti- 
fier shows 'x' in a position where a name could stand; a name of a 
walker, for instance, or of a prime number. The quantifications do 
not mean that names walk or are prime; what are said to walk or to 
be prime are things that couIld be named by names in those positions. 
To put the predicate letter 'F' in a quantifier, then, is to treat predi- 
cate positions suddenly as name positions, and hence to treat predi- 
cates as names of entities of some sort. The quantifier '(3 F)' or '(F)' 
says not that some or all predicates are thus and so, but that some or 
all entities of the sort named by predicates are thus and so. 

If Quine had argued: 

Consider some extraordinary quantifications: '(3 F) (Aristotle F)', 
'(F) (Aristotle F)', '(3 F)(17 F)'. The open sentence after the quan- 
tifier shows 'F' in a position where a predicate could stand; a predi- 
cate with an extension in which Aristotle, for instance, or 17 might 
be. The quantifications do not mean that Aristotle or 17 are in predi- 
cates; what Aristotle or 17 are said to be in are things that could be 
had by predicates in those positions. To put the variable 'x' in a 
quantifier, then, is to treat name positions suddenly as predicate 
positions, and hence to treat names as predicates with extensions of 
some sort. The quantifier '(3x)' or '(x)' says not that some or all 
names are thus and so, but that some or all extensions of the sort 
had by names are thus and so. 

we should have wanted to say that the last two statements were 
false and did not follow from what preceded them. It seems to me 
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ON SECOND-ORDER LOGIC 511 

that the same ought to be said about the argument Quine actually 
gives. 

To put 'F' in a quantifier may be to treat 'F' as having a range, 
but it need not be to treat predicate positions as name positions nor 
to treat predicates as names of entities of any sort. Quine seems to 
suppose that because a variable of the more ordinary sort, an indi- 
vidual variable, always occurs in positions where a name but not a 
predicate could occur, the same must hold for every sort of variable. 
We may grant that the ordinary quantifications mean what Quine 
says they mean. But we are not thereby committed to any para- 
phrase containing 'name' (or any of its cognates) that purports to 
give the meaning of our extraordinary quantifications. Perhaps 
someone might suppose that variables must always name the objects 
in their range, albeit only "indefinitely" or "temporarily." However, 
we have no reason not to think that there might be a sort of variable, 
a predicate variable, that ranges over the objects in its range (these 
will be extensions) but does not name them "indefinitely" or any 
other way; rather, predicate variables will have them "indefinitely," 
as (constant) predicates have their extensions "definitely." Such 
variables would not be names of any sort, not even "indefinite" ones, 
but would have a range containing those objects (extensions) which 
could be had by predicates in predicate positions. 

It may be that a suggestion is lurking that an adequate referential 
account of the truth conditions of sentences cannot be given unless 
it is supposed that all variables act as names that (indefinitely) 
name the objects in their range. But this is not the case. Although 
variables must have a range containing suitable objects, it need not 
be that variables of every sort indefinitely name the objects in their 
ranges. '(3F)' does not have to be taken as saying that some entities 
of the sort named by predicates are thus and so; it can be taken to 
say that some of the entities (extensions) had by predicates contain 
thus and such. So some variables eligible for quantification might 
well belong in predicate positions and not in name positions. And 
taking 'Fx' to be true if and only if that which 'x' names is in the 
extension of 'F' in no way commits us to supposing that 'F' names 
anything at all. 

In the same section of Philosophy of Logic Quine has some advice 
for the logician who wants to admit sets as values of quantifiable 
variables and also wants distinctive variables for sets. The logician 
should not, Quine says, write 'Fx' and thereupon quantify on 'F', 
but should instead write 'x e a' and then, if he wishes, quantify on 
'a'. The advantage of the new notation is thought to be its greater 
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512 THE JOURNAL OF PHILOSOPHY 

explicitness about the set-theoretic presuppositions of second-order 
logic. There is an important distinction between first- and second- 
order logic with regard to those presuppositions, which may be part 
of the reason Quine insists on regarding 'F', 'G', etc. in first-order 
formulas as schematic letters and not quantifiable variables. In 
order to give a theory of truth for a first-order language which is 
materially adequate (in Tarski's sense) and in which such laws of 
truth as "The existential quantification of a true sentence is true" 
can be proved, it is not necessary to assume that the predicates of 
the language have extensions, although it does appear to be neces- 
sary to make this assumption in order to give such a theory for a 
second-order language. 

There are reasons for not taking Quine's advice, however. One is 
that the notation Quine recommends abandoning represents certain 
aspects of logical form in a most striking way.3 Another, and more 
important, reason is that the usual conventions about the use of 
special variables like 'a' guarantee that rewriting second-order 
formulas in Quine's way can result in the loss of validity or implica- 
tion. For example, '3FVx Fx' is valid, but '3o Vx x e a' is not; and 
'x = z' is implied by 'VY(Yx -> Yz)' but not by 'Va(x e a - e a)'. 

