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The main paper below (1931), which
was to have such an impact on modern
logic, was received for publication on
17 November 1930 and published early
in 1931. An abstract (1930b) had been
presented on 23 October 1930 to the
Vienna Academy of Sciences by Hans
Hahn.

Godel’s results are now accessible in
many publications, but his original paper
has not lost any of its value as a guide.
It is clearly written and does not assume
any previous result for its main line of
argument. It is, moreover, rich in inter-
esting details. We now give some indi-
cations of its contents and structure.

Section 1 is an informal presentation
of the main argument and can be read by
the nonmathematician ; it shows how the
argument, by dealing with the proposi-
tion that states of itself “I am not
provable”’, instead of the proposition that
states of itself “I am not true”’, skirts
the Liar paradox, without falling into it.
Godel also brings to light the relation
that his argument bears to Cantor’s
diagonal procedure and Richard’s par-

adox (Herbrand, on pages 626-628 below,
and Weyl (1949, pp. 219-235) particu-
larly stress this aspect of Godel’s argu-
ment ; see also above, p. 439).

Section 2, the longest, is the proof of
Theorem VI. The theorem states that in
a formal system satisfying certain pre-
cise conditions there is an undecidable
proposition, that is, a proposition such
that neither the proposition itself nor its
negation is provable in the system.
Before coming to the core of the argu-
ment, Godel takes a number of prepar-
atory steps:

(1) A precise description of the system
P with which he is going to work. The
variables are distinguished as to their
types and they range over the natural
numbers (type 1), classes of natural
numbers (type 2), classes of classes of
natural numbers (type 3), and so forth.
The logical axioms are equivalent to the
logic of Principia mathematica without
the ramified theory of types. The arith-
metic axioms are Peano’s, properly
transcribed. The identification of the
individuals with the natural numbers and
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the adjunction of Peano’s axioms (in-
stead of their derivation, as in Principia)
have the effect that every formula has an
interpretation in classical mathematics
and, if closed, is either true or false in
that interpretation; moreover, proofs
are considerably shortened.

(2) An assignment of natural numbers
to sequences of signs of P and a similar
assignment to sequences of sequences of
signs of P. The first assignment is such
that, given a sequence, the number
assigned to it can be effectively calcu-
lated, and, given a number, we can
effectively decide whether the number is
assigned to a sequence and, if it is,
actually write down the sequence ; simi-
larly for the second assignment. By
means of these assignments we can cor-
relate number-theoretic predicates with
metamathematical notions used in the
description of the system; for example,
to the notion “axiom’ corresponds the
predicate Ax(x), which holds precisely of
the numbers = that are assigned to
axioms (the “ Godel numbers” of axioms,
we would say today).

(3) A definition of primitive recursive
functions (Godel calls them recursive
functions) and the derivation of a few
theorems about them. These functions
had already been used in foundational
research (for example, by Dedekind
(1888), Skolem (1923), Hilbert (1925,
1927), and Ackermann (1928)); Godel
gives a precise definition of them, which
has become standard.

(4) The proof that forty-five number-
theoretic predicates, forty of them
associated with metamathematical no-
tions, are primitive recursive.

(56) The proof that every primitive re-
cursive number-theoretic predicate is
numeralwise representable in P. That is,
the predicate holds of some given num-
bers if and only if a definite formula of P
is provable whenever its free variables
are replaced by the symbols that repre-
sent these numbers in P.

(6) The definition of w-consistency.
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Godel can then undertake to prove
Theorem VI. The scope of the theorem is
enlarged by the addition of any w-consis-
tent primitive recursive class « of for-
mulas to the axioms of P. For each such
« a different system is thus obtained (in
the present note, “ P,”’, a notation not
used by Godel, will denote the system
corresponding to a given «). After the
proof Godel makes a number of important
remarks:

(a) He points out the constructive con-
tent of Theorem VI.

(b) He introduces predicates that are
entscheidungsdefinit (in the translation
below these are called decidable predi-
cates, at the author’s suggestion). If we
take into account the few lines added in
proof at the end of a later note of
Godel’s (1934a), these predicates are in
fact those that today we call recursive
(that is, general recursive) predicates.
Godel somewhat extends the result of
Theorem VI by assuming only that « is
decidable, and not that it is primitive
recursive.

(¢) If « is assumed to be merely consis-
tent, instead of w-consistent, the proof
yields the existence of a predicate whose
universalization is not provable but for
which no counterexample can be given;
P, is w-incomplete, as we would say
today.

(d) The adjunction of the undecidable
formula Neg(17 Gen r) to « yields a con-
sistent but w-inconsistent system.

() Even with the adjunction of the
axiom of choice or the continuum hy-
pothesis the system contains undecidable
propositions.

The section ends with a review of the
properties of P that are actually used in
the proof and the remark that all known
axiom systems of mathematics, or of any
substantial part of it, have these prop-
erties.

Section 3 presents two supplementary
undecidability results. Godel establishes
(Theorem VII) that a primitive recursive
number-theoretic predicate is arithmetic,
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that is, can be expressed as a formula of
first-order number theory (this yields a
stronger result than the numeralwise
representability of such predicates, as it
was introduced and used in Section 2).
Hence every formula of the form (z) F(x),
with F(x) primitive recursive, is equiv-
alent to an arithmetic formula ; moreover,
this equivalence is provable in P,: one
can review the informal proof presented
by Godel and check that P, is strong
enough to express and justify each of its
steps. Since the proposition that was
proved to be undecidable in Theorem VI
is of the form (x)F(x), with F(x) prim-
itive recursive, P, contains undecidable
arithmetic propositions (Theorem VIII).
For all its strength, the system P, cannot
decide every first-order number-theoretic
proposition. Theorem X states that,
given a formula (x)F(x), with F(x)
primitive recursive, one can exhibit a
formula of the pure first-order predicate
calculus, say 4, that is satisfiable if and
only if (z)F(x) holds. Moreover, since P,
contains a set theory, the equivalence

(x) F(x) = (A is satisfiable)

is expressible in P, and, as one can verify
by reviewing Godel’s informal argument,
provable in P,. Therefore (Theorem IX)
there are formulas of the pure first-order
predicate calculus whose validity is
undecidable in P,.

In Section 4 an important consequence
of Theorem VT is derived. The statement
‘““there exists in P, an unprovable for-
mula’’, which expresses the consistency
of P,, can be written as a formula of P, ;
but this formula is not provable in P,
(Theorem XI). The main step in the
demonstration of this result consists in
reviewing the proof of the first half of
Theorem VI and checking that all the
statements made in that proof can be
expressed and proved in P,. It is clear
that this is the case, and Gédel does not
go through the details of the demon-
stration. The section ends with various
remarks on Theorem XTI (its constructive
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character, its applicability to set theory
and ordinary analysis, its effect upon
Hilbert’s conception of mathematics).

Godel’s paper immediately attracted
the interest of logicians and, although it
caused some momentary surprise, its
results were soon widely accepted. A
number of studies were directly inspired
by it. By using a somewhat more com-
plicated predicate than “is provable in
P’’, Rosser (1936) was able to weaken
the assumption of w-consistency in
Theorem VI to that of ordinary consis-
tency. Hilbert and Bernays (1939, pp.
283-340) carried out in all details the
proof of the analogue of Theorem XI for
two standard systems of number theory,
Z, and Z, and this proof can be trans-
ferred almost literally to any system
containing Z. As Godel indicates in a
note appended to the present translation
of his paper, Turing’s work (1937) gave
to the notion of formal system its full
generality. The notes of Godel’s Princeton
lectures (1934) contain the most impor-
tant results of the present paper, in a
more succinet form ; they also make pre-
cise the notion of (general) recursive
function, already suggested by Herbrand
(see below, p. 618). In developing the
theory of these functions, Kleene (1936)
obtained undecidability results of a
somewhat different character from those
presented here. Godel’s work led to
Church’s negative solution (1936) of the
decision problem for the predicate calcu-
lus of first order. Tarski (1953) developed
a general theory of undecidability. The
device of the “arithmetization” of meta-
mathematics became an everyday tool of
the research worker in foundations.
Godel’s results, finally, led to a profound
revision of Hilbert’s program (on that
point see, among other texts, Bernays
1938, 1954 and Godel 1958).

These indications are far from giving a
full account of the deep influence exerted
in the field of foundations of mathe-
matics by the results presented in the
paper below and the methods used to
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obtain them. There is not one branch of
research, except perhaps intuitionism,
that has not been pervaded by this
influence.

The translation of the paper is by the
editor, and it is printed here with the
kind permission of Professor Godel and
Springer Verlag. Professor Goédel ap-
proved the translation, which in many
places was accommodated to his wishes.
He suggested, in particular, the various
phrases used to render the word ““inhalt-
lich”. He also proposed a number of
short interpolations to help the reader,
and these have been introduced in the
text below between square brackets.

Below, on page 601, the author shows
how a number-theoretic predicate can be
associated with a given metamathemati-
cal notion and then used to represent the
notion. In the German text such a pred-
icate is denoted by the same word as the
original notion, except that the word is
printed in italics. Since in English italics
are used for emphasis (while the German
text uses letter spacing for that purpose),
the translation below uses sMALL caAP-
1TALs for the names of these predicates.
This scheme of italicization (or small-
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capitalization), however, is used for only
some of the number-theoretic predicates
in question. According to Professor
Godel, “the idea was to use the notation
only for those metamathematical notions
that had been defined in their usual sense
before, namely, those defined on pp. 599-
601. From p. 607 up to the general con-
siderations at the end of Section 2, and
again in Section 4, every metamathe-
matical term referring to the system P
is supposed to denote the corresponding
arithmetic one. But, of course, because of
the complete isomorphism the distinction
in many cases is entirely irrelevant”.

