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In his doctoral dissertation at the
University of Vienna (1930)® Godel proved
that the predicate calculus of first order
is complete, in the sense that every valid
formula is provable. The present paper is
a rewritten version of this dissertation.

At the beginning of the paper Godel
mentions Whitehead and Russell’s
method of deriving logic and mathe-
matics from axioms by means of purely
formal rules, and he writes: ‘“ Of course,
when such a procedure is followed the
question at once arises whether the
initially postulated system of axioms and
principles of inference is complete”’. One
must acknowledge that Whitehead and
Russell had not shown much concern for
that problem, any more than they did in
general for questions that, being semantic
in character, went beyond provability in
their system.

The statement that the pure predicate
calculus of first order is complete, that is,
that every valid formula is provable, is
equivalent to the statement that every
formula is either refutable or satisfiable.
Godel actually proves a stronger state-
ment, namely, that every formula is
either refutable or X,-satisfiable. Hence
his proof yields, besides completeness, the
Loéwenheim—Skolem  theorem, which
states that a satisfiable formula is R,-
satisfiable. The proof makes use of a
number of devices introduced by Lowen-
heim (71915) and Skolem (1920 ; see also

1922, 1928, and 1929) but contains a
step (Theorem VI) through which sem-
antic arguments are connected with
provability in a definite system. At about
the same time, Herbrand, too, was ex-
panding Loéwenheim’s and Skolem’s
work ; the relation between Godel’s
methods and results and those of Her-
brand (1930) was brought out by Dreben
(1952 ; see also above, pp. 510 and 579).

Godel generalizes his result—that every
formula is either refutable or satisfiable
—in two directions, to the predicate cal-
culus of first order with identity (in
which some irrefutable formulas are fin-
itely satisfiable without being X,-satis-
fiable) and to infinite sets of formulas.
The second generalization (Theorem IX)
is derived from the result now known as -
the finiteness, or compactness, theorem
(Theorem X), of which Gédel gives a
semantic proof.

By using the procedure of arithmetiza-
tion introduced by Godel in another
paper (1931), Hilbert and Bernays (1939,
pPp- 205-253) were able to give what they
call a “proof-theoretic”” version of
Godel’s completeness theorem: if a for-
mula is irrefutable in the pure predicate
calculus of first order, it is irrefutable

1T am indebted to Professor H. Hahn for
several valuable suggestions that were of help
to me in writing this paper.

2 The degree was granted on 6 February
1930.
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also in every consistent system S that
remains consistent when the axioms of
number theory, as well as any verifiable
formulas of the theory, are added to the
axioms of § (p. 252; see also Theorem 36
in Kleene 1952, p. 395).

This proof-theoretic form of Godel’s
completeness theorem was extended to
the case of infinitely many formulas by
Wang (1951; see also 1950, p. 449,
Theorem 5, and 1962, pp. 345-352) and
modified so as to give a sharp form of the
Lowenheim-Skolem theorem. If Con(ZX)
is the usual formula expressing the con-
sistency of a first-order system X, the re-
sult, called Bernays’s lemma by Wang,
says that, if we add Con(2) to number
theory as a new axiom, we can prove in
the resulting system arithmetic transla-
tions of all theorems of 2. This lemma has
been applied in several directions (see, for
instance, Wang 1952 and 1955).

The Lowenheim—Skolem  theorem
shows that, if the predicates assigned to
predicate letters in accordance with the
definition of validity are just number-
theoretic predicates, the class of formulas
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that turn out to be always true coincides
with the class of valid formulas. Kleene
(1952, pp. 394-395), making explicit some
results obtained by Hilbert and Bernays
in their arithmetization of Godel’s com-
pleteness proof, showed that the predi-
cates can be further restricted to the
class X, n I1, (in the hierarchy of arith-
metic predicates). Putnam (1961 and
1965) refined Kleene’s result; he restric-
ted the predicates to the class X, the
smallest class that contains the recur-
sively enumerable predicates and is closed
under truth functions; earlier Kreisel
(1953) and Mostowski (1955) had shown
that the predicates could not be restricted
to the class of recursive predicates, and
Putnam (1956) that they could not be re-
stricted to the class 2, u IT,.