Quine disparages second-order logic in two further ways: reading 
him, one gets the sense of a culpable involvement with Russell's 
paradox and of a lack of forthrightness about its existential com- 
mitments. "This hypothesis itself viz., '(3y) (x) (x E y _ Fx)' falls 
dangerously out of sight in the so-called higher-order predicate 
calculus. It becomes '(3G) (x) (Gx E_ Fx)', and thus evidently follows 
from the genuinely logical triviality '(x) (Fx _ Fx)' by an elementary 
logical inference. Set theory's staggering existential assumptions are 
cunningly hidden now in the tacit shift from schematic predicate 
letter to quantifiable set variable" (68). Quine, of course, does not 
assert that higher-order predicate calculi are inconisistent. But even 
if they are consistent,4 the validity of '3X Vxx(Xx *-+ x E x)', which 
certainly looks contradictory, would at any rate seem to demonstrate 

8 For instance, writing out the definition of the ancestral aR*b in this notation: 
VF(Vx (aRx -- Fx) & Vx Vy (Fx & xRy -B Fy) --> Fb) 

shows it to be obtained from an ordinary first-order formula by prefixing a 
universal quantifier, and suggests an interesting question: Is there an existential 
quantification of a first-order formula that is a satisfactory definition of the 
ancestral? (The answer is no.) 

4 Gentzen showed that the problem of their consistency had a very easy positive 
solution. See "Die Widerspruchsfreiheit der Stufenlogik," Mathematische Zeit- 
schrift, XLI, 3 (1936): 357-366. An English translation, "The Consistency of the 
Simple Theory of Types," is contained in M. E. Szabo, ed., The Collected Papers 
of Gerhard Gentzen (Amsterdam: North-Holland, 1969). 
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ON SECOND-ORDER LOGIC 513 

that their existence assumptions must be regarded as "vast." A 
problem now arises: although '3X 3x Xx' and '3X Vx Xx' are also 
valid, '3X Bx 3y(Xx & Xy & x $ y)' is not valid; it would thus 
seem that, despite its affinities with set theory and its vast commit- 
ments, second-order logic is not committed to the existence of even 
a two-membered set. Both of these difficulties, it seems to me, can 
be resolved by examining the notion of validity in second-order 
logic. This examination seems to show a certain surprising weakness 
in second-order logic. 

When is a sentence valid in second-order logic? When it is true 
under all its interpretations. When does it follow from others? When 
it is true under all its interpretations under which all the others are 
true. What, then, is an interpretation of a second-order sentence? 
If we are considering "standard" second-order logic in which second- 
order quantifiers are regarded as ranging over all subsets of, or rela- 
tions on, the range of the first-order quantifiers,5 we may answer: 
exactly the same sort of thing an interpretation of a first-order 
sentence is, viz., an ordered pair of a non-empty set D and an 
assignment of a function to each nonlogical constant in the sentence. 
The domain of the function is the set of all n-tuples of members of D 
if the constant is of degree n, and the range is a subset of D if the 
constant is a function constant and a subset of fT, F} if it is a 
predicate constant. [Names (sentence letters) are function (predi- 
cate) constants of degree 0; functions from the set of all 0-tuples of 
members of D into an arbitrary set E are of course members of E.] 
We need not explicitly mention separate ranges for the second-order 
variables that may occur in the sentence. An existentially quantified 
sentence 3]a F(a) is then true under an interpretation I just in case 
F(3) is true under some interpretation J that differs from I (if at all) 
only in what it assigns to the constant 3, which is presumed not to 
occur in 3a F(a) and presumed to be of the same logical type6 as 
the variable a. The other clauses in the definition of truth in an 
interpretation are exactly as you would suppose them to be. Notice 
that in this account no mention is made of what sort (individual, 
sentential, function, or predicate) of variable a is; a may be any 
sort of variable at all. Notice also that, if only individual variables 
are allowed, the account is just a paraphrase of one standard 
definition of truth in an interpretation. The definition changes 
neither the conditions under which a first-order sentence is true in 
an interpretation nor the account of what an interpretation is, but 

6 Only "standard" or "full" second-order logic is considered in this paper. 
" Two symbols are of the same logical type if they are of the same degree and 

are either both predicate symbols or both function symbols. 
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merely extends in the obvious way the account given in (say) 
Mates's Elementary Logic7 or Jeffrey's Formal Logic8 to cover the 
new sorts of quantified sentences that arise in second-order logic. 
Quine has stressed the discontinuities between first- and second- 
order logic so emphatically and for so long that the obvious and 
striking continuities may be forgotten. In Mates's book, for example, 
nineteen laws of validity are stated, of which all but one (the com- 
pactness theorem) hold for second-order logic. Thus there is a 
standard account of the concepts of validity and consequence for 
for first-order sentences, and there is an obvious, straightforward, 
non-ad hoc way of extending that account to second-order 
sentences.9 

We can now see what is shown by the validity of 

3X Vx(Xx -* xe x) . 