Before the main text the reader will
find a translation, by Stefan Bauer-
Mengelberg, of its abstract (1930b);
in that translation, at the author’s
suggestion, ““entscheidungsdefinit’’, when
referring to an axiom system, has
been translated by ‘complete”, and
‘“Entscheidungsdefinitheit”” by ‘com-
pleteness”. A translation, by the editor,
of 1931a, a note dated 22 January 1931
and closely connected with 7931, follows
the main text. Both translations are
printed here with the kind permission
of Professor Godel.

SOME METAMATHEMATICAL RESULTS ON COMPLETENESS AND
CONSISTENCY

(1930b)

If to the Peano axioms we add the logic of Principia mathematica® (with the
natural numbers as the individuals) together with the axiom of choice (for all types),
we obtain a formal system S, for which the following theorems hold :

I. The system S is not complete [entscheidungsdefinit]; that is, it contains prop-
ositions 4 (and we can in fact exhibit such propositions) for which neither 4 nor 4
is provable and, in particular, it contains (even for decidable properties F' of natural
numbers) undecidable problems of the simple structure (Exz)F(x), where x ranges
over the natural numbers.?

II. Even if we admit all the logical devices of Principia mathematica (hence in
particular the extended functional calculus! and the axiom of choice) in metamathe-
matics, there does not exist a consistency proof for the system S (still less so if we

! With the axiom of reducibility or without ramified theory of types.
2 Furthermore, S contains formulas of the restricted functional calculus such that neither
universal validity nor existence of a counterexample is provable for any of them.
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restrict the means of proof in any way). Hence a consistency proof for the system S
can be carried out only by means of modes of inference that are not formalized in the
system S itself, and analogous results hold for other formal systems as well, such as
the Zermelo-Fraenkel axiom system of set theory.3

III. Theorem I can be sharpened to the effect that, even if we add finitely many
axioms to the system § (or infinitely many that result from a finite number of them
by “type elevation’), we do not obtain a complete system, provided the extended
system is w-consistent. Here a system is said to be w-consistent if, for no property
F(z) of natural numbers,

F(l), F2),..., F(n),... ad infinitum
as well as

(Ez)F(z)
are provable. (There are extensions of the system S that, while consistent, are not
w-consistent.)

IV. Theorem I still holds for all w-consistent extensions of the system S that are
obtained by the addition of infinitely many axioms, provided the added class of
axioms is decidable [entscheidungsdefinit]], that is, provided it is metamathematically
decidable [entscheidbar] for every formula whether it is an axiom or not (here again
we suppose that the logic used in metamathematics is that of Principia mathematica).

Theorems I, ITT, and IV can be extended also to other formal systems, for example,
to the Zermelo-Fraenkel axiom system of set theory, provided the systems in question
are w-consistent.

The proofs of these theorems will appear in Monatshefte fiir Mathematik und Phystk.

3 This result, in particular, holds also for the axiom system of classical mathematics, as it has
been constructed, for example, by von Neumann (1927).

ON FORMALLY UNDECIDABLE PROPOSITIONS OF PRINCIPIA
MATHEMATICA AND RELATED SYSTEMS I
(1931)

1

The development of mathematics toward greater precision has led, as is well known,
to the formalization of large tracts of it, so that one can prove any theorem using
nothing but a few mechanical rules. The most comprehensive formal systems that
have been set up hitherto are the system of Principia mathematica (PM)? on the one
hand and the Zermelo-Fraenkel axiom system of set theory (further developed by
J. von Neumann)® on the other. These two systems are so comprehensive that in

1 See a summary of the results of the present paper in Gddel 1930b.

2 Whitehead and Russell 1925. Among the axioms of the system PM we include also the axiom
of infinity (in this version: there are exactly denumerably many individuals), the axiom of
reducibility, and the axiom of choice (for all types).

3 See Fraenkel 1927 and von Neumann 1925, 1928, and 1929. We note that in order to complete
the formalization we must add the axioms and rules of inference of the calculus of logic to the
set-theoretic axioms given in the literature cited. The considerations that follow apply also to the
formal systems (so far as they are available at present) constructed in recent years by Hilbert
and his collaborators. See Hailbert 1922, 1922a, 1927, Bernays 1923, von Neumann 1927, and
Ackermann 1924.
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them all methods of proof today used in mathematics are formalized, that is, reduced
to a few axioms and rules of inference. One might therefore conjecture that these
axioms and rules of inference are sufficient to decide any mathematical question that
can at all be formally expressed in these systems. It will be shown below that this is
not the case, that on the contrary there are in the two systems mentioned relatively
simple problems in the theory of integers* that cannot be decided on the basis of the
axioms. This situation is not in any way due to the special nature of the systems that
have been set up but holds for a wide class of formal systems; among these, in
particular, are all systems that result from the two just mentioned through the
addition of a finite number of axioms,® provided no false propositions of the kind
specified in footnote 4 become provable owing to the added axioms.

Before going into details, we shall first sketch the main idea of the proof, of course
without any claim to complete precision. The formulas of a formal system (we restrict
ourselves here to the system PJM) in outward appearance are finite sequences of
primitive signs (variables, logical constants, and parentheses or punctuation dots), and
it is easy to state with complete precision which sequences of primitive signs are
meaningful formulas and which are not.® Similarly, proofs, from a formal point of
view, are nothing but finite sequences of formulas (with certain specifiable properties.)
Of course, for metamathematical considerations it does not matter what objects are
chosen as primitive signs, and we shall assign natural numbers to this use.” Conse-
quently, a formula will be a finite sequence of natural numbers,® and a proof array a
finite sequence of finite sequences of natural numbers. The metamathematical notions
(propositions) thus become notions (propositions) about natural numbers or sequences
of them ;° therefore they can (at least in part) be expressed by the symbols of the
system PM itself. In particular, it can be shown that the notions ““formula’’, “proof
array’’, and “provable formula’ can be defined in the system P ; that is, we can,
for example, find a formula F(v) of PM with one free variable v (of the type of a
number sequence)® such that F(v), interpreted according to the meaning of the terms
of PM, says: v is a provable formula. We now construct an undecidable proposition
of the system PM, that is, a proposition 4 for which neither 4 nor not-A4 is provable,
in the following manner.

4 That is, more precisely, there are undecidable propositions in which, besides the logical
constants — (not), V (or), (x) (for all), and = (identical with), no other notions occur but -+
(addition) and . (multiplication), both for natural numbers, and in which the prefixes (x), too,
apply to natural numbers only.

5 In PM only axioms that do not result from one another by mere change of type are counted
as distinct.

6 Here and in what follows we always understand by ‘‘formula of PM” a formula written
without abbreviations (that is, without the use of definitions). It is well known that [in PM]
definitions serve only to abbreviate notations and therefore are dispensable in principle.

7 That is, we map the primitive signs one-to-one onto some natural numbers. (See how this is
done on page 601.)

8 That is, a number-theoretic function defined on an initial segment of the natural numbers.
(Numbers, of course, cannot be arranged in a spatial order.)

9 In other words, the procedure described above yields an isomorphic image of the system PM
in the domain of arithmetic, and all metamathematical arguments can just as well be carried out
in this isomorphic image. This is what we do below when we sketch the proof; that is, by ‘for-
mula”, “proposition”’, ““variable’’, and so on, we must always understand the corresponding objects
of the isomorphic image.

10 Tt would be very easy (although somewhat cumbersome) to actually write down this formula.
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A formula of PM with exactly one free variable, that variable being of the type of
the natural numbers (class of classes), will be called a class sign. We assume that the
class signs have been arranged in a sequence in some way,!! we denote the nth one
by R(n), and we observe that the notion ““class sign”’, as well as the ordering relation
R, can be defined in the system PM. Let « be any class sign ; by [«; n] we denote the
formula that results from the class sign « when the free variable is replaced by the
sign denoting the natural number n. The ternary relation x = [y; 2], too, is seen to
be definable in PM. We now define a class K of natural numbers in the following way :

ne K = Bew[R(n);n] (1)

(where Bew x means: z is a provable formula).!!® Since the notions that occur in the
definiens can all be defined in PM, so can the notion K formed from them ; that is,
there is a class sign S such that the formula [S; n], interpreted according to the
meaning of the terms of PM, states that the natural number n belongs to K.12 Since
S is a class sign, it is identical with some R(q); that is, we have

S = R(q)

for a certain natural number ¢. We now show that the proposition [E(g); q] is un-
decidable in PM .13 For let us suppose that the proposition [R(q); ¢] were provable;
then it would also be true. But in that case, according to the definitions given above,

g would belong to K, that is, by (1), Bew [R(q); q] would hold, which contradicts the
assumption. If, on the other hand, the negation of [R(q); q] were provable, then

g ¢ K,*®* that is, Bew [R(q); q], would hold. But then [R(q); q], as well as its negation,
would be provable, which again is impossible.

The analogy of this argument with the Richard antinomy leaps to the eye. It is
closely related to the “Liar” too;'* for the undecidable proposition [R(q); q] states
that ¢ belongs to K, that is, by (1), that [R(q); ¢] is not provable. We therefore have
before us a proposition that says about itself that it is not provable [in PM].2° The
method of proof just explained can clearly be applied to any formal system that,
first, when interpreted as representing a system of notions and propositions, has at

11 For example, by increasing sum of the finite sequence of integers that is the “class sign”’,
and lexicographically for equal sums.