Another proof of the completeness of
first-order logic, along lines somewhat
different from those of Gédel’s proof, was
given by Henkin (1949).

The translation is by Stefan Bauer-
Mengelberg, and it is printed here with
the kind permission of Professor Goédel
and Springer Verlag.

Whitehead and Russell, as is well known, constructed logic and mathematics by
initially taking certain evident propositions as axioms and deriving the theorems of
logic and mathematics from these by means of some precisely formulated principles
of inference in a purely formal way (that is, without making further use of the meaning
of the symbols). Of course, when such a procedure is followed the question at once
arises whether the initially postulated system of axioms and principles of inference is
complete, that is, whether it actually suffices for the derivation of every true logico-
mathematical proposition, or whether, perhaps, it is conceivable that there are true
propositions (which may even be provable by means of other principles) that cannot
be derived in the system under consideration. For the formulas of the propositional
calculus the question has been settled affirmatively; that is, it has been shown? that
every true formula of the propositional calculus does indeed follow from the axioms
given in Principia mathematica. The same will be done here for a wider realm of
formulas, namely, those of the “restricted functional calculus”;® that is, we shall
prove

2 See Bernays 1926.

3 In terminology and symbolism this paper follows Hilbert and Ackermann 1928. According to
that work, the restricted functional calculus contains the logical expressions that are constructed
from propositional variables, X, Y, Z, .. ., and functional variables (that is, variables for proper-
ties and relations) of type 1, F(xz), G(z, y), H(, ¥, z), - . ., by means of the operations V (or), — (not),
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THEOREM 1. Every valid* formula of the restricted functional calculus is provable.

We lay down the following system of axioms® as a basis:

Undefined primitive notions: v, —, and (z). (By means of these, &, —, ~, and
(Ex) can be defined in a well-known way.)

Formal axioms:

.Xv X—>X, 4. (X—>Y)>[ZVv X—>Z VY]
2. X>XVv7Y, 5. (x)F(x) - F(y),
3.XvY->YvVvX, 6. (@)X vV Flz)] > X Vv (z)F(x).

Rules of inference :6

1. The inferential schema: From 4 and 4 — B, B may be inferred ;

2. The rule of substitution for propositional and functional variables ;

3. From A4(z), (x)A(z) may be inferred ;

4. Individual variables (free or bound) may be replaced by any others, so long as
this does not cause overlapping of the scopes of variables denoted by the same sign.
For what follows, it will be expedient to introduce some abbreviated notations.

(P), (@), (R), and so on mean prefixes constructed in any way whatever, that is,
finite sequences of signs of the form (z)(Ey), (y)(x)(Ez)(u), and the like.

Lower-case German letters, r, 1, u, v, and so on, mean n-tuples of individual
variables, that is, sequences of signs of the form z, y, z, or x,, x,, z,, x5, and the like,
where the same variable may occur several times. The signs (z), (Ex), and so on are to
be understood accordingly. Should a variable occur several times in r, we must,
of course, think of it as written only once in (x) or (EY).

Furthermore we require a number of lemmas, which are collected here. The proofs
are not given, since they are in part well known, in part easy to supply.

1. For every n-tuple ¢

(a) (x)F(x) — (Ex)F(),
(®) (®)F(x) & (Ex)G(x) - (Ex)[F(x) & G(v)],

(c) (®)F(x) ~ (E(x)F(x))

are provable.
2. If ¢ and ¢’ differ only in the order of the variables, then

(Ex) F(x) - (BY')F(x)
is provable.

(z) (for all), (Ex) (there exists), with the variable in the prefixes (z) or (Ex) ranging over individuals
only, not over functions. A formula of this kind is said to be valid (tautological) if a true proposition
results from every substitution of specific propositions and functions for X, Y, Z, ... and F(x),
G(z, y), . . ., respectively (for example, (z)[F(x) V F_(x)-]).