First of all, the sentence is valid: given any I, we can always find a 
suitable J in which 'Vx(Bx <-* x e x)' is true by assigning to 'B' the 
set of all objects in the domain of I that do not bear to themselves 
the relation that I assigns to 'e'. Since the domain of I is a set, one 
of the axioms of set theory (an Aussonderungsaxiom) guarantees that 
there will always be such a subset of the domain. But without a 
guarantee that there is a set of all sets, we cannot conclude from the 
validity of '3X Vx(Xx *-+ - x e x)' that there is a set of all non-self- 
membered sets. And we have guarantees galore that there is no set 
of all sets. We do, of course, land in trouble if we suppose that 'x' 
ranges over all sets, that 'X' ranges over all sets of objects over 
which 'x' ranges, and that 'e' has its usual meaning; for then 
'3X Vx(Xx -- -~ x e x)' would be false. But that it would then be 
false does not show it to be invalid; for there is no interpretation 
whose domain contains all sets. 

Our difficulty is thus circumvented, but at some cost. We must 
insist that we mean what we say when we say that a second-order 
sentence is valid if true under all its interpretations, and that an 
interpretation is an ordered pair of a set and an assignment of 
functions to constants. 

There is thus a limitation on the use of second-order logic to which 
first-order logic is not subject. Examples such as '3X Vx (Xx -*- x Ex).' 

7 2d ed., New York: Oxford, 1972. 
S New York: McGraw-Hill, 1967. 
9 In Part IV of Methods of Logic, 3d ed. (New York: Holt, Rinehart & Winston, 

1972), Quine extends the notion of validity to first-order sentences with identity 
and discusses higher-order logic at length, but does not describe the extension of 
the notion of validity to second-order logic. 
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ON SECOND-ODER LOGIC 515 

and '3X Vx Xx', both valid, seem to show that it is impermissible 
to use the notation of second-order logic in the formalization of dis- 
course about certain sorts of objects, such as sets or ordinals, in case 
there is no set to which all the objects of that sort belong. This 
restriction does not apply, as it appears, to first-order logic: ZF 
(Zermelo-Fraenkel set theory) is couched in the notation of first- 
order logic, and the quantifiers in the sentences expressing the 
theorems of the theory are presumed to range over all sets, even 
though (if ZF is right) there is no set to which all sets belong. In the 
case of '3X Vx Xx', we cannot assume, for example, that the quan- 
tifier 'Vx' ranges over all ordinals, for then '3X Vx Xx' would be 
true iff there were a set to which all ordinals belong, and there is no 
such set. Nor can we assume that it ranges over all the sets that 
there are, for it would then be true iff there were a set of all sets. 
Thus if we wish (as we do) to maintain that both sentences are true 
(because valid) and also wish to preserve the standard account of 
the conditions under which sentences are true, we cannot suppose 
that all sets belong to the range of 'Vx' in either, or that all ordinals 
belong to the range of 'Vx' in '3X Vx Xx'. There is of course a step 
from supposing that the quantifier 'Vx' in '3X Vx Xx' may not be 
assumed to range over all sets to supposing that all members of the 
range of first-order quantifiers in second-order sentences used to 
formalize a certain discourse must be contained in some one set 
(which depends upon the discourse), and there might be ways of not 
taking it. But all the difficulties do appear to have the same source, 
and seem to point to the impermissibility of second-order discourse 
about all sets, all ordinals, etc. 

(We have been assuming all along that ZF is correct and that sets 
are the only "set-like" objects there are, the only objects to which 
membership is borne. If, however, as certain extensions of ZF assert, 
there are also certain classes, which are not sets, but which sets may 
be members of, then of course we are free to interpret '3X Vx Xx' as 
saying that there is a class to which all sets belong and thus to 
suppose that 'Vx' ranges over all sets in '3XVxXx'. But even if 
classes do exist, there is again a distinction between first- and second- 
order notation that is significantly like the distinction just described: 
we may use the former but not the latter to discuss all members of 
the counterdomain (the right field) of 'e'. One of the lessons of 
Russell's paradox is that if we read 'Xx' as '(OBJECT) X bears R to 
(object) x', then the range of first-order quantifiers in second- but 
not first-order sentences may not contain all OBJECTS.) 
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There is a similar, but less significant, restriction on the use of the 
notation of first-order logic. One who uses it to formalize some dis- 
course is committed (in the absence of special announcements to 
the contrary) to the non-emptiness of the ontology of the discourse 
and also to the presence in the ontology of references of any names 
that occur in the formalization. The use of names in formalization 
can be avoided, however, as Quine has pointed out, and various 
formulations of first-order logic exist in which the empty domain is 
permitted. But there is a striking difference between the commit- 
ment to non-emptiness of an ontology and the commitment to set- 
hood: we believe that our own ontology is non-empty, but not that 
it forms a set! The contradictions appear, therefore, to teach us not 
that second-order logic may be inconsistent (as Quine perhaps 
intimates), but that it seems impossible that any "universal charac- 
teristic" should be couched in the notation of second-order logic. 

What now of the existence assumptions of second- and higher- 
order logic, which Quine calls both "vast" and "staggering"? Set 
theory (ZF) certainly makes staggering existence claims, such as 
that there is an infinite cardinal number K that is the Kth infinite 
cardinal number (and hence that there is a set with that many 
members). Quine maintains that higher-order logic involves "out- 
right assumption of sets the way [set theory] does."10 Of course 
there are differences between set theory and higher-order logic: all 
set theories agree that there is a set containing at least two objects, 
but, as noted, '3X 3x 3y(Xx & Xy & x 6 y)' is not valid, for it is 
false in all one-membered interpretations. Let us try to see what 
the ways are in which second-order logic involves assuming the 
existence of sets. 