112  The bar denotes negation.

12 Again, there is not the slightest difficulty in actually writing down the formula S.

13 Note that “[R(g); ¢]”’ (or, which means the same, ““[S; ¢q]”’) is merely a metamathematical
description of the undecidable proposition. But, as soon as the formula S has been obtained, we
can, of course, also determine the number ¢ and, therewith, actually write down the undecidable
proposition itself. [This makes no difficulty in principle. However, in order not to run into formu-
las of entirely unmanageable lengths and to avoid practical difficulties in the computation of the
number ¢, the construction of the undecidable proposition would have to be slightly modified,
unless the technique of abbreviation by definition used throughout in PM is adopted.]

132 [The German text reads n ¢ K, which is a misprint.])

14 Any epistemological antinomy could be used for a similar proof of the existence of un-
decidable propositions.

15 Contrary to appearances, such a proposition involves no faulty circularity, for initially it
[only] asserts that a certain well-defined formula (namely, the one obtained from the gth formula
in the lexicographic order by a certain substitution) is unprovable. Only subsequently (and so to
speak by chance) does it turn out that this formula is precisely the one by which the proposition
itself was expressed.
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its disposal sufficient means of expression to define the notions occurring in the
argument above (in particular, the notion ‘““provable formula’’) and in which, second,
every provable formula is true in the interpretation considered. The purpose of
carrying out the above proof with full precision in what follows is, among other
things, to replace the second of the assumptions just mentioned by a purely formal
and much weaker one.

From the remark that [R(q); q] says about itself that it is not provable it follows
at once that [R(q); q] is true, for [E(q); ¢] #s indeed unprovable (being undecidable).
Thus, the proposition that is undecidable in the system PM still was decided by meta-
mathematical considerations. The precise analysis of this curious situation leads to
surprising results concerning consistency proofs for formal systems, results that will
be discussed in more detail in Section 4 (Theorem XTI).

2

We now proceed to carry out with full precision the proof sketched above. First
we give a precise description of the formal system P for which we intend to prove
the existence of undecidable propositions. P is essentially the system obtained when
the logic of PM is superposed upon the Peano axioms!® (with the numbers as indi-
viduals and the successor relation as primitive notion).

The primitive signs of the system P are the following:

I. Constants: “ ~ " (not), “ v (or), “II” (for all), ““0” (zero), “f”’ (the successor
of), “(”, ©“)” (parentheses);

I1. Variables of type 1 (for individuals, that is, natural numbers including 0):

LR N3 o«

“ay”, Sy, Y2

Variables of type 2 (for classes of individuals): “x,”, “y,”, “z5”7,...;

Variables of type 3 (for classes of classes of individuals): “x3”, “y5”, “2z5",...;

And so on, for every natural number as a type.!”

Remark : Variables for functions of two or more argument places (relations) need
not be included among the primitive signs since we can define relations to be classes
of ordered pairs, and ordered pairs to be classes of classes; for example, the ordered
pair a, b can be defined to be ((a), (a, b)), where (x, y) denotes the class whose sole
elements are x and y, and () the class whose sole element is x.18

By a sign of type 1 we understand a combination of signs that has [any one of] the

forms
a, fa, ffa, fffa, . .., and so on,

where a is either 0 or a variable of type 1. In the first case, we call such a sign a
numeral. For n > 1 we understand by a sign of type n the same thing as by a variable
of type n. A combination of signs that has the form a(b), where b is a sign of type n

16 The addition of the Peano axioms, as well as all other modifications introduced in the system
PM, merely serves to simplify the proof and is dispensable in principle.

17 It is assumed that we have denumerably many signs at our disposal for each type of
variables.

18 Nonhomogeneous relations, too, can be defined in this manner; for example, a relation
between individuals and classes can be defined to be a class of elements of the form ((z,), ((z;), Z2)).
Every proposition about relations that is provable in PM is provable also when treated in this
manner, as is readily seen.
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and a a sign of type n + 1, will be called an elementary formula. We define the class
of formulas to be the smallest class!® containing all elementary formulas and con-
taining ~ (a), (@) v (b), zII(a) (where x may be any variable)®® whenever it contains
a and b. We call (a) v (b) the disjunction of a and b, ~ (a) the negation and xII(a) a
generalization of a. A formula in which no free variable occurs (free variable being
defined in the well-known manner) is called a sentential formula [Satzformel]. A
formula with exactly » free individual variables (and no other free variables) will be
called an n-place relation sign ; for n = 1 it will also be called a class sign.

By Subst a(}) (where a stands for a formula, v for a variable, and b for a sign of
the same type as v) we understand the formula that results from a if in a we replace
v, wherever it is free, by 5.2° We say that a formula a is a type elevatton of another
formula b if a results from b when the type of each variable occurring in b is increased
by the same number.

The following formulas (I-V) are called axioms (we write them using these abbrevi-
ations, defined in the well-known manner: ., >, =, (Ez), =,2! and observing the
usual conventions about omitting parentheses) :22

I 1. ~(fz, = 0),

2. fxy, = fy102, =y,
3. x,5(0). 2, [1(x4(2,) D 25(fx;)) D 2111 (%5(24)).

II. All formulas that result from the following schemata by substitution of any
formulas whatsoever for p, g, r:

l.pvopop, 3.pVgoqVop
2.pop Vg 4. (p2g)>(r v po7 V Q).

IIT. Any formula that results from either one of the two schemata

1. vII(a) > Subst a(?),
2. vII(b v a)2b v vll(a)

when the following substitutions are made for a, », b, and ¢ (and the operation
indicated by ““Subst” is performed in 1):

For a any formula, for v any variable, for b any formula in which » does not occur
free, and for ¢ any sign of the same type as v, provided ¢ does not contain any variable
that is bound in @ at a place where v is free.2®

19 Concerning this definition (and similar definitions occurring below) see Lukasiewicz and
Tarsks 1930.

182 Hence xI1(a) is a formula even if  does not occur in a or is not free in a. In this case, of
course, zII(a) means the same thing as a.

20 Tn case v does not occur in a as a free variable we put Subst a(}) = a. Note that “Subst”
is a metamathematical sign.

21 g, = vy, is to be regarded as defined by x,IT(xy(x;) D 25(y;)), as in PM (I, x13) similarly for
higher types).

22 Tn order to obtain the axioms from the schemata listed we must therefore

(1) Eliminate the abbreviations and

(2) Add the omitted parentheses
(in II, IT1, and IV after carrying out the substitutions allowed).

Note that all expressions thus obtained are ‘‘formulas” in the sense specified above. (See also
the exact definitions of the metamathematical notions on pp. 603-606.)

23 Therefore c is a variable or 0 or a sign of the form f. . . fu, where u is either 0 or a variable of
type 1. Concerning the notion “‘free (bound) at a place in a’’, see I A 5 in von Neumann 1927.
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IV. Every formula that results from the schema
1. (Bu)(@wIl(u(v) = a))

when for v we substitute any variable of type n, for u one of type n + 1, and for a
any formula that does not contain u free. This axiom plays the role of the axiom of
reducibility (the comprehension axiom of set theory).

V. Every formula that results from

L 2 [I(xy(%;) = yo(®1)) Dy = Yo

by type elevation (as well as this formula itself). This axiom states that a class is
completely determined by its elements.

A formula ¢ is called an immediate consequence of a and b if it is the formula
(~ (b)) Vv (c), and it is called an immediate consequence of a if it is the formula vII(a),
where v denotes any variable. The class of provable formulas is defined to be the
smallest class of formulas that contains the axioms and is closed under the relation
“immediate consequence”.2*

We now assign natural numbers to the primitive signs of the system P by the

following one-to-one correspondence :

“0” ... 1 R 1 “rrro... 9
“f7o.0 3 VA | RGN b |
“)y” .. 13,

to the variables of type n we assign the numbers of the form p™ (where p is a prime
number >13). Thus we have a one-to-one correspondence by which a finite sequence
of natural numbers is associated with every finite sequence of primitive signs (hence
also with every formula). We now map the finite sequences of natural numbers on
natural numbers (again by a one-to-one correspondence), associating the number
2m .32, ... .pk, where p, denotes the kth prime number (in order of increasing
magnitude), with the sequence ny, n,, . .., 7. A natural number [Jout of a certain
subset]] is thus assigned one-to-one not only to every primitive sign but also to every
finite sequence of such signs. We denote by @(a) the number assigned to the primitive
sign (or to the sequence of primitive signs) a. Now let some relation (or class) R(a,,
@y, . . ., a,;) between [or of] primitive signs or sequences of primitive signs be given.
With it we associate the relation (or class) R'(x,, x,, ..., %,) between [or of] natural
numbers that obtains between z,, x,, . . ., x, if and only if there are some a4, a,, ...,
a, such that z; = ®(a;) (¢t =1,2,...,n) and R(a,, a,, ..., a,) hold. The relations
between (or classes of) natural numbers that in this manner are associated with the

<

metamathematical notions defined so far, for example, ““variable””, ‘“formula”, “sen-
tential formula”, “axiom”, “provable formula”’, and so on, will be denoted by the
same words in SMALL CAPITALS. The proposition that there are undecidable problems
in the system P, for example, reads thus: There are SENTENTIAL FORMULAS a such
that neither ¢ nor the NEGATION of @ is a PROVABLE FORMULA.