% To be more precise, we should say ‘‘valid in every domain of individuals’’, which, according
to well-known theorems, means the same as ‘“ valid in the denumerable domain of individuals”.
For a formula with free individual variables, 4(z, y, ..., w), “valid’ means that (z)(y)...(w)4
(2, y, ..., w) is valid and ‘‘satisfiable”’ that (Ez)(Ey)...(Ew)4(z,y, ..., w) is satisfiable, so that
the following holds without exception: ‘“ 4 is valid” is equivalent to ‘‘ 4 is not satisfiable’’.

5 It coincides (except for the associative principle, which P. Bernays proved to be redundant)
with that given in Whitehead and Russell 1910, 1 and *10.

¢ Although Whitehead and Russell use these rules throughout their derivations, they do not
formulate all of them explicitly.
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3. If ¢ consists entirely of distinct variables and if ' has the same number of
terms as g, then

() F(x) = () F(x)

is provable, even when a number of identical variables occur in g’.
4. If (p;) means one of the prefixes (z;) or (Ex;) and if (¢;) means one of the prefixes
(y) or (Ey;), then

(pl)(p2) . '(pn)F(xl’ Loy -« v xn) & (91)(92) . (q":)G(yl) Y2, - -+ ym)
~ (P)[F(xlr Loy e v es xn) & G(ylr er R ym)]

is provable” for every prefix (P) that is formed from the (p;) and the (¢;) and satisfies
the condition that, for ¢ < k < n, (p;) precedes (p,) and, for i < k < m, (¢,) precedes
(gx)-

5. Every expression can be brought into normal form ; that is, for every expression
A there is a normal formula N such that 4 ~ N is provable.®

6. If 4 ~ B is provable, so is §(4) ~ §(B), where {(4) represents an arbitrary
expression containing A4 as a part (see Hilbert and Ackermann 1928, chap. 3, § 7).

7. Every valid formula of the propositional calculus is provable; that is, Axioms
1-4 form a complete axiom system for the propositional calculus.®

We now proceed to the proof of Theorem I and first note that the theorem can also
be stated in the following form :

THEOREM II. Every formula of the restricted functional calculus is either refutable'®
or satisfiable (and, moreover, satisfiable in the denumerable domain of individuals).

That I follows from IT can be seen as follows: Let 4 be a valid expression ; then 4

is not satisfiable, hence according to II it is refutable; that is, 4 is provable and,
consequently, so is 4. The converse is as apparent.

We now define a class & of expressions K by means of the following stipulations :

1. K is a normal formula;

2. K contains no free individual variable ;

3. The prefix of K begins with a universal quantifier and ends with an existential
quantifier.

Then we have

THEOREM III. If every R-expression is either refutable or satisfiable,'! so is every
exXPression.

Proof. Let A be an expression not belonging to ®. Let it contain the free variables
L. As is immediately obvious, the refutability of (Ex)A4 follows from that of 4, and
conversely (by Lemma 1(c), and either Rule of inference 3 or, for the converse,
Axiom 5); the same holds, according to the stipulation in footnote 4, for satisfiability.
Let (P)N be the normal form of (Et)A4, so that

(Ex)4 ~ (P)N (1)

7 An analogous theorem holds with Vv instead of &.

8 See Hilbert and Ackermann 1928, chap. 3, § 8.

® See Bernays 1926.

10 ¢ 4 jg refutable’’ is to mean *“ 4 is provable”.

11 “Satisfiable” without additional specification here and in what follows always means
‘“‘satisfiable in the denumerable domain of individuals’’. The same holds for ‘‘ valid”’.
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is provable. Further let

B = (z)(P)(Ey)N & {F(x) v F(y)}].*?
Then
(P\N ~ B (2)

is provable (on the basis of Lemma 4 and the provability of (z)(Ey)[F(x) Vv ).
B belongs to & and thus according to the assumption is either satisfiable or refutable.
But, by (1) and (2), the satisfiability of B entails that of (Ex)4, hence also that of
A ; the same holds for refutability. Thus 4, too, is either satisfiable or refutable.

