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Date: October 27, 2021 TA: Denys Bulavka

Problem 1. Establish sufficient conditions for a triangular matrix to be regular.

(Recall that an upper triangular matrix A has arbitrary values on and above the main
diagonal, but it is all zero below the diagonal. Formally, for all i > j it holds that
aij = 0. Any lower triangular matrix A must satisfy the same condition in the reverse
order w.r.t. the main diagonal or, in another words, AT must be upper triangular.)

Solution:
An upper triangular matrix is almost in a row echelon form. If all the elements on
its diagonal are non-zero then they are the pivots and the matrix is regular. If one of
the elements on its diagonal is equal to zero then the corresponding column does not
contain the pivot and, thus, the matrix is singular.

The situation is similar with respect to lower triangular matrices. That is, a lower
triangular matrix is regular if and only if its diagonal does not contain a zero. The
justification is straightforward – note that its transpose is an upper triangular matrix
and that the transpose operation does not change regularity of a matrix.

Problem 2. Consider the block matrix

A =

(
α aT

b C

)
,

where α 6= 0, a, b ∈ Rn−1 and C ∈ R(n−1)×(n−1). Apply to A one iteration of Gaussian
elimination and use it to derive a recursive test of regularity.

Solution:
We subtract the 1

αb-multiple of the first row from the second “block-row” in order to
eliminate all the non-zero elements in the first column below the first pivot α. We get(

α aT

b− α 1
αb C − 1

αba
T

)
=

(
α aT

o C − 1
αba

T

)
,

which is the result of the first step of Gaussian elimination performed on matrix A.
As the pivot is non-zero, we can deduce that the matrix A is regular if and only if the
matrix C− 1

αba
T is regular. Therefore, we have reduced the problem of deciding whether

a square matrix of order n is regular to the problem of deciding the same w.r.t. a square
matrix of order n− 1. And we can recursively proceed with the reduction further.

Problem 3. Find the inverse to the matrix

A =

1 2 3
2 3 5
3 5 10

 .

Solution:
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Using the elementary row operations, we transform the block matrix (A | I3) to its
reduced row echelon form:1 2 3 1 0 0

2 3 5 0 1 0
3 5 10 0 0 1

 ∼
1 2 3 1 0 0
0 −1 −1 −2 1 0
3 5 10 0 0 1

 ∼
1 2 3 1 0 0
0 −1 −1 −2 1 0
0 −1 1 −3 0 1

 ∼
∼

1 2 3 1 0 0
0 1 1 2 −1 0
0 −1 1 −3 0 1

 ∼
1 0 1 −3 2 0
0 1 1 2 −1 0
0 −1 1 −3 0 1

 ∼
∼

1 0 1 −3 2 0
0 1 1 2 −1 0
0 0 2 −1 −1 1

 ∼
1 0 1 −3 2 0
0 1 1 2 −1 0
0 0 1 −0.5 −0.5 0.5

 ∼
∼

1 0 0 −2.5 2.5 −0.5
0 1 1 2 −1 0
0 0 1 −0.5 −0.5 0.5

 ∼
1 0 0 −2.5 2.5 −0.5
0 1 0 2.5 −0.5 −0.5
0 0 1 −0.5 −0.5 0.5

 .

We get that A−1 = 1
2

−5 5 −1
5 −1 −1
−1 −1 1

.

Problem 4. Invert the matrices of the elementary row operations.

Recall that the matrices representing the elementary row operations are:

(a) Multiplying the i-th row with α 6= 0:

Ei(α) =



1 0 . . . . . . 0

0
. . . . . .

...
...

. . . α
. . .

...
...

. . . . . . 0
0 . . . . . . 0 1


.

(b) Adding the α-multiple of the j-th row to the i-th row for i 6= j:

Eij(α) =



1 0 . . . . . . 0
. . . . . .

...

1
. . .

...

αi
. . . 0

j 1


.

(c) Swapping the i-th and j-th row:

Eij =


i 0 1

j 1 0
i j

 .
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Solution:
There are at least two alternative approaches.

1) The first approach is to use the general method for inverting matrices by finding the
RREF of an appropriate block matrix. For the first elementary row operation, we get:

(Ei(α) | In) =



1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . α
. . .

...
...

. . . 1
. . .

...
...

. . . . . . 0
...

. . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0 1


∼

∼



1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . .

... 0
. . . . . .

...
...

. . . 1
. . .

...
...

. . . 1/α
. . .

...
...

. . . . . . 0
...

. . . . . . 0
0 . . . . . . 0 1 0 . . . . . . 0 1


= (In | Ei(α−1)).

For the second elementary row operation, we get:

(Eij(α) | In) =



1 0 . . . . . . 0 1 0 . . . . . . 0
. . . . . .

... 0
. . . . . .

...

1
. . .

...
...

. . . 1
. . .

...

α
. . . 0

...
. . . . . . 0

1 0 . . . . . . 0 1


∼

∼



1 0 . . . . . . 0 1 0 . . . . . . 0

0
. . . . . .

...
. . . . . .

...
...

. . . 1
. . .

... 1
. . .

...
...

. . . . . . 0 −α . . . 0
0 . . . . . . 0 1 1


= (In | Eij(−α)).

For the third elementary row operation, we get:

(Eij | In) =


0 1 1 0

1 0 0 1

 ∼

∼


1 0 0 1

0 1 1 0

 = (In | Eij).