We now insert a parenthetic consideration that for the present has nothing to do

24 The rule of substitution is rendered superfluous by the fact that all possible substitutions
have already been carried out in the axioms themselves. (This procedure was used also by von
Neumann 1927.)
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with the formal system P. First we give the following definition : A number-theoretic
function?® ¢(,, ,, . . ., ¥,) is said to be recursively defined in terms of the number-
theoretic functions y(x,, 25, . . ., ¥, _1) and u(x,, Ty, . . ., T, 4,) if

(0, Zg, . . ., T,) = P(xg, . . ., T,),
<P(k + 1) x2’ ] xn) = F’(k) ‘P(k; Loy oo ey xn)? Loy e v vy xn)

hold for all z,, .. ., z,, k.28

A number-theoretic function ¢ is said to be recursive if there is a finite sequence of
number-theoretic functions ¢, @y, . . ., @, that ends with ¢ and has the property that
every function g, of the sequence is recursively defined in terms of two of the pre-
ceding functions, or results from any of the preceding functions by substitution,? or,
finally, is a constant or the successor function x + 1. The length of the shortest
sequence of g; corresponding to a recursive function ¢ is called its degree. A relation
R(z,, ..., x,) between natural numbers is said to be recursive?® if there is a recursive
function @(,, ..., ¥,) such that, for all z;, @, . . ., ,,

(2)

R(xy, ..., x,) ~ [y, ..., x,) = 0].2°

The following theorems hold :

1. Every function (relation) obtained from recursive functions (relations) by substitution
of recursive functions for the variables vs recursive; so is every function obtained from
recursive functions by recursive definition according to schema (2);

II. If R and S are recursive relations, so are R and R v S (hence also R & S);

II1. If the functions p(t) and () are recursive, so s the relation p(r) = P(y);3°

IV. If the function ¢(x) and the relation R(x, 1)) are recursive, so are the relations S
and T defined by

S(z, 9) ~ (Ex)x = ¢(x) & R(z, )]

and
T(x, 9) ~ (2)[z = @(x) > B(z, )],
as well as the function  defined by

P, ) = exlz < @(x) & R(z, )],

where ex F'(x) means the least number « for which F(x) holds and 0 in case there is no
such number.

25 That is, its domain of definition is the class of nonnegative integers (or of n-tuples of non-
negative integers) and its values are nonnegative integers.

26 In what follows, lower-case italic letters (with or without subseripts) are always variables
for nonnegative integers (unless the contrary is expressly noted).

27 More precisely, by substitution of some of the preceding functions at the argument places of
one of the preceding functions, for example, g,(x1, Z2) = @pl@q(T1, T2), @r(x2)] (P, ¢ 7 < k). Not
all variables on the left side need occur on the right side (the same applies to the recursion schema
().

28 We include classes among relations (as one-place relations). Recursive relations R, of course,
have the property that for every given n-tuple of numbers it can be decided whether R(z, ...,
z,) holds or not.

29 Whenever formulas are used to express a meaning (in particular, in all formulas expressing
metamathematical propositions or notions), Hilbert’s symbolism is employed. See Hilbert and
Ackermann 1928.

30 We use German letters, z, 9, as abbreviations for arbitrary n-tuples of variables, for example,
1, Tgy - - -y Tpe
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Theorem I follows at once from the definition of “recursive”’. Theorems IT and III
are consequences of the fact that the number-theoretic functions

o(x), Bz, y), v y),
corresponding to the logical notions —, v, and =, namely,
a(0) =1, a(x) =0 forzxz # 0,
B0, x) = B(x,0) = 0, B(x,y) =1 when x and y are both #0,
y(x,y) = 0 whenx =y, y(®,y) =1 when x # vy,

are recursive, as we can readily see. The proof of Theorem IV is briefly as follows.
By assumption there is a recursive p(z, 1) such that

R(z, 9) ~ [p(x, y) = 0].
We now define a function x(z, 1)) by the recursion schema (2) in the following way :

X(O’ t)) = 0,
x(n +1,9) = (n + 1).a + x(n, U)-a(a),al

where a = ofa(p(0, y))].o[p(n + 1,9)].a[x(n, y)]. Therefore x(n + 1,y) is equal
either ton + 1 (if @ = 1) or to y(n, 9) (if @ = 0).32 The first case clearly occurs if and
only if all factors of a are 1, that is, if

R(0,) & B(n + 1,9) & [x(n, y) = 0]

holds. From this it follows that the function y(n, ) (considered as a function of =)
remains 0 up to [but not including]] the least value of n for which R(n, 1)) holds and,
from there on, is equal to that value. (Hence, in case R(0, 1) holds, x(n, 9) is constant
and equal to 0.) We have, therefore,

(x, v) = x(ex), 1),

S(x, 9) ~ Rl$(x. v), v]-

The relation 7' can, by negation, be reduced to a case analogous to that of S. Theorem
IV is thus proved.

The functions  + y, z.y, and 2¥, as well as the relations z < y and = = y, are
recursive, as we can readily see. Starting from these notions, we now define a number
of functions (relations) 1-45, each of which is defined in terms of preceding ones by
the procedures given in Theorems I-IV. In most of these definitions several of the
steps allowed by Theorems I-IV are condensed into one. Each of the functions
(relations) 1-45, among which occur, for example, the notions “ FORMULA”, ““ AXTOM ”’,
and ‘“IMMEDIATE CONSEQUENCE”’, is therefore recursive.

l. 2y = (B2)z Sz &z = y.2],38
x is divisible by y.3*

31 We assume familiarity with the fact that the functions z + y (addition) and z . y (multi-
plication) are recursive.

32 g cannot take values other than 0 and 1, as can be seen from the definition of a.

33 The sign = is used in the sense of ‘‘equality by definition’’ ; hence in definitions it stands for
either = or ~ (otherwise, the symbolism is Hilbert’s).

3¢ Wherever one of the signs (x), (Ex), or ex occurs in the definitions below, it is followed by a
bound on «. This bound merely serves to ensure that the notion defined is recursive (see Theorem
IV). But in most cases the extension of the notion defined would not change if this bound were
omitted.
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2. Prim(z) = (Bx)z S 2 &z#1&2z#42&afz] &z > 1,
x is a prime number.
3. 0 Prx= 0,
(n+ 1) Prx=eyly <« & Prim(y) &xfy &y > n Prx],
n Pr x is the nth prime number (in order of increasing magnitude) contained in x.3**
4. 0! =1,
(n+ D= (n 4+ 1).nl.
5. Pr(0) = 0,
Prin + 1) = eyly < {Pr(n)}! + 1 & Prim(y) &y > Pr(n)],
Pr(n) is the nth prime number (in order of increasing magnitude).
6. nGlx = eyly £ x & z/(n Pra)¥ & z/(n Pra)V*+1],
n Gl x is the nth term of the number sequence assigned to the number = (for n > 0
and n not greater than the length of this sequence).
7. lx)=eyy 2 x&yPrxz>0&(y + 1) Prx=0],
I(x) is the length of the number sequence assigned to z.
8. xxy = ez{z < [Pr(l(z) + 1()**Y & (n)[n £ lxr) >nGlz =nGlx] &

([0 < n = Uy) > (n + Uz)) Glz = n GLy],
x*y corresponds to the operation of ““concatenating’ two finite number sequences.
9. R(x) = 27,
R(z) corresponds to the number sequence consisting of x alone (for x > 0).
10. E(zx) = R(11)*x*xR(13),
E(x) corresponds to the operation of “enclosing within parentheses’ (11 and 13 are
assigned to the primitive signs “(’” and ““)”, respectively).
11. n Varz = (E2)[13 <z £ 2 & Prim(z) & v = 2"] & n # 0,
x iS a VARIABLE OF TYPE 7.
12. Var(z) = (En)[n < x & n Var 2],
Z IS a VARIABLE.
13. Neg(z) = R(5)xE(x),
Neg(x) is the NEGATION of .
14. x Disy = E(x)*R(7)*E(y),
x Dis y is the pIsguNCcTION Of 2 and y.
15. x Geny = R(x)*R(9)*E(y),
x Gen y is the GENERALIZATION of y with respect to the VARIABLE « (provided z is a
VARIABLE).
16. 0N x = z,
(n +1)Nz= RB)sn N «,
n N x corresponds to the operation of ““putting the sign ‘f’ » times in front of x”.
17. Z(n) = n N [R(1)],
Z(n) is the NUMERAL denoting the number n.
18. Typi(x) = (Em,n){m,n < x &[m =1 v 1 Varm] & x = n N [R(m)]},3%?
x is a SIGN OF TYPE 1.

342 For 0 < n = z, where z is the number of distinct prime factors of «. Note that n Prxz = 0
forn =2z + 1.
346 m, n < z stands for m < « & n < z (similarly for more than two variables).
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19. Typ,(x) =[n=1&Typi(x)] VIn >1&
(Bv){v £ « & n Varv & x = R(v)}],
x is a SIGN OF TYPE 7.
20. Elf(x) = (By, 2z, n)[y,z,n = x & Typ,(y) &
Typn+1( ) & & = 2xE(y)],
x is an ELEMENTARY FORMULA.
21. Op(z,y,2) = x = Neg(y) v * = yDisz v (Bv)[v = « & Var(v) &
x = v Gen y].
22. FR(zx) = n){0 < n < lx) > Elf(n Glx) v (Ep,q)[0 < p,g <n &
Qp(n Gl x, pGle, qGla)]} &l(x) > 0,
x IS a SEQUENCE OF FORMULAS, each of which either is an ELEMENTARY FORMULA Or
results from the preceding FOrRMULAS through the operations of NEGATION, DIS-
JUNCTION, Oor GENERALIZATION.
23. Form(x) = (En){n £ (Pr{l(z)?]))*U®” & FR(n) & x = [I(n)] Gl n},3°
x is a FORMULA (that is, the last term of a FORMULA SEQUENCE 7).
24. v Geb n, x = Var(v) & Form(z) & (Fa, b, ¢)[a,b,¢c < z &
x = a*(v Gen b)xc & Form(b) & l(a) + 1 < n < l(a) + U(v Gen b)],
the VARIABLE v is BOUND in z at the nth place.
25. v Frn, x = Var(v) & Form(z) & v = n Glzx & n = l(x) & v Geb n, z,
the VARIABLE v is FREE in x at the nth place.
26. v Frx = (En)[n £ l(x) & v Frn, z],
v occurs as a FREE VARIABLE in .
27. Sua(y) = ezfz = [Pr(l(x) + Uy))*** &[(Eu v) wvz&
x = u*R(n Glx)xv & z = uxyxv & n = lu) + 1]},
Su z(2) results from x when we substitute y for the nth term of z (provided that
0 < n < lx)).