First of all, "in second-order logic one quantifies over sets." There 
are certain (second-order) sentences of any given language that will 
be classified by second-order logic as logical truths (i.e., as valid), 
even though they assert, under any interpretation of the language 
whose domain forms a set, the existence of certain sorts of subsets 
of the domain. (The sort depends upon the interpretation.) 
'3X Vx(Xx - -x e x)' and '3X Vx(Xx *-x = x)' are two examples. 
Thus, unless there exist sets of the right sorts, these sentences will 
be false under certain interpretations. 

Now one may be of the opinion that no sentence ought to be 
considered as a truth of logic if, no matter how it is interpreted, it 
asserts that there are sets of certain sorts. Similarly, one might hold 
that the truth of '3f Vx Rf (x)x' ought not to follow from that of 

10 Set Theory and Its Logic, 2d ed. (Cambridge, Mass.: Harvard, 1969), p. 258. 
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'Vx 3y Ryx' (even if the axiom of choice is true), or one might think 
that it is not as a matter of logic that there is a set with certain 
closure properties if Smith is not an ancestor of Jones (i.e., not a 
parent, not a grandparent, etc.). 

The view that logic is "topic-neutral" is often adduced in support 
of this opinion: the idea is that the special sciences, such as astron- 
omy, field theory, or set theory, have their own special subject 
matters, such as heavenly bodies, fields, or sets, but that logic is not 
about any sort of thing in particular, and, therefore, that it is no 
more in the province of logic to make assertions to the effect that sets 
of such-and-such sorts exist than to make claims about the existence 
of various types of planet. The subject matter of a particular science, 
what the science is about, is supposed to be determined by the range 
of the quantifiers in statements that formulate the assertions of the 
science; logic, however, is not supposed to have any special subject 
matter: there is neither any sort of thing that may not be quantified 
over, nor any sort that must be quantified over. 

I know of no perfectly effective reply to this view. But, in the 
first place, one should perhaps be suspicious of the identification of 
subject matter and range. (Is elementary arithmetic really not about 
addition, but only about numbers?) And then it might be said that 
logic is not so "topic-neutral" as it is often made out to be: it can 
easily be said to be about the notions of negation, conjunction, 
identity, and the notions expressed by 'all' and 'some', among others 
(even though these notions are almost never quantified over). In the 
second place, unlike planet or field, the notions of set, class, property, 
concept, and relation, etc. have often been considered to be distinc- 
tively logical notions, probably for some such very simple reason as 
that anything whatsoever may belong to a set, have a property, or 
bear a relation. That some set- or relation-existence assertions are 
counted as logical truths in second- or higher-order systems does not, 
it seems to me, suffice to disqualify them as systems of logic, as a 
system would be disqualified if it classified as a truth of logic the 
existence of a planet with at least two satellites. Part 3 of the 
Begriffsschrift, for example, where the definition of the ancestral was 
first given, is as much a part of a treatise on logic as are the first two 
parts; the first occurrence of a second-order quantifier in the 
Begriffsschrijft no more disqualifies it from that point on as a work 
on logic than does the earlier use of the identity sign or the negation 
sign. PoincarW's wisecrack, "La logique n'est plus sterile. Elle 
engendre la contradiction," was cruel, perhaps, but not unfair. And 
many of us first learned about the ancestral and other matters from 
a work not unreasonably entitled Mathematical Logic. 
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Another way in which second- but not first-order logic involves 
existential and other sorts of set-theoretic assumptions is this: via 
Godelization and because of the completeness theorem, elementary 
arithmetic ("Z") is a suitable background theory for the develop- 
ment of a significant theory of validity of first-order formulas. A 
notion of "validity," coextensive with the usual one (truth of the 
universal closure in all interpretations), can be defined in the 
language of Z via Godelization, and the validity of each valid formula 
(and no others) can then be proved in the theory, as can many 
general laws of validity. Moreover, the invalidity of many invalid 
sentences can also be demonstrated. In contrast, not only is there no 
hope of proving the validity of each valid second-order sentence in 
elementary arithmetic, the notion of second-order validity cannot 
even be defined in the language of second-order arithmetic. We can 
effectively associate with each first-order sentence a statement of 
arithmetic of a particularly simple form that is true if and only if 
the first-order sentence is valid, but no such association is even 
remotely possible for second-order sentences.1" Worse, for many 
highly problematical statements of set theory (such as the con- 
tinuum hypothesis) there exist second-order sentences that are 
valid if and only if those statements are true. Thus the metatheory 
of second-order logic is hopelessly set-theoretic, and the notion of 
second-order validity possesses many if not all of the epistemic 
debilities of the notion of set-theoretic truth. 

On the other hand, although it is not hard to have some sympathy 
for the view that no notion of validity should be so extravagantly 
distant from the notion of proof, we should not forget that validity 
of a first-order sentence is just truth in all its interpretations. (The 
equation of first-order validity with provability effected by the 
completeness theorem would be miraculous if it weren't so familiar.) 
And, as we shall see below, there are notions of (first-order) logical 
theory which, unlike validity, can be adequately treated of only in 
a background theory that is stronger than elementary arithmetic. 

