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Tutorial 7

Fields

Date: November 10, 2021 TA: Denys Bulavka

Problem 1. Simplify the following expressions:

(a) ((2−1 + 1)4)−1, 4/3 over Z5,

(b) 6 + 7,−7, 6 · 7, 7−1, 6/7 over Z11.

Solution:

(a) The finite field Z5 is defined as the set of all residues in Z after division by 5
together with the operations of addition and multiplication modulo 5. Per-
forming addition modulo 5 is straightforward. For the remaining operations
in Z5, we use the multiplication table modulo 5:

Z5, · 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that we can see that the set Z5 \ {0} = {1, 2, 3, 4} together with
multiplication modulo 5 is a group – the so-called multiplicative group
modulo 5. This is not surprising as the definition of a field requires that T
with the addition operation + and multiplication operation · on T satisfy i)
distributivity of addition and multiplication, ii) that (T,+) is a group with
neutral element 0, and iii) that (T\{0}, ·) is also a group. It is the property
iii) that we see in the above multiplication table.
In order to simplify the expressions over Z5, we find the multiplicative
inverses using the multiplication table as follows. For any a ∈ Z5 \ {0}, we
find in the corresponding row the element 1 and the column index b must
be the multiplicative inverse a−1 of a since a · b = 1 in Z5. We get:

((2−1 + 1)4)−1 = ((3 + 1)4)−1 = (4 · 4)−1 = (1)−1 = 1 in Z5

and
4/3 = 4 · 3−1 = 4 · 2 = 3 in Z5.
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(b) We proceed similarly as for Z5 but we will not construct the whole mul-
tiplication table for Z11. We get

6 + 7 = 6 + 7 (mod 11) = 2 in Z11,

−7 = 11− 7 (mod 11) = 4 in Z11.

6 · 7 = 6 · 7 (mod 11) = 42 (mod 11) = 9 in Z11.

When computing the multiplicative inverse of 7, we can proceed as when
constructing the row of the multiplication table modulo 11 corresponding
to 7. However, we stop the computation in the moment when we see the
element 1:

7 · 1 = 7,

7 · 2 = 3,

7 · 3 = 10,

7 · 4 = 6,

7 · 5 = 2,

7 · 6 = 9,

7 · 7 = 5,

7 · 8 = 1.

Thus,
7−1 = 8 in Z11.

We use this value also when simplifying the last expression:

6/7 = 6 · 7−1 = 6 · 8 = 48 (mod 11) = 4 in Z11.

Problem 2. Over Z5, find the set of all solutions of the system

3x+ 2y + z = 1

4x+ y + 3z = 3

and compute its cardinality.

Solution:
We proceed as for systems over R but we use the appropriate arithmetic. Moreo-
ver, we can use the ability to eliminate elements in the column below the current
pivot via adding an appropriate multiple of the row with pivot to the rows below
it. By adding the first row multiplied by 2 to the second row, we get(

3 2 1 1
4 1 3 3

)
∼
(
3 2 1 1
0 0 0 0

)
.

We set the free variables to parameters y, z ∈ Z5 and express

x = 3−1(1− 2y − z) = 2(1 + 3y + 4z) = 2 + y + 3z .
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Thus, the solution set of the system is

{(2, 0, 0)T + y(1, 1, 0)T + z(3, 0, 1)T | y, z ∈ Z5} .

There are 25 = 5 · 5 possible choices for the values of the parameters y a z, and
the cardinality of the solution set is 25.

Problem 3. Find the multiplicative inverses 9−1 and 12−1 in Z31.

Solution:
We could proceed as for Z11 but the computation might take 31 steps in case we
would have to compute the whole row for 9 in the multiplication table modulo 31.
There is a more efficient method exploiting the extended Euclidean algorithm.
The output of the extended Euclidean algorithm is the GCD(9, 31) together with
a pair of integer values a, b ∈ Z such that

1 = GCD(9, 31) = a · 9 + b · 31 .