Because of Theorem III, therefore, it suffices to show that

Every R-expression 18 either satisfiable or refutable.

For this purpose we define the degree of a R-expression’® to be the number of
blocks in its prefix that consist of universal quantifiers and are separated from each
other by existential quantifiers, and we first prove

THEOREM IV. If every expression of degree k is either satisfiable or refutable, so is
every expression of degree k + 1.

Proof. Let (P)A be a K-expression of degree k + 1. Let (P) = (x)(£9)(Q) and let
(@) = (u)(Ev)(R), where (@) is of degree k£ and (R) of degree £ — 1. Further let F be
a functional variable not occurring in 4. If we now put!*

B = (')EY)F(E',v) & ())F(x 9) > (@)4]
and
C = (&)@0) W) By ) Eo)(RKF(, v') & [F(x, y) > 4]},

then a double application of Lemma 4 in combination with Lemma 6 yields the
provability of
furthermore,

B> (P)4 4)
is obviously valid. Now C is of degree k and by assumption is therefore either satisfi-
able or refutable. If it is satisfiable, so is (P)4 (by (3) and (4)). If it is refutable, so is

B (by (3)); that is, B is then provable. In that case, if we substitute (Q)4 for ¥ in B,
it follows that

() (Ey) Q)4 & (r)(n)(A4 — (4]

is provable.
But since, of course

(®)H(R)4 — (@)4]

is provable, so is (¢')(Ey’)(Q)4 ; that is, in that case (P)A is refutable. (P)4 is there-
fore indeed either refutable or satisfiable.

12 The variables # and y must not occur in (P).

13 The term ““degree of a prefix”’ is used in the same sense.

14 An analogous procedure was used by Skolem (1920) in proving Lowenheim’s theorem.
15 The variable-sequences &, t’, 1, v’, u, v are, of course, assumed to be pairwise disjoint.
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It now remains only to prove

THEOREM V. Every formula of degree 1 is either satisfiable or refutable.

A few definitions are required for the proof. Let (r)(£Y)A(x; 1) (abbreviated as
(P)A) be any formula of degree 1. Let g stand for an r-tuple and ) for an s-tuple of
variables. We think of the r-tuples taken from the sequence x,, x,, x5, ..., Z;, ... as
forming a sequence ordered according to increasing sum of the subscripts [and for
equal sums according to some convention]):

L1 = (%o, Tos - -5 Xg), Ty = (T1, Tgy - -+, Tg), Lz = (To, Ty, Xps -+ - -5 Xo),

and so forth; we now define a sequence {d4,} of formulas derived from (P)4 as
follows :

Al = A(gl; Ly, Loy o v vy xs))
A2 = A(&; Ls1s Lst25 -5 xzs) & Al;

Ap = A3 T-1s+1 Ta-1rs+25 - - +» Tns) & Ap_y.
Let the s-tuple , _1)s41, - - -, Zns be denoted by b,, so that we have
An = A(Tn; 9,) & 4yy. (5)
Further we define (P,)4, by the stipulation
(P4, = (Exy)(Exy). . .(Ex,)4,.

As we can easily convince ourselves, it is precisely the variables z, to z,s that occur
in 4, ; hence they all are bound by (P,). Further it is apparent that the variables of
the r-tuple r,., already occur in (P,) (and therefore certainly differ from those
occurring in 1), ,,). Denote by (P,) what remains of (P,) when the variables of the
r-tuple g,,, are omitted, so that, except for the order of the variables, (Ex, ,)(Pr)
= (P,).

This notation once assumed, we have

THEOREM V1. For every n

(P)4 — (Pn)4,
1s provable.

