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by Hilbert on 12 August 1904 at the
Third International Congress of Mathe-
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In the last years of the nineteenth
century Hilbert provided a satisfactory
axiomatization of geometry (1899). He
then (1900) offered a set of axioms for
the real numbers and indicated that the
question of the consistency of geometry
comes down to that of the real-number
system. At the Paris International Con-
gress of Mathematicians in 1900, as a
natural continuation of this work, he
placed the consistency of the real-number
system on a list of problems challenging
the mathematical world (1900a, pp. 264—
266). He did not outline any approach,
simply stressing that a relative consis-
tency proof seemed out of the question
and that, therefore, the problem pre-
sented a fundamental difficulty.

Meanwhile the Russell paradox be-
came known, and the question of consis-
tency became more pressing. In 1904, in
the paper below, Hilbert presents a first
attempt at proving the consistency of
arithmetic. In fact, his plan—to show
that all the formulas of a certain class
possess a certain property (that of being
“homogeneous”) by showing that the
initial formulas have it and the rules
transmit it—is the prototype of a device
now current in investigations of that
nature. Besides the search for a consis-
tency proof the paper offers a critique of

the various points of view held at that
time on the foundations of arithmetic and
introduces the themes that Hilbert is
going to develop, modify, or make more
precise in his further work in the founda-
tions of mathematics: the reduction of
mathematics to a collection of formulas,
the extralogical existence of basic ob-
jects, like 1, and their combinations, and
the construction of logic in parallel with
the study of these combinations.

The presentation remains tentative and
sketchy. Only many years later (1917)
will Hilbert come back to the problems of
the foundations of mathematics and then
present the mature and enriched papers
of the twenties (1922, 1922a, 1925, 1927).
The 1904 paper provides a helpful land-
mark in the development of Hilbert’s
conceptions.

The paper was commented upon by
Poincaré (1905, pp. 17-27; 1908, pp.
179-191) and Pieri (1906). Later com-
mentaries can be found in Bernays (1935,
pp- 199-200) and Blumenthal (1935,
p. 422). The paper greatly influenced
Julius Kénig’s book (1914), which in turn
inspired von Neumann in his search for a
consistency proof of arithmetic (1927,
footnote 8, p. 22).

An English translation of Hilbert’s
paper was published (1905) in The
monast, but we have not found it possible
to use it. The present translation is by
Beverly Woodward, and it is printed here
with the kind permission of B. G. Teubner
Verlagsgesellschaft, Stuttgart.
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While we are essentially in agreement today as to the paths to be taken and the
goals to be sought when we are engaged in research into the foundations of geometry,
the situation is quite different with regard to the inquiry into the foundations of
arithmetic ; here investigators still hold a wide variety of sharply conflicting opinions.

In fact, some of the difficulties in the foundations of arithmetic are different in
nature from those that had to be overcome when the foundations of geometry were
established. In examining the foundations of geometry it was possible for us to leave
agside certain difficulties of a purely arithmetic nature ; but recourse to another funda-
mental discipline does not seem to be allowed when the foundations of arithmetic are
at issue. The principal difficulties that we encounter when providing a foundation
for arithmetic will be brought out most clearly if I submit the points of view of
several investigators to a brief critical discussion.

L. Kronecker, as is well known, saw in the notion of the integer the real foundation
of arithmetic; he came up with the idea that the integer—and, in fact, the integer
as a general notion (parameter value)—is directly and immediately given ; this pre-
vented him from recognizing that the notion of integer must and can have a founda-
tion. I would call him a dogmatist, to the extent that he accepts the integer with
its essential properties as a dogma and does not look further back.

H. Helmholtz represents the standpoint of the empiricist; the standpoint of pure
experience, however, seems to me to be refuted by the objection that the existence,
possible or actual, of an arbitrarily large number can never be derived from experi-
ence, that is, through experiment. For even though the number of things that are
objects of our experience is large, it still lies below a finite bound.