While comparing set theory and secoind-order logic, we ought to 
remark in passing that the definability in set theory of the notion of 
second-order validity at once guarantees both the nonexistence of a 
reduction of the notion of set-theoretical truth to that of second- 
order validity and the existence of a reduction in the opposite direc- 
tion: no effective-indeed no set-theoretically definable function 
that assigns formulas of second-order logic to sentences of set theory 

1' There is a precise sense in which the set of valid second-order sentences is 
staggeringly undecidable: it is not definable in nth-order arithmetic, for any n. 
Its "Lowenheim number" is also staggeringly high. 

This content downloaded from 132.174.254.159 on Wed, 27 May 2015 08:37:43 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ON SECOND-ORDER LOGIC 5I9 

assigns second-order logical truths to all and only the truths of set 
theory (otherwise set-theoretical truth would be set-theoretically 
definable). However, the function that assigns to each formula of 
second-order logic the sentence of set theory that asserts that the 
formula is a second-order logical truth reduces second-order validity 
to set-theoretical truth. Thus each of the notions in the series (first- 
order validity; first-order arithmetical truth, second-order arith- 
metical truth, second-order validity, set-theoretical truth) can 
always be reduced via effective functions to later ones but never to 
earlier ones; the notions are thus in order of increasing strength of 
one certain sort. 

Quine writes (66) that "the logic capable of encompassing Ethe 
reduction of mathematics to logic] was logic inclusive of set theory." 
If second-order logic is "inclusive of set theory," it would seem to 
have to count as valid some nontrivial theorems of set theory, and 
if, among those counted as valid, there were some to the effect that 
certain kinds of set existed, second-order logic might seem to involve 
excessive ontological commitments in yet another way. And it may 
easily seem that second-order logic involves such commitments. 
For IXVx - Xx' and '3XVy(Xy -+yCx)' are both valid and 
might be thought to assert that the null and power sets exist, just 
as all set theories say. 

It seems, however, that there is a serious difficulty in supposing 
that any second-order sentence asserts, for example, that there is a 
set with no members; it seems that no second-order sentence 
asserts the same thing as any theorem of set theory, and hence that 
not even the smallest fragment of set theory is, in this sense, included 
in second-order logic. 

Consider the question "What does 'Vx x = x' assert?" One may 
answer, "Why, that everything is identical with itself." But if one 
answers thus, one must realize that one's answer has a determinate 
sense only if the reference (range) of 'everything' is fixed. A more 
cautious answer might be "Why, that everything in the domain 
(whatever the domain may be) is identical with itself." If the 
natural numbers are in question 'Vx 3y y < x' is false; if the rationals, 
true. (It seems to me that the ordinary Peano-Russell notation is 
less than ideal in not representing in a sufficiently vivid way the 
partial dependence of truth-value upon domain. In some ways it 
would be nicer if each quantifier were required to wear a subscript 
that indicated its range. It seems that the design of standard 
notation is influenced by the archaic view that logic is about some 
one fixed domain of objects or individuals, and that a logical truth is 
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a sentence that is true no matter what relations on that domain are 
assigned to the predicate letters in the sentence.) 

Thus the correct answer to the question, "What does '3X Vx Xx' 
assert?" would seem to be something like "That depends upon what 
the domain is supposed to be (and also upon how that domain is 
'given' or 'described'). But, whatever the domain may be, 
'3X Vx - Xx' will assert that there is a subset of the domain to 
which none of its members belong." 

It should now appear that no valid second-order sentence can 
assert the same thing as any theorem of set theory. For a second- 
order sentence, whether valid or not, asserts something only with 
respect to an interpretation, whose domain may not be taken to 
contain all sets. But if the sentence were to assert what any par- 
ticular set-theoretic statement asserts, its domain, it would seem, 
would have to contain all sets. '3X Vx Xx' is valid, but does not 
assert that there is a universal set, which, if ZF is correct, is false; 
rather, it asserts that there is a subset of the domain (whichever set 
that may be) to which everything in the domain belongs. The 
quantifiers in the first-order sentences that express the assertions 
of ZF range over objects that do not together constitute a set. We 
have argued that the ranges of the variables in second-order sen- 
tences must be sets. If so, it is hard to see how any second-order 
sentence could express or assert what any theorem of ZF does, or 
that second-order logic counts as valid some significant theorems of 
set theory. 

There is a clear sense, however, in which second-order logic can 
at least be said to be committed to the assertion that an empty set 
exists. For since the empty set is a subset of the domain of every 
interpretation whatsoever and is the only set to which no members 
of any domain belong, '3X Vx Xx' may be taken to assert the 
existence of the empty set independently of any interpretation, and 
second-order logic may thus be regarded as committed to its 
existence too. Moreover, higher- and higher-order logics will be 
committed in the same way to more and more sets.'2 In the case of 
second-order logic, though, the commitment is exceedingly modest; 
the null set is the only set to whose existence second-order logic can 
be said to be committed. 