For the proof we use mathematical induction.
I. (P)A — (P,)4, is provable, for we have

()(E)A(x; 9) —> (2)(EY1)A(z:5 91)
(by Lemma 3 and Rule of inference 4) and
(@) (EY)A(L15 91) = (B51)(£9:)A (515 91)
(by Lemma 1(a)).
II. For every n, (P)A & (P,)4, —> (P,,1)4,,, is provable, for we have
(D) (E9)A(L; 9) = (En+1)(EVn+1)A(Ens15 Yasa) (6)
(by Lemma 3 and Rule of inference 4) and
(Pn)dn — (Egns1)(Pr)4, (7)
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(by Lemma 2). Furthermore,

(En+1)(Et)n+1)A(En+1; t)n+1) & (Egn-s\-l)(P;)An
—> (Egn+1)[(E1)n+1)A(gn+1; I)n-\\-l) & (P;L)An] (8)

(by Lemma 1(b) with the substitutions (£Y,,1)A(Zp+1; Yn+1) for F and (Pp)A4,
for G).

If we observe that the antecedent of the implication (8) is the conjunction of the
consequents of (6) and (7), it is clear that

(P)A & (Po)A, —> (Ens1)[(EYns1)A(Lns 15 Dns1) & (Pr)4,] 9)
is provable. Furthermore, from (5) and Lemmas 4, 6, and 2 the provability of

(Egn+1)[(Et)n+1)A(gn+1; r)n+1) & (Prlv.)An] ~ (Pn+1)An+1 (10)

follows. II follows from (9) and (10), and from II, together with I, Theorem VI
follows.

Assume that the functional variables Fy, F,, ..., F, and the propositional vari-
ables X, X,,..., X, occur in 4. Then A, consists of elementary components of the
form

Fi(xy, ..., xg), Foltp, ..., 75,),..., X}, Xy, ..., X|

compounded solely by means of the operations v and — . With each 4, we associate
a formula B, of the propositional calculus by replacing the elementary components
of 4, by propositional variables, making certain that different components (even if
they differ only in the notation of the individual variables) are replaced by different
propositional variables. Furthermore, we understand by “satisfying system of level n
[Erfullungssystem n-ter Stufe]] of (P)4” a system of functions f{, f{™, ..., f{™ de-
fined in the domain of integers z (0 < z < ns) as well as of truth values w{®, w{, . . .,
wi™ for the propositional variables X,, X,, ..., X, such that a true proposition results
if in A4, the F; are replaced by the f{™, the x; by the numbers ¢, and the X, by the
corresponding truth values w{™. Satisfying systems of level n obviously exist if and
only if B, is satisfiable.

Each B,, being a formula of the propositional calculus, is either satisfiable or
refutable (Lemma 7). Thus only two cases are conceivable :

1. At least one B, is refutable. Then, as we can easily convince ourselves (Rules
of inference 2 and 3, Lemma 1(c)), the corresponding (P,)4, is refutable also, and
consequently, because of the provability of (P)4 — (P,)4,, so is (P)A.

2. No B, is refutable ; hence all are satisfiable. Then there exist satisfying systems
of every level. But, since for each level there is only a finite number of satisfying
systems (because the associated domains of individuals are finite) and since further-
more every satisfying system of level n + 1 contains one of level n as a part'® (as is
clear from the fact that the 4, are formed by successive conjunctions), it follows by

16 That a system {f1, fa, . . ., fx; W1, Wa, . . ., w;} is part of another, {g1, 9o, - - . G3 V1, V2 - - -» U1}y
is to mean that

1. The domain of individuals of the f, is part of the domain of individuals of the g;;

2. The f, and the g; coincide within the narrower domain ;

3. For every 7, v; = w;.
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familiar arguments'®® that in this case there exists a sequence of satisfying systems
81, 8g, ..., 8k, - .. (S, being of level k) such that each contains the preceding one as

a part. We now define in the domain of all integers =0 a system S = {p;, @3, . . ., @i
o, g, - . ., &} by means of the following stipulations:

1. g (ay,...,a) (1 = p = k) holds if and only if for at least one S,, of the sequence
above (and then for all subsequent ones also) f{™(a,, . . ., @;) holds;

2, o, = wi™ (1 £ ¢ = 1) for at least one §,, (and then also for all those that follow).