Thus, we can use a (mod 31) as the multiplicative inverse of 9 in Z31. On input
(9, 31), the extended Euclidean algorithm will perform the following steps:

a0 = 31,

a1 = 9,

a2 = 4 = 31− 3 · 9,
a3 = 1 = 9− 2 · 4 = 7 · 9− 2 · 31.

The final value a3 is the GCD(9, 31) (which we knew to be equal to 1 since 31 is
a prime). Moreover, we have expressed 1 as a sum of integer multiples of 9 and
31. We can derive that

1 = 7 · 9− 2 · 31 = 7 · 9− 2 · 31 (mod 31) = 7 · 9 (mod 31) .

Thus, 9−1 = 7 in Z31.

For 12, we get:

a0 = 31,

a1 = 12,

a2 = 7 = 31− 2 · 12,
a3 = 5 = 12− 7 = 3 · 12− 31,

a4 = 2 = 7− 5 = 31− 2 · 12− 3 · 12 + 31 = 2 · 31− 5 · 12,
a5 = 3 = 5− 2 = 3 · 12− 31− 2 · 31 + 5 · 12 = 8 · 12− 3 · 31,
a6 = 1 = 3− 2 = 8 · 12− 3 · 31− 2 · 31 + 5 · 12 = 13 · 12− 5 · 31.

Again, we have expressed 1 as a sum of integer multiples of 12 and 31. We can
derive that

1 = 13 · 12− 5 · 31 = 13 · 12− 5 · 31 (mod 31) = 13 · 12 (mod 31) .

Thus, 12−1 = 13 in Z31.
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Problem 4. Over Z7, compute the matrix power A100 for A = ( 3 2
1 4 ).

Solution:
Note that the sequence of matrices Ai for i = 1, . . . ,∞ must be cyclic when com-
puted over a finite field. We compute some of the initial terms of this sequence:

A = A1 =

(
3 2
1 4

)
,

A2 =

(
3 2
1 4

)(
3 2
1 4

)
=

(
4 0
0 4

)
,

A3 =

(
4 0
0 4

)(
3 2
1 4

)
=

(
5 1
4 2

)
,

A4 =

(
5 1
4 2

)(
3 2
1 4

)
=

(
2 0
0 2

)
,

A5 =

(
2 0
0 2

)(
3 2
1 4

)
=

(
6 4
2 1

)
,

A6 =

(
6 4
2 1

)(
3 2
1 4

)
=

(
1 0
0 1

)
,

A7 =

(
1 0
0 1

)(
3 2
1 4

)
=

(
3 2
1 4

)
= A .

We see that the period of the sequence is 6 over Z7. Thus,

A100 = A100 (mod 6) = A4 =

(
2 0
0 2

)
.

Problem 5. For n ∈ N and an asociative operation · let an = a · a · . . . · a, where the element
a appears n times in the product.

• Determine values 2101, 31 001 and 41 000 001 in the field Z17.
• Determine 5100, 8200, 11300 and 18400 in the field Z19.

Problem 6. Solve the following system of equations over Z5,Z7 and R.
x1 + 2x2 + 4x3 = 3
3x1 + x2 + 2x3 = 4
2x1 + 4x2 + x3 = 3

Problem 7. Invert the following matrices over fields Z3 and Z5

• A =


1 0 1 1
2 0 1 1
2 1 0 0
1 2 1 0

.

• B =


0 2 2 1
1 0 2 0
2 1 0 2
2 2 1 1

.
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• C =


2 0 1 0
1 2 0 1
2 1 1 0
1 0 1 1

.

• D =


1 1 0 0
1 2 1 1
1 1 2 0
0 1 2 1

.

• E =


1 1 2 0
1 2 1 1
0 1 2 1
1 2 0 0

.

Problem 8. Invert the following matrix over Z11.
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4


Problem 9. Find a matrix A, that over Z5 satisfies

A


4 4 0 1
3 1 2 2
2 3 1 3
3 2 3 4

 =


1 0 2 3
3 1 2 2
2 3 1 3
1 2 3 4
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