28. 0Stv, x = enfn < l(x) & v Frn,z & (Ep)[n < p < Uzx) & v Frp, ]},
(E+ 1) Stv,x = en{n <kStv,x&v Frn,x & (Ep)n < p < kStv,
& v Frp, z]},

k Stv, x is the (£ + 1)th place in = (counted from the right end of the ForRMULA z)
at which v is FREE in z (and 0 in case there is no such place).
29. A(v,z) = en{n < l(x) & nStv, z = 0},
A(v, z) is the number of places at which v is FREE in z.
30. Sby(x)) = =,
Sbyc 4 1(xy) = Su[Sby(xy)]1(“5%).
31. Sb(w3) = Sbycy.z(2),%°
Sb(x?) is the notion suBsT a(}) defined above.?7
32.  Imp y = [Neg(x)] Dis v,
x Con y = Neg{[Neg(x)] Dis [Neg(y)1},

35 That n < (Pr([l(z)]?))=4="2 provides a bound can be seen thus: The length of the shortest
sequence of formulas that corresponds to x can at most be equal to the number of subformulas
of z. But there are at most /(x) subformulas of length 1, at most /() — 1 of length 2, and so on,
hence altogether at most I(z)({(x) + 1)/2 = [l(x)]2. Therefore all prime factors of n can be assumed
to be less than Pr([l(x)]?), their number =<[(lx)]?, and their exponents (which are subformulas of
z) <.

36 Tn case v is not a VARIABLE Or z is not & FORMULA, Sb(z}) = z.

37 Instead of Sb[Sb(xy)¥) we write Sb(x%¥) (and similarly for more than two VARIABLES).
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x Aeq y = (x Imp y) Con (y Imp z),
v Ex y = Neg{v Gen [Neg(y)]}.
33. nThx = eyly £ 2« & (k)[k < lz) > (kGle =13 & EkGly =kQlz) v
(kGlx >13&kGly = kQlx.[1 Pr(kGla)]™]},
n Th x is the nth TYPE ELEVATION of x (in case x and n Th x are FORMULAS).
Three specific numbers, which we denote by z,, 2,, and z;, correspond to the
Axioms I, 1-3, and we define
34. Z-Ax(x) = (x =2, V & =25 V T = 23).
35. 4,-Ax(x) = (By)ly £ = & Form(y) & « = (y Dis y) Imp y],
x is a FORMULA resulting from Axiom schema II, 1 by substitution. Analogously,
A,-Ax, Az-Ax, and A,-Ax are defined for Axioms [rather, Axiom Schemata] IT, 2—4.
36. A-Ax(x) = A,-Ax(x) v Ay-Ax(x) vV Az-Ax(x) v A,-Ax(x),
x is a FORMULA resulting from a propositional axiom by substitution.
37. Qz,y,v) = (En,m,w)[n SUy) &m 2 lz) &w <2z &
w=mG@Glz&wGebn,y &v Frn,y]
z does not contain any VARIABLE BOUND in y at a place at which v is FREE.
38. Ly-Ax(x) = (Bv, y,2,n){v,y,2,n < x &n Var v & Typ,(z) & Form(y) &
Q(z ¥, v) & = = (v Gen y) Imp [Sb(y2)]),
x is a FORMULA resulting from Axiom schema III, 1 by substitution.
39. Ly-Ax(x) = (Ev, ¢, p){v, ¢, p < x & Var(v) & Form(p) & v Fr p & Form(q) &
x = [v Gen (p Dis ¢)] Imp [p Dis (v Gen g)]},
¥ is a FORMULA resulting from Axiom schema III, 2 by substitution.

40. R-Az(x) = (Bu,v,y, n)[u,v,y,n S x &nVarv& (n + 1) Varu & u Fry &
Form(y) & = u Ex {v Gen [[R(u)*E(R(v))] Aeq y1}],
x is a FORMULA resulting from Axiom schema IV, 1 by substitution.

A specific number z, corresponds to Axiom V, 1, and we define:

41. M-Ax(x) = (En)[n £ x & x = n Thz,].

42. Ax(x) = Z-Ax(x) v 4-Ax(x) v L-Ax(x) Vv Le-Ax(x) v R-Ax(x) v M-Az(z),
x is an AXIOM.

43. Fl(z,y,z) =y =zImpx v (Ev)v £ = & Var(v) & « = v Gen y],

x is an IMMEDIATE CONSEQUENCE of y and z.
44. Bw(x) = (n){0 < n = l(x) > Ax(n Glx) v (Ep,q)[0 < p,g<n &
FiinGlz,p Glx, ¢ Glx)]} & l(x) > 0,
x is a PROOF ARRAY (a finite sequence of FORMULAS, each of which is either an Axiom
or an IMMEDIATE CONSEQUENCE of two of the preceding FORMULAS.
45. x By = Bw(z) & [Ux)] Glz = y,
x is a PROOF of the FORMULA y.

46. Bew(z) = (Ey)y B «,

x is a PROVABLE FORMULA. (Bew(x) is the only one of the notions 1-46 of which we
cannot assert that it is recursive.)

The fact that can be formulated vaguely by saying: every recursive relation is
definable in the system P (if the usual meaning is given to the formulas of this
system), is expressed in precise language, without reference to any interpretation of
the formulas of P, by the following theorem :

Theorem V. For every recursive relation R(xy,...,x,) there exists an n-place
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RELATION SIGN 7 (with the FREE VARIABLES®® w,, u,, . . ., u,) sSuch that for all n-tuples
of numbers (x4, . . ., x,) we have

R(xl’ AR xn) - Bew[Sb(rZ%x”Z?,",)], (3)

R(xlr MR xn) g Bew[Neg(Sb(r;%rl);?rn)))]' (4)

We shall give only an outline of the proof of this theorem because the proof does
not present any difficulty in principle and is rather long.3® We prove the theorem
for all relations R(x,, ..., z,) of the form z, = ¢(x,, .. ., z,)*° (where ¢ is a recursive
function) and we use induction on the degree of ¢. For functions of degree 1 (that is,
constants and the function « + 1) the theorem is trivial. Assume now that ¢ is of
degree m. It results from functions of lower degrees, ¢, ..., ., through the opera-
tions of substitution or recursive definition. Since by the induction hypothesis every-
thing has already been proved for ¢,,..., ., there are corresponding RELATION
SIGNS, 74, ..., 7y, such that (3) and (4) hold. The processes of definition by which ¢
results from ¢, ..., @, (substitution and recursive definition) can both be formally
reproduced in the system P. If this is done, a new RELATION SIGN 7 is obtained from
1, ..., 1%t and, using the induction hypothesis, we can prove without difficulty that
(3) and (4) hold for it. A RELATION SIGN r assigned to a recursive relation*? by this
procedure will be said to be recursive.

We now come to the goal of our discussions. Let « be any class of ForRmuLAs. We
denote by Flg(x) (the set of consequences of x) the smallest set of FOorRMULAS that
contains all FORMULAS of « and all Ax1oMs and is closed under the relation ‘“‘IMMEDI-
ATE CONSEQUENCE”. k is said to be w-consistent if there is no crass sIGN a such that

(n)[Sb(azd,) & Flg(x)] & [Neg(v Gen a)] e Flg(x),

where v is the FREE VARIABLE of the crLAss SIGN a.

Every w-consistent system, of course, is consistent. As will be shown later,
however, the converse does not hold.

The general result about the existence of undecidable propositions reads as follows :

Theorem VI. For every w-consistent recursive class k of FORMULAS there are recursive
CLASS SIGNS 7 such that neither v Gen r nor Neg(v Gen r) belongs to Flg(x) (where v is
the FREE VARIABLE of 7).

Proof. Let « be any recursive w-consistent class of ForMuLAs. We define

Bw,(x) = (n)[n = l(x) > Az(nGlz) v n Glx)ex v

(Ep, )0 < p,g<n& FlinGlz, p Glz, qGla)}] &lz) >0 (5)
38 The VARIABLES %y, . . ., U, can be chosen arbitrarily. For example, there always is an r with the
FREE VARIABLES 17, 19, 23, ..., and so on, for which (3) and (4) hold.

3% Theorem V, of course, is a consequence of the fact that in the case of a recursive relation R
it can, for every n-tuple of numbers, be decided on the basts of the axioms of the system P whether
the relation R obtains or not.

40 From this it follows at once that the theorem holds for every recursive relation, since any such
relation is equivalent to 0 = ¢(x,, . . ., &), where g is recursive.

41 When this proof is carried out in detail, », of course, is not defined indirectly with the help of
its meaning but in terms of its purely formal structure.