Then it is evident at once that S makes the formula (P)A4 true. In this case, there-
fore, (P)A is satisfiable, which concludes the proof of the completeness of the system
of axioms given above. Let us note that the equivalence now proved, “valid =
provable”, contains, for the decision problem, a reduction of the nondenumerable to
the denumerable, since ‘‘valid” refers to the nondenumerable totality of functions,
while “provable” presupposes only the denumerable totality of formal proofs.

Theorem I, as well as Theorem II, can be generalized in various directions. First,
it is easy to bring the notion of identity (between individuals) into consideration by
adding to Axioms 1-6 above two more:

7. ¢ =z, 8. x = y—[F(x) > F(y)]

An analogue of what we had above now holds for the extended realm of formulas
too:

TuEOREM VII. Every formula of the extended realm s provable if it is valid (more
precisely, if it is valid in every domain of individuals),
and, equivalent to VII,

TurorEM VIII. Every formula of the extended realm ts either refutable or satisfiable
(and, moreover, satisfiable in a finite or denumerable domain of individuals).

For the proof, let 4 denote an arbitrary formula of the extended realm. We con-
struct a formula B as the product (conjunction) of 4, (x)(x = ), and all the formulas
that we obtain from Axiom 8 by substituting for F' the functional variables occurring
in A, that is, more precisely,

@) yHz = y > [F(z) > Fy)I}

for all singulary functional variables of 4,

@)@}z = y > [F(x, 2) > Fly, 2)} & (@)(¥) 2}z = y > [F(z, 2) > F(z, y)]}
for all binary functional variables of 4 (including “="’ itself), and corresponding
formulas for the n-ary functional variables of 4 for which » = 3. Let B’ be the
formula resulting from B when the sign “="" is replaced by a functional variable @
not otherwise occurring in B. Then the sign ““="" no longer occurs in the expression
B’, which, therefore, according to what was proved above, is either refutable or
satisfiable. If it is refutable, so is B, since it results from B’ through the substitution
of “=""for G. But B is the logical product of 4 and a subformula that is obviously
provable from Axioms 7 and 8. In this case, therefore, 4 is also refutable. Let us now
assume that B’ is satisfiable in the denumerable domain 2 of individuals for a certain
system S of functions.!” From the way in which B’ is formed it is clear that ¢ (that is,

162 [Apparently by Konig’s infinity lemma (1926, p. 120; see also 1927), which was becoming
known among mathematicians at the time Goédel was writing.]]

17 If propositional variables also occur in A4, S will, of course, have to contain, besides functions,
truth values for these propositional variables.



590 GODEL

the function of the system S that is to be substituted for G) is a reflexive, symmetric,
and transitive relation ; hence it generates a partition of the elements of 2, in such a
way, moreover, that a function occurring in the system S continues to hold, or not
to hold, as the case may be, when elements of the same class are substituted for one
another. If, therefore, we identify with one another all elements belonging to the
same class (perhaps by taking the classes themselves as elements of a new domain of
individuals), then g goes over into the identity relation and we have a satisfying
system of B, hence also of 4. Consequently, 4 is indeed either satisfiable!® or
refutable.

We obtain a different generalization of Theorem I by considering denumerably
infinite sets of logical expressions. For these, too, an analogue of Theorems I and 1T
holds, namely

THEOREM IX. Every denumerably infinite set of formulas of the restricted functional
calculus either is satisfiable (that is, all formulas of the system are simultaneously
satisfiable) or possesses a finite subsystem whose logical product vs refutable.

IX follows immediately from

THEOREM X. For a denumerably infinite system of formulas to be satisfiable it us
necessary and sufficient that every finite subsystem be satisfiable.

Concerning Theorem X we first note that in proving it we can confine ourselves to
systems of normal formulas of degree 1, for, by repeated application of the procedure
used in the proofs of Theorems ITT and IV to the individual formulas, we can specify
for every system X of formulas a system 2" of normal formulas of degree 1 such that
the satisfiability of any subsystem of 2 is equivalent to that of the corresponding
subsystem of 2.