One sense, already noted, in which the use of second- but not 
first-order logic commits one to the existence of sets in this: If L1 is 
the first-order fragment of an interpreted second-order language L2 
whose domain D contains no sets, then there are many logical 

a I owe this point to Oswaldo Chateaubriand. 
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truths of L1 that claim the existence of objects in D with certain 
properties, but there are none that claim the existence of subsets 
of D; however, among the logical truths of L2 there are many such: 
for each predicate of L2 with one free individual variable, there is a 
logical truth of L2 that asserts the existence of a subset of D that is 
the extension of the predicate. 

We have already seen definitions of validity and consequence for 
second-order sentences which bring out the obvious continuity of 
second- with first-order logic: validity and consequences are, as 
always, truth in all appropriate interpretations; the definition of 
an interpretation remains unchanged, as does the account of the 
conditions under which a first-order sentence is true in an inter- 
pretation. The account needs only to be supplemented with new 
clauses for the new sorts of sentence that arise in second-order logic. 
The supplementation may be given in separate clauses for each new 
sort of quantifier, which will be perfectly analogous to those for 
individual quantifiers. It may also be given in a general account of 
the conditions under which a sentence beginning with a quantifier 
is true in an interpretation, which applies uniformly to all sorts of 
quantifier, and of which the clauses for sentences beginning with 
individual quantifiers are special cases. The existence of such a 
definition provides a strong reason for reckoning second-order logic 
as logic. We come now to a second virtue of second-order logic, the 
well-known superiority of its "expressive" capacity. 

If we conjoin the first two "Peano postulates," replace constants 
by variables, and existentially close, we obtain 

3z 3S(Vx z # S(x) & Vx VY(S(X) = S(y) -+ x = y)) 

a sentence true in just those interpretations whose domains are 
(Dedekind) infinite. If we do the same for the induction postulate, 
we obtain 

3z 3S Vx(Xz & Vx(Xx -XS(x)) - Vx Xx) 

which is true in just those interpretations with countable domains. 
Thus the notions of infinity and countability can be characterized 
(or "expressed") by second-order sentences, though not by first- 
order sentences (as the compactness and Skolem-L6wenheim 
theorems show). Although first-order logic's expressive capacity is 
occasionally quite surprising, there are many interesting notions 
such as well-ordering, progression, ancestral, and identity that cannot 
be characterized in first-order logic (first-order logic without '=' in 
the case of identity!), but that can be characterized in second-. And 
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the second-order characterizations of notions like these offer a way 
of regarding as inconsistent certain apparently inconsistent (infinite) 
sets of statements, each of whose finite subsets is consistent-a way 
that is not available in (compact) first-order logic. Four examples of 
such sets are ('Smith is an ancestor of Jones', 'Smith is not a parent 
of Jones', 'Smith is not a grandparent of Jones', . . .), ('It is not 
the case that there are infinitely many stars', 'There are at least two 
stars', 'There are at least three stars', . . .), ('R is a well-ordering', 
'a,Rao', 'a2Ra1', 'a3Ra2', . .), and, of course, ('x is a natural 
number', 'x is not zero', 'x is not the successor of zero', . . 4.13 

Compare these four sets with ('Not: there are at least three stars', 
'Not: there are no stars', 'Not: there is exactly one star', 'Not: there 
are exactly two stars') and ('R is a linear ordering', 'aoRal', 'a,Ra2', 
'Not: aoRa2'). There is a translation into the notation of first-order 
logic under which the latter two sets of statements are formally in- 
consistent. Moreover, the translation, together with an explanation 
of the conditions under which the translations are true in interpre- 
tations, provides an important part of the explanation of the in- 
consistency of the two sets. One would have hoped that the same 
sort of thing might be possible for the four former sets. It seems 
impossible, on reflection, that all the statements in any one of these 
four sets should be true; it also seems that the reasons for this 
impossibility would have to be of the same character as those which 
explain the inconsistency of the latter two sets, the kind of reason 
it has always been the business of logic to give. That the logic taught 
in standard courses demonstrably cannot represent the inconsistency 
of our four sets of sentences shows not that they are consistent after 
all, but that not all (logical) inconsistencies are representable by 
means of that logic. One may suspect that the second-order account 
of these inconsistencies is not the "correct" account and that 
perhaps some sort of infinitary logic might more accurately reflect 
the logical form of the sentences in question; in any event, second- 
order logic does not muff these cases altogether. In addition, then, 
to there being a "straightforward" extension of the definitions of 
valid sentence and consequence of from first- to second-order logic, 
another reason for regarding second-order logic as logic is that there 
are notions of a palpably logical character (ancestral, identity), which 
can be defined in second-order logic (but not first-) and which figure 
critically in inferences whose validity second-order logic (but not 
first-) can represent. 

