
NMAI057 – Linear algebra 1

Tutorial 5

Groups and permutations

Date: November 3, 2021 TA: Denys Bulavka

Problem 1. Decide and justify, whether the following are groups:

(a) (Q, ·),
(b) (Q,−),
(c) (Q \ {0}, ◦), where for all a, b ∈ Q, a ◦ b = |ab|,
(d) (Q, ◦), where for all a, b ∈ Q, a ◦ b = a+b

2
,

(e) (Q, ◦), where for all a, b ∈ Q, a ◦ b = a+ b+ 3,

(f) (F ,+), i.e., the set of all real functions with one variable F together with
the operation of addition of functions,

(g) the set of all rotations around the origin in R2 together with the operation
of function composition,

(h) the set of all translations (shifts) in R2 together with the operation of
function composition.

(i) the set of all matrices in Rn×n with the operation of matrix multiplication.

(j) the set of all regular matrices in Rn×n with the operation of matrix mul-
tiplication.

Solution:

(a) (Q, ·) is not a group. There is no inverse element for 0 ∈ Q.

(b) (Q,−) is not a group. Subtraction is not associative overQ; e.g., (8−6)−1 =
1 6= 3 = 8− (6− 1).

(c) Not a group. There are many elements without inverse. For all a < 0 and
e ∈ Q, it holds that a ◦ e = |ae| > 0 > a. Thus, no e ∈ Q can satisfy the
definition of inverse element for any a < 0.

(d) Not a group since arithmetic mean is not associative; e.g., for a = 1, b =
5, c = 7, we get a◦(b◦c) = 1

2

(
1 + 5+7

2

)
= 3.5 6= 5 = 1

2

(
1+5
2

+ 7
)
= (a◦b)◦c.

(e) It is a group. Associativity follows from commutativity and associativity of
addition over Q. The neutral element is e = −3 because for all a ∈ Q it
holds that

a ◦ e = a+ (−3) + 3 = a = (−3) + a+ 3 = e ◦ a .
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Finally, the inverse element for all a ∈ Q is b = −a − 6 because for all
a, b ∈ Q

a ◦ b = a+ (−a− 6) + 3 = −3 = e = −3 = (−a− 6) + a+ 3 = b ◦ a .

(f) (F ,+) is a group. Associativity follows from the definition of addition of
functions and associativity of addition over R; for all f, g, h ∈ F and x ∈ R
it holds that f(x) + (g(x) + h(x)) = (f(x) + g(x)) + h(x). The neutral
element is the identically zero function e(x) = 0 for all x ∈ R. The inverse
element for all f ∈ F is the function −f .

(g) It is a group. Associativity follows from associativity of function composi-
tion. The neutral element can be represented as rotation by 360 degrees.
The inverse element for any rotation by α degrees is the rotation by α
degrees in the reverse direction.

(h) It is a group. Associativity follows from associativity of function composi-
tion. The neutral element is the identity map e((x1, x2)

T ) = (x1, x2)
T

(i.e., the shift by the vector (0, 0)T ). For all translations t((x1, x2)T ) =
(x1, x2)

T + (a, b)T the inverse is the inverse translation t−1((x1, x2)
T ) =

(x1, x2)
T − (a, b)T .

Problem 2. Let (G, ◦) be a group and x ∈ G. Decide and justify whether (G, ∗) is a group
with the binary operation ∗ defined for all a, b ∈ G as a ∗ b = a ◦ x ◦ b.

Solution:
We verify the properties from the definition of group. The new operation is
associative since ◦ is associative; for all a, b, c, x ∈ G it holds that:

a ∗ (b ∗ c) = a ◦ x ◦ (b ◦ x ◦ c) = (a ◦ x ◦ b) ◦ x ◦ c = (a ∗ b) ∗ c ,

where the equality in the middle follows by applying associativity of ◦ on G to
the elements α = a ◦ x, β = b, and γ = x ◦ c of G.

We denote by E the neutral element of the group (G, ◦). The neutral element
of (G, ∗) is the inverse of x in the group (G, ◦), i.e., e = x−1 w.r.t. ◦. For all
a, x ∈ G, we verify that:

e ∗ a = x−1 ◦ x ◦ a = E ◦ a = a = a ◦ E = a ◦ x ◦ x−1 = a ∗ e .

Similarly, the inverse for all a ∈ G in the group G is b = x−1 ◦ a−1 ◦ x−1, where
a−1 is the inverse element for a in the group (G, ◦). For all a, x ∈ G, we verify
that:

a ∗ b = a ◦ x ◦ x−1 ◦ a−1 ◦ x−1 = a ◦ E ◦ a−1 ◦ x−1 = a ◦ a−1 ◦ x−1 = E ◦ x−1

= x−1 = e

= x−1 ◦ E = x−1 ◦ a−1 ◦ a = x−1 ◦ a−1 ◦ E ◦ a = x−1 ◦ a−1 ◦ x−1 ◦ x ◦ a
= b ∗ a .