42 Which, therefore, in the usual interpretation expresses the fact that this relation holds.
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(see the analogous notion 44),
x B,y = Bwy(x) &[l(z)] Az = (6)
Bew,(z) = (Ey)y B« (6.1)

(see the analogous notions 45 and 46).
We obviously have

(x)[Bew, () ~ z & Flg(«)] (7)
and
(x)[Bew(x) — Bew,(x)]. (8)
We now define the relation
Qx, y) = x B, [Sb(y32,)]- (8.1)

Since ¢ B, y (by (6) and (5)) and Sb(yil,) (by Definitions 17 and 31) are recur-
sive, 80 is Q(z, y). Therefore, by Theorem V and (8) there is a RELATION SIGN ¢ (with
the FREE VARIABLES 17 and 19) such that

x B, [Sb(yzly)] — Bew, [Sb(g3ix) 20)], 9)
and
© By [Sb(yz,))] — Bew, [Neg(Sb(g3{x) 7t))]- (10)
We put
p =17 Gengq (11)

(p is a crASs SIGN with the FREE VARIABLE 19) and
r = 8b(q%(p) (12)

(r is a recursive cLAsS SIGN*3 with the FREE VARIABLE 17).
Then we have

Sb(p3,) = SH((17 Gen qli5,) = 17 Gen Sb(gis,) = 17 Gen (13)
(by (11) and (12)) ;** furthermore
Sb(q%(z) 70y) = Sb(r%(z)) (14)

(by (12)). If we now substitute p for y in (9) and (10) and take (13) and (14) into
account, we obtain

x B, (17 Gen r) — Bew,[Sb(r3,,)], (15)
x B, (17 Gen r) — Bew,[Neg(Sb(ril.))]. (16)

This yields:
1. 17 Gen r is not «-PROVABLE.*® For, if it were, there would (by (6.1)) be an n such

43 Since r is obtained from the recursive RELATION SIGN ¢ through the replacement of & VARIABLE
by a definite number, p. [Precisely stated the final part of this footnote (which refers to a side remark
unnecessary for the proof) would read thus: ‘“ REPLACEMENT of a VARIABLE by the NUMERAL for

44 The operations Gen and Sb, of course, can always be interchanged in case they refer to
different VARIABLES.

45 By ‘“‘x is x-provable’’ we mean z ¢ Flg(«), which, by (7), means the same thing as Bew,(z).
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that n B, (17 Gen 7). Hence by (16) we would have Bew,[Neg(Sb(r7,))], while, on
the other hand, from the x-PROVABILITY of 17 Gen r that of Sb(r}f,)) follows. Hence,
« would be inconsistent (and a fortiori w-inconsistent).

2. Neg(17 Gen 7) is not x-PROVABLE. Proof: As has just been proved, 17 Gen r

is not «-PROVABLE; that is (by (6.1)), (n)n B, (17 Genr) holds. From this,
(n)Bew,[Sb(r7,,)] follows by (15), and that, in conjunction with Bew,[Neg(17 Gen r)],
is incompatible with the w-consistency of «.

17 Gen r is therefore undecidable on the basis of «, which proves Theorem VI.

We can readily see that the proof just given is constructive ;*°® that is, the following
has been proved in an intuitionistically unobjectionable manner: Let an arbitrary
recursively defined class « of FORMULAS be given. Then, if a formal decision (on the
basis of «) of the SENTENTIAL FORMULA 17 Gen » (which [for each «] can actually be
exhibited) is presented to us, we can actually give

1. A prooF of Neg(17 Gen r);

2. For any given n, a PROOF of Sb(r}7,,).

That is, a formal decision of 17 Gen r would have the consequence that we could
actually exhibit an w-inconsistency.

We shall say that a relation between (or a class of) natural numbers R(x,, ..., z,)
is decidable [[entscheidungsdefinit]) if there exists an n-place RELATION SIGN r such that
(3) and (4) (see Theorem V) hold. In particular, therefore, by Theorem V every
recursive relation is decidable. Similarly, a RELATION sIGN will be said to be decidable
if it corresponds in this way to a decidable relation. Now it suffices for the existence
of undecidable propositions that the class « be w-consistent and decidable. For the
decidability carries over from « to « B, y (see (5) and (6)) and to Q(x, y) (see (8.1)),
and only this was used in the proof given above. In this case the undecidable prop-
osition has the form v Gen r, where 7 is a decidable cLass siGN. (Note that it even
suffices that « be decidable in the system enlarged by «.)

If, instead of assuming that « is w-consistent, we assume only that it is consistent,
then, although the existence of an undecidable proposition does not follow [by the
argument given above], it does follow that there exists a property (r) for which it is
possible neither to give a counterexample nor to prove that it holds of all numbers.
For in the proof that 17 Gen r is not «-PROVABLE only the consistency of « was used

(see p. 608). Moreover from Bew, (17 Gen r) it follows by (15) that, for every number
x, Sb(r}l,) is k-PROVABLE and consequently that Neg(Sb(r},,)) is not x-PROVABLE for
any number.

If we adjoin Neg(17 Gen r) to x, we obtain a class of FORMULAS «’ that is con-
sistent but not w-consistent. «’ is consistent, since otherwise 17 Gen r would be

k-PROVABLE. However, «’ is not w-consistent, because, by ]?W,C(N Gen r) and (15),
(x)Bew,Sb(rd?,,) and, a fortiori, (x)Bew,.Sb(rl,,) hold, while on the other hand, of
course, Bew,.[Neg(17 Gen r)] holds.*®
We have a special case of Theorem VI when the class « consists of a finite number
of FORMULAS (and, if we so desire, of those resulting from them by TYPE ELEVATION).
452 Since all existential statements occurring in the proof are based upon Theorem V, which, as
is easily seen, is unobjectionable from the intuitionistic point of view.

46 Of course, the existence of classes x that are consistent but not w-consistent is thus proved
only on the assumption that there exists some consistent « (that is, that P is consistent).
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Every finite class « is, of course, recursive.*%® Let a be the greatest number contained
in k. Then we have for «

xexk~Emn)mZc&n=a&nex &x =mThn].

Hence « is recursive. This allows us to conclude, for example, that, even with the
help of the axiom of choice (for all types) or the generalized continuum hypothesis,
not all propositions are decidable, provided these hypotheses are w-consistent.

In the proof of Theorem VI no properties of the system P were used besides the
following :

1. The class of axioms and the rules of inference (that is, the relation “immediate
consequence’’) are recursively definable (as soon as we replace the primitive signs in
some way by natural numbers);

2. Every recursive relation is definable (in the sense of Theorem V) in the system P.

Therefore, in every formal system that satisfies the assumptions 1 and 2 and is
w-consistent there are undecidable propositions of the form (z)F(x), where F is a
recursively defined property of natural numbers, and likewise in every extension of
such a system by a recursively definable w-consistent class of axioms. As can easily
be verified, included among the systems satisfying the assumptions 1 and 2 are the
Zermelo-Fraenkel and the von Neumann axiom systems of set theory,?” as well as
the axiom system of number theory consisting of the Peano axioms, recursive def-
inition (by schema (2)), and the rules of logic.*® Assumption 1 is satisfied by any system
that has the usual rules of inference and whose axioms (like those of P) result from a
finite number of schemata by substitution.*8®

3

We shall now deduce some consequences from Theorem VI, and to this end we give
the following definition :

A relation (class) is said to be arithmetic if it can be defined in terms of the notions
+ and . (addition and multiplication for natural numbers)*® and the logical con-
stants v, =, (x), and =, where (x) and = apply to natural numbers only.5° The
notion ‘““arithmetic proposition” is defined accordingly. The relations “greater than”
and ““congruent modulo n”’, for example, are arithmetic because we have

x>y~ (Bly = + 2],
r=ymodn)~ (Bz)xt =y +2.nVy=zx+z.nl]

462 [On page 190, lines 21, 22, and 23, of the German text the three occurrences of « are mis-
prints and should be replaced by occurrences of «.]|

47 The proof of assumption 1 turns out to be even simpler here than for the system P, since there
is just one kind of primitive variables (or two in von Neumann’s system).

48 See Problem III in Hilbert 1928a.

482 As will be shown in Part II of this paper, the true reason for the incompleteness inherent in
all formal systems of mathematics is that the formation of ever higher types can be continued
into the transfinite (see Hilbert 1925, p. 184 [above, p. 387]), while in any formal system at most
denumerably many of them are available. For it can be shown that the undecidable propositions
constructed here become decidable whenever appropriate higher types are added (for example,
the type w to the system P). An analogous situation prevails for the axiom system of set theory.

49 Here and in what follows, zero is always included among the natural numbers.

50 The definiens of such a notion, therefore, must consist exclusively of the signs listed, variables
for natural numbers, z, y, ..., and the signs 0 and 1 (variables for functions and sets are not
permitted to occur). Instead of « any other number variable, of course, may occur in the prefixes.
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We now have -
Theorem VII. Every recursive relation is arithmetic.
We shall prove the following version of this theorem: every relation of the form

xy = @(xy, . . ., T,), where @ is recursive, is arithmetic, and we shall use induction on
the degree of g. Let ¢ be of degree s (s > 1). Then we have either
L o@(y, ...y @) = plxa(®rs -« s o)y Xa(@1s o s Tp)y oo vy Xml®1, - - 5 @)%

where p and all y, are of degrees less than s) or
( P g
2. o0, g, . . ., x,) = Py, . . ., X,),

ok + 1,25, ...,2,) = plk, p(k, zg, . . ., 2,), Xy, . . ., Tp)

(where ¢ and p are of degrees less than s).
In the first case we have

Ty = @(y, - - -, T,) ~ (E?/l’ cees ym)[R(xO: Yoo Ym) &
S, oo ®y) & o0 &S (Ums T1s - -y X)),

where R and 8, are the arithmetic relations, existing by the induction hypothesis,

that are equivalent to o = p(yy, . . ., ¥n) and y = x;(xy, . . ., ,), respectively. Hence
in this case z, = @(4, . . ., %,) is arithmetic.

In the second case we use the following method. We can express the relation
Ty = @(Zy, ..., x,) with the help of the notion “sequence of numbers” (f)%2 in the

following way :
Lo = ‘P(xlx ) xn) ~ (Ef){fo = l)[J(xm K} xn) & (k)[k < T —>
Jesr = wlk, fis 2o -+ - 2,)] & 29 = fxl}

If S(y, x5, . . ., x,) and T'(z, x,, ..., ®,,,) are the arithmetic relations, existing by
the induction hypothesis, that are equivalent to y = y(x,, ..., x,) and z = u(zy, ...,
Z, 1), respectively, then

Lo = ‘P(xl’ SRR xn) ~ (Ef){S(fO! Loy« v vy xn) & (k)[k < & —>
T(fk+1! krferZr"':xn)]&xO =fl‘1}' (17)

We now replace the notion “sequence of numbers” by “ pair of numbers”’, assigning
to the number pair n, d the number sequence f™® (f* ¢ = [n];, 4 41y4), Where [r],
denotes the least nonnegative remainder of n modulo p.