13 Alfred Tarski, "On the Concept of Logical Consequence," in Logic, Semantics, 
Metamathematics (New York: Oxford, 1960), p. 410. 
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Let us turn now to the failure of the completeness theorem for 
second-order logic, which can hardly be regarded as one of second- 
order logic's happier features. The existence of a sound and complete 
axiomatic proof procedure and the effectiveness of the notion of 
proof guarantee that the set of valid sentences of first-order logic is 
effectively generable; Church's theorem shows that it is not effec- 
tively decidable. There are decidable fragments of first-order logic, 
e.g., monadic logic with identity, but decidability vanishes if even 
a single two-place letter is allowed in quantified sentences. However, 
in a 1919 paper called "Untersuchungen uiber die Axiome des 
Klassenkalkuls . . ."14 Skolem showed that the class of monadic 
second-order sentences, in which only individual and one-place 
predicate variables and constants may occur, is also decidable. 

Discussing the contrast between classical first-order quantification 
theory and an extension of it containing "branching" quantifiers, 
Quine writes, 

. . .there is reason, and better reason, to feel that our prevrious con- 
ception of quantification . . . is not capriciously narrow. On the 
contrary, it determines an integrated domain of logical theory with 
bold and significant boundaries, designate it as we may. One mani- 
festation of these boundaries is the following. The logic of quantifica- 
tion in its unsupplemented form admits of complete proof procedures 
for validity (90). 

The extension is then noted not to admit of complete proof 
procedures. 

A remarkable concurrence of diverse definitions of logical truth . . . 
suggested to us that the logic of quantification as classically bounded 
is a solid and significant unity. Our present reflections on branching 
quantification further confirm this impression. It is at the limits of 
the classical logic of quantifications, then, that I would continue to 
draw the line between logic and mathematics (91). 

Completeness cannot by itself be a sufficient reason for regarding 
the line between first- and second-order logic as the line between 
logic and mathematics. We have seen, first, that monadic logic 
differs from full first-order logic on the score of decidability, every 
bit as significant a property as completeness; we have further seen 
that this difference persists into second-order logic; and we have 
discussed at length the fact that we can extend to second-order 
sentences the definition of truth in an interpretation without change 

14 Reprinted in Th. Skolem, Selected Works in Logic (Oslo: Universitetsforlaget, 
1970), pp. 67-101, and especially pp. 93-101. 

This content downloaded from 132.174.254.159 on Wed, 27 May 2015 08:37:43 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


524 THE JOURNAL OF PHILOSOPHY 

in the notation of an interpretation. How, then, can the semi- 
effectiveness of the set of first-order logical truths be thought to 
provide much of a reason for distinguishing logic from mathematics? 
Why completeness rather than decidability or interpretation? Of course 
there is a big difference between second- and first-order logic; there 
are many. There are also big differences among various fragments 
of first-order logic, between second- and third-order logic, and 
between second-order logic and set theory. 

Quine does not state that the completeness theorem by itself 
provides sufficient reason for drawing the line, however. Another 
reason, or more of the reason, is given by what he calls the "remark- 
able concurrence of diverse definitions of logical truth." One of these 
diverse definitions is the usual one: a sentence (or "schema," in 
Quine's terminology) is a logical truth if it is satisfied by every 
model, i.e., if it is true under all its interpretations. The other is that 
a sentence of a reasonably rich language is a logical truth if truths 
alone come of it by substitution of (open) sentences for its simple 
component sentences. The languages in question are interpreted 
languages (otherwise the notion of truth of a sentence of a language, 
used in the definition, would be incomprehensible), and their gram- 
mar has been "standardized," i.e., put into the notation of the 
first-order predicate calculus, without function signs or identity. As 
usual, "reasonably rich" has to do with arithmetic. For Quine's 
purposes, a language may be taken to be reasonably rich if its 
ontology contains all natural numbers (or an isomorphic copy) and 
its ideology contains a one-place predicate letter true of the natural 
numbers (or their copies) and two three-place predicate letters 
representing the sum and product operations. 

By appealing to a generalization of Lowenheim's theorem that is 
due to Hilbert and Bernays-any satisfiable schema is satisfied by a 
model whose domain is the set of natural numbers and whose predi- 
cates are assigned relations on natural numbers that can be defined in 
arithmetic-Quine proves a result he calls remarkable: a schema is 
provable (in some standard system) if and only if it is valid (true in 
all its interpretations), if and only if every substitution instance of 
it in any given reasonably rich object language is true. Dually, a 
schema is irrefutable if and only if it is satisfiable (true in at least 
one interpretation), if and only if some substitution instance of it 
in the object language is true. (The equivalence of validity and 
provability, and of satisfiability and irrefutability, is guaranteed by 
the completeness theorem.) 

For the purposes of this theorem, Quine cannot count the identity 
sign as a logical symbol: '3x 3y x = y' is a schema and also a 
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sentence whose only substitution instance is itself (if '=' counts as 
a logical symbol), which is true (since there exist at least two 
objects in the domain of the object language), but which is not a 
logical truth according to the usual definition, for it is false in all 
one-membered interpretations. 

A second minor point about the definition is that it just does not 
work if the object language is not reasonably rich."5 But the language 
of arithmetic, interpreted in the usual way, is certainly reasonably 
rich, or becomes so when '+' and '*' are supplanted by three-place 
predicate letters. 