Problem 3. Fill the table for binary operation ◦ on set G so that (G, ◦) is a group with
neutral element 0. Justify.
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(a)
◦ 0 1
0
1

(b)

◦ 0 1 2
0
1
2

(c) ◦ 0
0

(d)

◦ 0 1 2 3
0
1 0
2
3

Solution:
The first three tables are determined uniquely. The requirement that 0 is the
neutral element for ◦ determines the first row and column of the table. The
requirement of existence of the left and right inverse restricts the positions of
0 in the table either on the main diagonal or symmetrically w.r.t. the main
diagonal. Associativity will force the remaining elements. We get:

(a)
◦ 0 1
0 0 1
1 1 0

- the additive group modulo 2,

(b)

◦ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

– the additive group modulo 3,

(c) ◦ 0
0 0 – the trivial group,

(d) for example

◦ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

– the Klein four-group, i.e., the group of

symmetries of a rectangle.

Problem 4. Solve "permutation"equation p ◦ x ◦ q = ı for p and q.

(a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).

(b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).

(c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9)

(d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).
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Problem 5. Determine the sign of the following permutation

(a) p = (1, 3, 5, . . . , 2n− 1, 2, 4, 6, . . . , 2n)

(b) p = (1, 4, 7, . . . , 3n− 2, 2, 5, 8, . . . , 3n− 1, 3, 6, 9, . . . , 3n)

(c) p = (2, 5, 8, . . . , 3n− 1, 3, 6, 9, . . . , 3n, 1, 4, 7, . . . , 3n− 2)

(d) p = (3, 6, 9, . . . , 3n, 2, 5, 8, . . . , 3n− 1, 1, 4, 7, . . . , 3n− 2)

Problem 6. Decide and justify whether the following are Abelian (commutative) groups:

(a) The set {( 1 z
0 1 ) | z ∈ Z} together with matrix product.

(b) The set {( a a
a a ) | a ∈ R \ {0}} together with matrix product.

Solution:

(a) It is a group. First, we show that matrix product is closed on the given
set. For all a, b ∈ Z(

1 a
0 1

)(
1 b
0 1

)
=

(
1 a+ b
0 1

)
, (1)

which is a matrix from the given set of matrices (z = a+ b ∈ Z for all
a, b ∈ Z).
Associativity of matrix product on the given set follows from associa-
tivity of matrix product for general square matrices of equal orders.
The neutral element is the identity matrix of order two, which is con-
tained in the given set (z = 0 ∈ Z).
Finally, the inverse element for an arbitrary matrix ( 1 z

0 1 ) is the integer
matrix ( 1 −z

0 1 ), which follows from Equation (??).
Thus, we have verified that it is a group. It remains to decide whether
the operation is commutative. Commutativity of matrix product on the
given set follows from Equation (??) and commutativity of addition
over Z. Therefore, we have justified that it is an Abelian group.

(b) It is a group. First, we show that matrix product is closed on the given
set. For all a, b ∈ R \ {0}(

a a
a a

)(
b b
b b

)
=

(
2ab 2ab
2ab 2ab

)
, (2)

which is a matrix from the given set (2ab 6= 0 for all a, b ∈ R \ {0}).
Associativity of matrix product on the given set follows from associa-
tivity of matrix product for general square matrices of equal orders.
The neutral element is the matrix 1

2
( 1 1
1 1 ), which is a matrix from the

given set of matrices.
Finally, for all a ∈ R \ {0}, the inverse element for an arbitrary matrix
( a a
a a ) is the matrix 1

4a
( 1 1
1 1 ), which follows from Equation (??) (note

that the inverse element is defined since a 6= 0).
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Thus, we have verified that it is a group. It remains to decide whe-
ther the operation is commutative. Commutativity of matrix product
on the given set follows from Equation (??) and commutativity of mul-
tiplication over R. Therefore, we have justified that it is an Abelian
group.

Problem 7. Determine graphs, cycles, a factorzation into transpositions, the number of in-
versions, the sign, and the inverse permutations for the following permutations:
p, q and their compositions q ◦ p and p ◦ q.
(Permutations are composed as mappings, i.e. (q ◦ p)(i) = q(p(i)).)

(a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).

(b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).

(c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9).

(d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).

Problem 8. Show four different arguments why the inverse permutatin has the same sign as
the original one.

Problem 9. Show that every permutation on n elements can be decomposed into transposi-
tions of form (1, i) for i ∈ {2, . . . , n}. Determine a bound of the length of the
resulting factorization.

Problem 10. Deretmine powers p10 and q99 for permutations p a q.

(a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).

(b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).

(c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9).

(d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).

Problem 11. Find a permutation on 10 elements s.t. pi is not the identity (i.e. pi 6= ı) for all
i = 1, . . . , 29.

Problem 12. How many permutations on n elements have sign 1, and how many sign −1?
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