Thus let

(1) (EY1)A1(215 91),  (X2)(ED2)Aa(Xe; 92), -5 (E)(EDL)A0(En5 9n)s - - -

be a denumerable system 2 of normal expression of degree 1, and let t; be an 7;-tuple,
1; an s;-tuple of variables. Let ¢}, b, . . ., t4, . . . be the sequence of all 7;-tuples taken
from the sequence z,, x,, &, . . ., Z,, . . . and ordered according to increasing sum of
the subsecripts [and for equal sums according to some convention] ; furthermore, let
pi be an s;-tuple of variables, of the sequence above, such that the sequence of
variables

1 1 2 1 2 3 1
t)ly t)2? t)l’ t)B’ t)27 t)ly t)‘b s

becomes identical with the sequence z,, ,, . .., z,, . . . if every pi is replaced by the
corresponding s;-tuple of the x. Further we define, in a way analogous to what was
done above, a sequence {B,} of formulas by means of the stipulations

B, = A,(x1; 91),
B, =B, ; & Ai(x3;97) & Ao(x3-1597-1) & ... & A, (537159571 & 4,08 v7)-
We can easily see that (P,)B, (that is, the formula that results from B, when all

18 And, moreover, in an at most denumerable domain (for it consists of disjoint classes of the
denumerable domain X of individuals).
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individual variables occurring in it are bound by existential quantifiers) is a con-
sequence of the first n expressions of the system X given above. If, therefore, every
finite subsystem of X' is satisfiable, so is every B,. But, if every B, is satisfiable, so
is the entire system X' (as follows by the argument used in the proof of Theorem V
(see p. 588)), and Theorem X is thus proved. Theorems IX and X can be extended
without difficulty, by the procedure used in the proof of Theorem VIII, to systems
of formulas containing the sign “="".

We can also give a somewhat different turn to Theorem IX if we confine ourselves
to systems of formulas without propositional variables and regard them as systems
of axioms whose primitive notions are the functional variables occurring in them.
Then Theorem IX clearly asserts that every finite or denumerable axiom system in
whose axioms ‘“all”” and ‘““there exists’ never refer to classes or relations but only to
individuals!® either is inconsistent (that is, a contradiction can be constructed in a
finite number of formal steps) or possesses a model [Realisierung]).

Finally, let us also discuss the question of the independence of Axioms 1-8. So far
as Axioms 14 (those of the propositional calculus) are concerned, it has already been
shown by P. Bernays?° that none of them follows from the other three. That their
independence is not affected even by the addition of Axioms 5-8 can be shown by
means of the very same interpretations that Bernays uses, provided that, in order to
extend them to formulas containing functional variables and the sign “="", we make
the following stipulations:

1. The prefixes and individual variables are omitted ;

2. In what remains of each formula the functional variables are to be treated just
like propositional variables ;

3. Only “distinguished”” values may ever be substituted for the sign “="".

To demonstrate the independence of Axiom 5, we associate with each formula
another one, which we obtain by replacing components of the form

(@) F(x), ) F @), . ..; @), @G, -5 ...,

should such occur, by X v X. Then Axioms 1-4 and 6-8 go over into valid formulas,
and the same holds, as we can convince ourselves by mathematical induction, of all
formulas derived from these axioms by Rules of inference 1-4; Axiom 5, however,
does not possess this property. The independence of Axiom 6 can be shown in exactly
the same way, except that here (z)F(z), (y)F(y), . . ., and so on must be replaced by
X & X. To prove the independence of Axiom 7 we note that Axioms 1-6 and 8 (and
therefore also all formulas derived from them) remain valid if the identity relation
is replaced by the empty relation, whereas this is not the case for Axiom 7. Similarly,
the formulas derived from Axioms 1-7 remain valid when the identity relation is
replaced by the universal relation, whereas this is not the case for Axiom 8 (in a
domain of at least two individuals). We can also readily see that none of the Rules
of inference 1-4 is redundant, but we shall not look into this more closely here.

19 Hilbert’s axiom system for geometry, without the axiom of continuity, can perhaps serve as
an example.

20 See Bernays 1926.

21 That is, the singulary functional variables F, @, . .. preceded by a universal quantifier whose
scope is just the F, G, ... in question, along with the associated individual variable.