The theorem may be remarkable, but it is not, I think, remarkably 
remarkable. A distinction can be drawn between two kinds of com- 
pleteness theorem that can be proved about systems of logic: be- 
tween weak and strong completeness theorems. A weak completeness 
theorem shows that a sentence is provable whenever it is valid; a 
strong theorem, that a sentence is provable from a set of sentences 
whenever it is a logical consequence of the set. Most of the usual 
proofs of the weak completeness of systems of first-order logic can 
be expanded quite easily to proofs of the strong completeness of 
those systems. The strong completeness of first-order logic can be 
expressed: a set of sentences is satisfiable if it lacks a refutation. (A 
refutation of a set of sentences is a proof of the negation of a con- 
junction of members of the set.) 

It seems to me that the concurrence of the two accounts of the 
concept of logical truth cannot be called remarkably remarkable if 
their extensions to the relation of logical consequence do not concur. 
If there is a reasonably rich language and a set of sentences in that 
language which is satisfiable according to the usual account but 
which cannot be turned into a set of truths by (simultaneous, 
uniform) substitution of open sentences of the language, then the 
interest of the alternative definition of logical truth is somewhat 
diminished, for it is a definition that cannot be extended to kindred 
logical relations in the correct manner. And, as it happens, there is a 
satisfiable set of sentences of a reasonably rich language with this 
property. Proof is given in the appendix. 

The compactness theorem might be thought to provide a way out 
of the difficulty. Since a set is satisfiable if and only if all its finite 
subsets are satisfiable, we might propose to define satisfiability by 
saying that a set is satisfiable just in case every conjunction of its 
members has a true substitution instance. So there turn out to be 

Is See Peter G. Hinman, Jaegwon Kim, and Stephen P. Stich, "Logical Truth 
Revisited," this JOURNAL, LXV, 17 (Sept. 5, 1968): 495-500. 
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three accounts of satisfiability of sets of sentences, the account just 
mentioned, truth in some one model, and irrefutability. 

But this concurrence is not in the least remarkable. The strong 
completeness theorem is remarkable; and the Lowenheim-Hilbert- 
Bernays theorem is remarkable. The concurrence of the two defini- 
tions of validity of single sentences-truth in all interpretations and 
truth of all instances-is remarkable too, because both definitions 
have some antecedent plausibility as correct explications of a pre- 
theoretical notion of logical validity ("truth regardless of what the 
nonlogical words mean"). The definition of satisfiability of a set as 
"truth of some instance of each conjunction of schemata in the set" 
has no such plausibility as an account of satisfiability. It even 
sounds wrong. 

One ought then to be wary of the claims that the concurrence of 
diverse definitions of logical truth is remarkable and that this con- 
currence suggests that classical quantificational logic is a "solid and 
significant unity." One of the definitions is a definition of logical 
truth only in virtue of a remarkable theorem about first-order logic; 
another cannot be generalized properly. Does classical quantifica- 
tional logic then fail to be a significant and solid unity? Certainly 
not. 

GEORGE S. BOOLOS 
Massachusetts Institute of Technology 

APPENDIX 

We consider two first-order languages (without '='), L and M, whose 
predicate letters are F, Z, S, P, T, and G. The variables of both languages 
range over the natural numbers, and both specify that F is true of all 
natural numbers, that Z is true of zero alone, and that S, P, and T are 
predicate letters for successor, sum, and product, respectively. L specifies 
that G is true of all natural numbers. L is a reasonably rich language. 
Let A be the set of G6del numbers of truths of L. A is not definable in L. 
Finally, M specifies that G is true of all and only the members of A. 

Let B be the set of truths of M. B is satisfiable. But B cannot be 
turned into a set of truths of L by substitution of open sentences of L for 
the predicate letters F, Z, S, P, T, and G. For, if it could, A would be 
recursive in the extensions in L of the open sentences substituted for 
Z, S, and G, and hence A would be definable in L; for the extensions would 
certainly be definable in L, and definable in L is closed under recursive in. 

Let 'E(O)' abbreviate 'the extension in L of the open sentence sub- 
stituted for 0'. The reason that A would be recursive in E(Z), E(S), E(G) 
is that, for each natural number n, 

3 xOXi .. Xn_lXn (ZXo & SXOXI & * &e Sx,-1x,) is in B; 
if n e A, then 

Vxoxl ... X,lXn (Zxo & SxoX1 & * & Sx,i.x -* Gxn) is in B; and 
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if '-. fEA, then 
VXOX1 - *xn x(Zxn &n SZXO & &SXoX Sxnxl &e * &x Gxn) is in B. 

Then, to determine whether n e A, we may use "oracles" for E(Z) and 
E(S) to find an (n + 1)-tuple ao, al, * * , an-1, an of natural numbers such 
that ao is in E(Z) and the n pairs ao, a,, ** *, and a.,, a. are in E(S), and 
then use an oracle for E(G) to determine whether an is in E(G). an is in 
E(G) iff n e A. The procedure is recursive in E(Z), E(S), E(G). 

We have thus shown that B is a satisfiable set of sentences of the 
reasonably rich language L which cannot be turned into a set of truths by 
(simultaneous, uniform) substitution of open sentences of L for the 
predicate letters of L which occur in the sentences in B. 
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