We then have

Lemma 1. If f is any sequence of natural numbers and % any natural number,
there exists a pair of natural numbers, n, d such that f™ @ and f agree in the first k
terms.

Proof. Let | be the maximum of the numbers &, fo, fy, ..., fi_,. Let us determine
an n such that

n = fi[mod(l + (¢ + 1)l1)] for¢=0,1,...,k — 1,
which is possible, since any two of the numbers 1 + (¢ + 1)I! (: =0,1,...,k — 1)
51 Of course, not all x4, . . ., z, need occur in the x; (see the example in footnote 27).

52 f here is a variable with the [infinite] sequences of natural numbers as its domain of values.
fx denotes the (k + 1)th term of a sequence f (f, denoting the first).
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are relatively prime. For a prime number contained in two of these numbers would
also be contained in the difference (i, — 7,)l! and therefore, since |1, — 75| < I, in I!;
but this is impossible. The number pair », I! then has the desired property.

Since the relation = [n], is defined by

x=mn(modp)&x<p
and is therefore arithmetic, the relation P(x,, z,, ..., z,), defined as follows:
Py, ..., 2,) = (BEn, d){S([n)g+1, Xgs - - -, T,) & (k) [k < 2y —
T([n]y+age+2 b [M)14 a1y Tos -+ -5 )] & T = ["]1+d(x1 +1b

is also arithmetic. But by (17) and Lemma 1 it is equivalent to z, = @(xy, ..., ,)
(the sequence f enters in (17) only through its first #; + 1 terms). Theorem VII is
thus proved.

By Theorem VII, for every problem of the form (x) F(x) (with recursive F) there is
an equivalent arithmetic problem. Moreover, since the entire proof of Theorem VII
(for every particular F) can be formalized in the system P, this equivalence is
provable in P. Hence we have

Theorem VIII. In any of the formal systems mentioned in Theorem VI3 there are
undecidable arithmetic propositions.

By the remark on page 610, the same holds for the axiom system of set theory and
its extensions by w-consistent recursive classes of axioms.

Finally, we derive the following result:

Theorem IX. In any of the formal systems mentioned in Theorem VI®® there are
undecidable problems of the restricted functional calculus®® (that is, formulas of the
restricted functional calculus for which neither validity nor the existence of a
counterexample is provable).5®

This is a consequence of

Theorem X. Every problem of the form (x)F(x) (with recursive F) can be reduced to
the question whether a certain formula of the restricted functional calculus s satisfiable
(that is, for every recursive F we can find a formula of the restricted functional cal-
culus that is satisfiable if and only if (x)F(x) is true.

By formulas of the restricted functional calculus (r. f. ¢.) we understand expres-
sions formed from the primitive signs =, v, (z), =, «, ¥, ... (individual variables),
F(x), Xz, y), H(z, vy, 2),... (predicate and relation variables), where () and = apply
to individuals only.5® To these signs we add a third kind of variables, ¢(z), ¥(z, ¥),

53 These are the w-consistent systems that result from P when recursively definable classes of
axioms are added.

5¢ See Hilbert and Ackermann 1928.

In the system P we must understand by formulas of the restricted functional calculus those that
result from the formulas of the restricted functional calculus of PM when relations are replaced
by classes of higher types as indicated on page 599.

55 In 1930a I showed that every formula of the restricted functional calculus either can be
proved to be valid or has a counterexample. However, by Theorem IX the existence of this
counterexample is not always provable (in the formal systems we have been considering).

56 Hilbert and Ackermann (1928) do not include the sign = in the restricted functional calculus.
But for every formula in which the sign = occurs there exists a formula that does not contain this
sign and is satisfiable if and only if the original formula is (see Qddel 1930a).
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x(x, ¥, z), and so on, which stand for object-functions] Gegenstandsfunktionen] (that
is, @(x), Y(x, y), and so on denote single-valued functions whose arguments and values
are individuals).5” A formula that contains variables of the third kind in addition to
the signs of the r. f. c. first mentioned will be called a formula in the extended sense
(1. e. 5.).58 The notions “‘satisfiable”” and ““valid”’ carry over immediately to formulas
i. e. s., and we have the theorem that, for any formula 4 i. e. s., we can find a formula
B of the r. f. c. proper such that 4 is satisfiable if and only if B is. We obtain B from
A by replacing the variables of the third kind, ¢(z), (2, y), . . ., that occur in 4 with
expressions of the form (12) F(z, z), (12)G(z, «, y), . . ., by eliminating the *descriptive ”’
functions by the method used in PM (I, *x14), and by logically multiplying®® the
formula thus obtained by an expression stating about each F, G, ... put in place of
some g, i, . .. that it holds for a unique value of the first argument [for any choice
of values for the other arguments].

We now show that, for every problem of the form (x) F(x) (with recursive F'), there
is an equivalent problem concerning the satisfiability of a formula i. e. s., so that, on
account of the remark just made, Theorem X follows.

Since F is recursive, there is a recursive function @(x) such that F(x) ~[P(x) = 0],
and for @ there is sequence of functions, @,, @,, ..., @,, such that &, = &, D,(x)
=z + 1, and for every @, (1 < k£ < n) we have either

1. (@5 -« vy ) [DPr(0, 2o, . . ., X)) = Pp(2g, ..., Tp)],
(27, xz, MR ] xm){¢k[d)1(x)’ xz: L] xm] = ¢q[x’ d)k(x: xz, LRI xm)r xz: LN xm]}’ (18)
with p, ¢ < k5%

or
2' (xI’ cet xm)[d)k(xl’ MR xm) = q§r(q§i1(gl)’ cr qiis(gs))]rso (19)
with r < k,3, < k(forv =1,2,...,s),
or
3' (xl’ L] xm)[qsk(xl’ R xm) = QI(QI, R @1 (0))] (20)

We then form the propositions
(@)Dy(x) = 0 & (z, Y)[D1(7) = Pi(y) >z = Y], (21)
(@)[P,(x) = 0]. (22)

In all of the formulas (18), (19), (20) (for £ = 2, 3, ..., n) and in (21) and (22) we
now replace the functions @; by function variables ¢; and the number 0 by an

57 Moreover, the domain of definition is always supposed to be the entire domain of individuals.

58 Variables of the third kind may occur at all argument places occupied by individual variables,
for example, y = ¢(x), F(z, ¢(y)), G(¢(x, ¢(y)), ), and the like.

59 That is, by forming the conjunction.

5% [The last clause of footnote 27 was not taken into account in the formulas (18). But an
explicit formulation of the cases with fewer variables on the right side is actually necessary here
for the formal correctness of the proof, unless the identity function, I(x) = x, is added to the
initial functions.]

80 The &; (+ = 1, ..., s) stand for finite sequences of the variables z,, @,, . . ., z,,; for example,
zy, T3, Xo.
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individual variable x, not used so far, and we form the conjunction C of all the
formulas thus obtained.

The formula (Ex,)C then has the required property, that is,

1. If (z)[®P(x) = 0] holds, (Ex,)C is satisfiable. For the functions @,, @,,..., D,
obviously yield a true proposition when substituted for ¢, @,, . . ., @, in (Bx,)C);

2. If (Ex,)C is satisfiable, (z)[®P(x) = 0] holds.

Proof. Let i, 4, . . ., ¥, be the functions (which exist by assumption) that yield a
true proposition when substituted for ¢;, @,, . . ., ¢, in (Ex,)C. Let I be their domain
of individuals. Since (Ex,)C holds for the functions i, there is an individual a (in
) such that all of the formulas (18)—(22) go over into true propositions, (18")—-(22),
when the @, are replaced by the i, and 0 by a. We now form the smallest subclass
of & that contains a and is closed under the operation ¥, (). This subclass () has the
property that every function ;, when applied to elements of ¥, again yields elements
of &'. For this holds of i, by the definition of &', and by (18’), (19’), and (20") it
carries over from ; with smaller subscripts to i; with larger ones. The functions that
result from the i, when these are restricted to the domain &' of individuals will be
denoted by ;. All of the formulas (18)—(22) hold for these functions also (when we
replace 0 by a and @, by ;).

Because (21) holds for ¢} and a, we can map the individuals of Y’ one-to-one onto
the natural numbers in such a manner that a goes over into 0 and the function
into the successor function @,. But by this mapping the functions ¢ go over into the
functions @;, and, since (22) holds for ¢, and a, (z)[®,(x) = 0], that is, (z)[P(z) = 0],
holds, which was to be proved.5!

Since (for each particular F) the argument leading to Theorem X can be carried
out in the system P, it follows that any proposition of the form (x)F(x) (with recur-
sive F) can in P be proved equivalent to the proposition that states about the corre-
sponding formula of the r. f. c. that it is satisfiable. Hence the undecidability of one
implies that of the other, which proves Theorem IX.62

4

The results of Section 2 have a surprising consequence concerning a consistency
proof for the system P (and its extensions), which can be stated as follows :

Theorem XI. Let « be any recursive consistent®® class of FORMULAS ; then the SENTEN-
TIAL FORMULA stating that « ts consistent s not k-PROVABLE ; in particular, the consis-
tency of P is not provable in P,%* provided P is consistent (in the opposite case, of
course, every proposition is provable [in P]).