Therefore, Ei(α)−1 = Ei(α
−1), Eij(α)−1 = Eij(−α) and E−1ij = Eij .

2) The second approach exploits our understanding of the matrices representing ele-
mentary row operations. The first matrix Ei(α) multiplies the i-th row with some
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α 6= 0. The inverse operation is dividing the i-th row with α, which can be repre-
sented by the matrix Ei(α

−1). We can verify our solution by checking that, indeed,
Ei(α)Ei(α

−1) = I.

The second matrix Eij(α) adds an α-multiple of the j-th row to the i-th row. The
inverse operation is subtracting the α-multiple of the j-th row from the i-th row, which
can be represented by the matrix Eij(−α). Again, we can verify that we found the
inverse by multiplying the two matrices.

The third matrix Eij swaps the i-th row and the j-th row. The inverse operation is
identical, i.e., spapping the i-th row and the j-th row. Thus the matrix Eij is self-
inverse.

Problem 5. For n ∈ N, invert the matrix

A =


1 1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

. . .
...

1 2 3 . . . n

 .

Solution:
Following the general method, we construct the corresponding block matrix

(A | In) =



1 1 1 . . . 1 1 0 . . . . . . 0

1 2 2 . . . 2 0
. . . . . .

...

1 2 3 . . . 3
...

. . . 1
. . .

...
...

...
...

. . .
...

...
. . . . . . 0

1 2 3 . . . n 0 . . . . . . 0 1


.

We subtract the first row from all the remaining rows and we get

1 1 1 . . . 1 1 0 . . . . . . 0

0 1 1 . . . 1 −1 1
. . .

...

0 1 2 . . . 2
... 0 1

. . .
...

...
...

...
. . .

...
...

. . . . . . 0
0 1 2 . . . n− 1 −1 0 . . . 0 1


.

Notice that in the left block we obtained a matrix of the same structure as A just of
smaller order. Thus, we can inductively proceed and after additional n − 2 steps, we
get 

1 1 1 . . . 1 1 0 . . . . . . 0

0 1 1 . . . 1 −1 1
. . .

...

0
. . . 1 . . . 1 0

. . . 1
. . .

...
...

. . . . . .
...

...
. . . . . . . . . 0

0 . . . . . . 0 1 0 . . . 0 −1 1


.

Finally, we subtract the second row from the first and then subtract the third from the
second and so on. We get the RREF of the original matrix with the inverse A−1 in the
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right block 

1 0 0 . . . 0 2 −1 0 . . . 0

0 1 0 . . . 0 −1 2 −1 . . .
...

0
. . . 1

... 0
. . . . . . . . . 0

...
. . . . . . 0

...
. . . . . . . . . −1

0 . . . . . . 0 1 0 . . . 0 −1 1


.

Problem 6. Simplify the following expression assuming A,B are regular matrices of the same order:

(I −BTA−1)A+ (ATB)TA−1.

Solution:
We use the basic properties of matrix multiplication, transpose, and inverse. We get

(I −BTA−1)A+ (ATB)TA−1

= IA−BTA−1A+ (ATB)TA−1 [distributivity]

= IA−BT I + (ATB)TA−1 [definition of matrix inverse]

= A−BT + (ATB)TA−1 [multiplication by I]

= A−BT +BTAA−1 [transpose of a product of matrices]

= A−BT +BT [definition of matrix inverse]
= A .

Thus, the expression simplifies to A.

Problem 7. (a) Prove that for all A,B ∈ Rn×n, if A is regular then

(ABA−1)k = ABkA−1.

(b) Let A ∈ Rn×n be a regular matrix. Find the limit (in case you are not familiar
with the formal definition, use the intuitive notion) for

lim
k→∞

ADkA−1, where D =


1 0 . . . 0

0 1
2

. . .
...

...
. . . . . . 0

0 . . . 0 1
n

 ,

and compute its rank.

(c) Apply the above result to compute the limit for any matrix A with the first
column equal e1 = (1, 0, . . . , 0)T and the first row equal eT1 = (1, 0, . . . , 0).

Solution:

(a) We proceed by induction. For k = 1, the statement holds since (ABA−1)1 =
AB1A−1.
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Now, we show the inductive step. Suppose the statement holds for k − 1.
Therefore, (ABA−1)k−1 = ABk−1A−1, and we can use it to compute

(ABA−1)k = (ABA−1)k−1(ABA−1) = (ABk−1A−1)(ABA−1)

= ABk−1(A−1A)BA−1 = ABk−1BA−1

= ABkA−1.

(b) By the previous part of the problem, we have

ADkA−1 = A


1k 0 . . . 0

0 1
2k

. . .
...

...
. . . . . . 0

0 . . . 0 1
nk

A−1

−−−→
k→∞

A


1 0 . . . 0

0 0
. . .

...
...

. . . . . . 0
0 . . . 0 0

A−1 = A∗1(A
−1)1∗ .

The matrix is of rank 1 since it is outer product of two vectors.

(c) If A∗1 = e1 and A1∗ = eT1 then the same holds also for the inverse matrix.
Specifically, (A−1)1∗ = eT1 . Thus,

lim
k→∞

ADkA−1 = A∗1(A
−1)1∗ = e1e

T
1 =


1 0 . . . 0

0 0
. . .

...
...

. . . . . . 0
0 . . . 0 0

 .
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