NMAI057 – Linear algebra 1

Tutorial 7

Fields

Date: November 10, 2021

TA: Denys Bulavka

Problem 1. Simplify the following expressions:

(a) $((2^{-1}+1)4)^{-1}, 4/3$ over \mathbb{Z}_5 , (b) $6+7, -7, 6\cdot 7, 7^{-1}, 6/7$ over \mathbb{Z}_{11} .

Problem 2. Over \mathbb{Z}_5 , find the set of all solutions of the system

$$3x + 2y + z = 1$$
$$4x + y + 3z = 3$$

and compute its cardinality.

- **Problem 3.** Find the multiplicative inverses 9^{-1} and 12^{-1} in \mathbb{Z}_{31} .
- **Problem 4.** Over \mathbb{Z}_7 , compute the matrix power A^{100} for $A = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$.
- **Problem 5.** For $n \in \mathbb{N}$ and an asociative operation \cdot let $a^n = a \cdot a \cdot \ldots \cdot a$, where the element a appears n times in the product.
 - Determine values $2^{101}, 3^{1001}$ and $4^{1000001}$ in the field \mathbb{Z}_{17} .
 - Determine 5^{100} , 8^{200} , 11^{300} and 18^{400} in the field \mathbb{Z}_{19} .

Problem 6. Solve the following system of equations over \mathbb{Z}_5 , \mathbb{Z}_7 and \mathbb{R} .

Problem 7. Invert the following matrices over fields \mathbb{Z}_3 and \mathbb{Z}_5

•
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$
.
• $\mathbf{B} = \begin{pmatrix} 0 & 2 & 2 & 1 \\ 1 & 0 & 2 & 0 \\ 2 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1 \end{pmatrix}$.

•
$$\mathbf{C} = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$
.
• $\mathbf{D} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}$.
• $\mathbf{E} = \begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 0 & 0 \end{pmatrix}$.

Problem 8. Invert the following matrix over \mathbb{Z}_{11} .

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

Problem 9. Find a matrix \mathbf{A} , that over \mathbb{Z}_5 satisfies

$$\mathbf{A} \begin{pmatrix} 4 & 4 & 0 & 1 \\ 3 & 1 & 2 & 2 \\ 2 & 3 & 1 & 3 \\ 3 & 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 3 & 1 & 2 & 2 \\ 2 & 3 & 1 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$