The proof (briefly outlined) is as follows. Let « be some recursive class of FORMULAS
chosen once and for all for the following discussion (in the simplest case it is the

61 Theorem X implies, for example, that Fermat’s problem and Goldbach’s problem could be
solved if the decision problem for the r. f. ¢. were solved.

62 Theorem IX, of course, also holds for the axiom system of set theory and for its extensions
by recursively definable w-consistent classes of axioms, since there are undecidable propositions
of the form (x) F(x) (with recursive F') in these systems too.

63 ““k is consistent’’ (abbreviated by ‘“Wid(x)”’) is defined thus: Wid(x) = (Ex)(Form(x) &

Bew,(z)).
64 This follows if we substitute the empty class of FORMULAS for «.
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empty class). As appears from 1, page 608, only the consistency of « was used in
proving that 17 Gen r is not xk-PROVABLE ;5% that is, we have

Wid(x) — Bew,(17 Gen r), (23)
that is, by (6.1),
Wid(x) — (x) « B, (17 Gen r).
By (13), we have
17 Gen r = Sb(pz,),
hence
Wid(x) — (2) © By Sb(p3iy)),
that is, by (8.1),
Wid(x) - (2)@(2), p). (24)

We now observe the following : all notions defined (or statements proved) in Section
2,56 and in Section 4 up to this point, are also expressible (or provable) in P. For
throughout we have used only the methods of definition and proof that are customary
in classical mathematics, as they are formalized in the system P. In particular, « (like
every recursive class) is definable in P. Let w be the SENTENTIAL FORMULA by which
Wid(x) is expressed in P. According to (8.1), (9), and (10), the relation Q(z, y) is
expressed by the RELATION SIGN ¢, hence Q(z, p) by r (since, by (12), r = Sb(¢%,)),
and the proposition (z)Q(x p) by 17 Gen r.

Therefore, by (24), w Imp (17 Gen r) is provable in P®7 (and a fortiori xk-PROVABLE).
If now w were «-PROVABLE, then 17 Gen » would also be k-PROVABLE, and from this
it would follow, by (23), that « is not consistent.

Let us observe that this proof, too, is constructive ; that is, it allows us to actually
derive a contradiction from «, once a PROOF of w from « is given. The entire proof of
Theorem XTI carries over word for word to the axiom system of set theory, M, and to
that of classical mathematics,®® 4, and here, too, it yields the result: There is no
consistency proof for M, or for 4, that could be formalized in M, or 4, respectively,
provided M, or 4, is consistent. I wish to note expressly that Theorem XI (and the
corresponding results for M and A4) do not contradict Hilbert’s formalistic viewpoint.
For this viewpoint presupposes only the existence of a consistency proof in which
nothing but finitary means of proof is used, and it is conceivable that there exist
finitary proofs that cannot be expressed in the formalism of P (or of M or A4).

Since, for any consistent class «, w is not x-PROVABLE, there always are prop-
ositions (namely w) that are undecidable (on the basis of «) as soon as Neg(w) is not
k-PROVABLE ; in other words, we can, in Theorem VI, replace the assumption of
w-consistency by the following: The proposition ‘“« is inconsistent” is not x-PROV-
ABLE. (Note that there are consistent « for which this proposition is xk-PROVABLE.)

85 Of course, r (like p) depends on «.

66 From the definition of ‘‘recursive’ on page 602 to the proof of Theorem VI inclusive.

87 That the truth of w Imp (17 Gen r) can be inferred from (23) is simply due to the fact that
the undecidable proposition 17 Gen r asserts its own unprovability, as was noted at the very
beginning.

68 See von Neumann 1927.
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In the present paper we have on the whole restricted ourselves to the system P,
and we have only indicated the applications to other systems. The results will be
stated and proved in full generality in a sequel to be published soon.8® In that paper,
also, the proof of Theorem XI, only sketched here, will be given in detail.

Note added 28 August 1963. In consequence of later advances, in particular of the
fact that due to A. M. Turing’s work®® a precise and unquestionably adequate
definition of the general notion of formal system’ can now be given, a completely
general version of Theorems VI and XTI is now possible. That is, it can be proved
rigorously that in every consistent formal system that contains a certain amount of
finitary number theory there exist undecidable arithmetic propositions and that,
moreover, the consistency of any such system cannot be proved in the system.

682 TThis explains the ‘“I” in the title of the paper. The author’s intention was to publish this
sequel in the next volume of the Monatshefte. The prompt acceptance of his results was one of the
reasons that made him change his plan.]]

69 See Turing 1937, p. 249.

70 In my opinion the term ‘formal system’’ or ““formalism’’ should never be used for anything
but this notion. In a lecture at Princeton (mentioned in Princeton University 1946, p. 11 [[see
Davis 1965, pp. 84-88])) I suggested certain transfinite generalizations of formalisms, but these
are something radically different from formal systems in the proper sense of the term, whose
characteristic property is that reasoning in them, in principle, can be completely replaced by
mechanical devices.

ON COMPLETENESS AND CONSISTENCY
(1931a)

Let Z be the formal system that we obtain by supplementing the Peano axioms
with the schema of definition by recursion (on one variable) and the logical rules of
the restricted functional calculus. Hence Z is to contain no variables other than
variables for individuals (that is, natural numbers), and the principle of mathematical
induction must therefore be formulated as a rule of inference. Then the following
hold :

1. Given any formal system S in which there are finitely many axioms and in
which the sole principles of inference are the rule of substitution and the rule of
implication, if S contains! Z, S is incomplete, that is, there are in S propositions (in

! That a formal system S contains another formal system 7' means that every proposition
expressible (provable) in 7' is expressible (provable) also in S.

[Remark by the author, 18 May 1966 :])

[This definition is not precise, and, if made precise in the straightforward manner, it does not
yield a sufficient condition for the nondemonstrability in S of the consistency of S. A sufficient
condition is obtained if one uses the following definition: ‘S contains 7' if and only if every
meaningful formula (or axiom or rule (of inference, of definition, or of construction of axioms))
of T i¢s a meaningful formula (or axiom, and so forth) of S, that is, if S is an extension of 7'”.

Under the weaker hypothesis that Z is recursively one-to-one translatable into S, with demon-
strability preserved in this direction, the consistency, even of very strong systems S, may be
provable in S and even in primitive recursive number theory. However, what can be shown to be
unprovable in S is the fact that the rules of the equational calculus applied to equations, between
primitive recursive terms, demonstrable in S yield only correct numerical equations (provided
that S possesses the property that is asserted to be unprovable). Note that it is necessary to
prove this ‘“‘outer’ consistency of S (which for the usual systems is trivially equivalent with
consistency) in order to ‘‘justify’’, in the sense of Hilbert’s program, the transfinite axioms of a
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particular, propositions of Z) that are undecidable on the basis of the axioms of S,
provided that S is w-consistent. Here a system is said to be w-consistent if, for no

property F of natural numbers, (Ex)f"—x as well as all the formulas F(3),7: = 1,2,...,
are provable.

2. In particular, in every system S of the kind just mentioned the proposition that
S is consistent (more precisely, the equivalent arithmetic proposition that we obtain
by mapping the formulas one-to-one on natural numbers) is unprovable.

Theorems 1 and 2 hold also for systems in which there are infinitely many axioms
and in which there are other principles of inference than those mentioned above,
provided that when we enumerate the formulas (in order of increasing length and, for
equal length, in lexicographical order) the class of numbers assigned to the axioms
is definable and decidable [entscheidungsdefinit] in the system Z, and that the same
holds of the following relation R(x,, %, ..., ,) between natural numbers: “the for-
mula with number z, follows from the formulas with numbers z,, ..., z, by a single
application of one of the rules of inference”. Here a relation (class) R(x;, ,, . . ., ;)
is said to be decidable in Z if for every n-tuple (ky, ko, . . ., k,) of natural numbers
either R(k,, ko, .. ., k,) or R(ky, ks, . . ., k,) is provable in Z. (At present no decidable
number-theoretic relation is known that is not definable and decidable already in Z.)

If we imagine that the system Z is successively enlarged by the introduction of
variables for classes of numbers, classes of classes of numbers, and so forth, together
with the corresponding comprehension axioms, we obtain a sequence (continuable
into the transfinite) of formal systems that satisfy the assumptions mentioned above,
and it turns out that the consistency (w-consistency) of any of those systems is
provable in all subsequent systems. Also, the undecidable propositions constructed
for the proof of Theorem 1 become decidable by the adjunction of higher types and
the corresponding axioms; however, in the higher systems we can construct other
undecidable propositions by the same procedure, and so forth. To be sure, all the
propositions thus constructed are expressible in Z (hence are number-theoretic prop-
ositions); they are, however, not decidable in Z, but only in higher systems, for
example, in that of analysis. In case we adopt a type-free construction of mathematics,
as is done in the axiom system of set theory, axioms of cardinality (that is, axioms
postulating the existence of sets of ever higher cardinality) take the place of the type
extensions, and it follows that certain arithmetic propositions that are undecidable
in Z become decidable by axioms of cardinality, for example, by the axiom that there
exist sets whose cardinality is greater than every «,, where oy = Ry, o, = 2%n.

system S. (*‘Rules of the equational calculus” in the foregoing means the two rules of substituting
primitive recursive terms for variables and substituting one such term for another to which it
has been proved equal.)

The last-mentioned theorem and Theorem 1 of the paper remain valid for much weaker systems
than Z, in particular for primitive recursive number theory, that is, what remains of Z if quanti-
fiers are omitted. With insignificant changes in the wording of the conclusions of the two theorems
they even hold for any recu?sive translation into S of the equations between primitive recursive
terms, under the sole hypothesis of w-consistency (or outer consistency) of S in this translation.]