E. B. Christoffel and all those opponents of Kronecker’s who, guided by the correct
feeling that without the notion of irrational number the whole of analysis would be
condemned to sterility, attempt to save the existence of the irrational number by
discovering ‘““positive’” properties of this notion or by similar means, I would call
opportunists. In my opinion they have not succeeded in giving a pertinent refutation
of Kronecker’s conception.

Among the scholars who have probed more deeply into the essence of the integer
I mention the following.

G. Frege sets himself the task of founding the laws of arithmetic by the devices of
logic, taken in the traditional sense. He has the merit of having correctly recognized
the essential properties of the notion of integer as well as the significance of inference
by mathematical induction. But, true to his plan, he accepts among other things the
fundamental principle that a concept (a set) is defined and immediately usable if only
it is determined for every object whether the object is subsumed under the concept
or not, and here he imposes no restriction on the notion ‘“every’; he thus exposes
himself to precisely the set-theoretic paradoxes that are contained, for example, in the
notion of the set of all sets and that show, it seems to me, that the conceptions and
means of investigation prevalent in logic, taken in the traditional sense, do not
measure up to the rigorous demands that set theory imposes. Rather, from the very
beginning a major goal of the investigations into the notion of number should be to avoid
such contradictions and to clarify these paradoxes.

R. Dedekind clearly recognized the mathematical difficulties encountered when a
foundation is sought for the notion of number ; for the first time he offered a construc-
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tion of the theory of integers, and in fact an extremely sagacious one. However, I
would call his method transcendental insofar as in proving the existence of the infinite
he follows a method that, though its fundamental idea is used in a similar way by
philosophers, I cannot recognize as practicable or secure because it employs the
notion of the totality of all objects, which involves an unavoidable contradiction.

G. Cantor sensed the contradictions just mentioned and expressed this awareness
by differentiating between ‘‘consistent’” and ‘“‘inconsistent’ sets. But, since in my
opinion he does not provide a precise criterion for this distinction, I must characterize
his conception on this point as one that still leaves latitude for subjective judgment
and therefore affords no objective certainty.

It is my opinion that all the difficulties touched upon can be overcome and that we
can provide a rigorous and completely satisfying foundation for the notion of number,
and in fact by a method that I would call aziomatic and whose fundamental idea I
wish to develop briefly in what follows.

Arithmetic is often considered to be a part of logic, and the traditional fundamental
logical notions are usually presupposed when it is a question of establishing a foun-
dation for arithmetic. If we observe attentively, however, we realize that in the
traditional exposition of the laws of logic certain fundamental arithmetic notions are
already used, for example, the notion of set and, to some extent, also that of number.
Thus we find ourselves turning in a circle, and that is why a partly simultaneous
development of the laws of logic and of arithmetic is required if paradoxes are to be
avoided.

In the brief space of an address I can merely indicate how I conceive of this common
construction. I beg to be excused, therefore, if I succeed only in giving you an approxi-
mate idea of the direction my researches are taking. In addition, to make myself more
easily understood, I shall make more use of ordinary language ‘““in words” and of the
laws of logic indirectly expressed in it than would be desirable in an exact construction.

Let an object of our thought be called a thought-object [Gedankending]] or, briefly,
an object [Ding]] and let it be denoted by a sign.

We take as a basis of our considerations a first thought-object, 1 (one). We call
what we obtain by putting together two, three, or more occurrences of this object,
for example,

11, 111, 1111,

combinations [ Kombinationen]] of the object 1 with itself; also, any combinations of
these combinations, such as

(1)), (A1)(11)(11), ((11)(11))(11), ((1LT)(1))(1),

are again called combinations of the object 1 with itself. The combinations likewise
are just called objects and then, to distinguish it, the basic thought-object 1 is called
a symple object.

We now add a second simple thought-object and denote it by the sign = (equals).
Then we form combinations of these two thought-objects, for example,

1=, 1l=,..., ()(=)(===), (AA)(=)(==), 1=1, A)=(1)1).

We say that the combination a of the simple objects 1 and = differs from the
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combination b of these objects if the combinations deviate in any way from each
other with regard to the mode and order of succession in the combinations or the
choice and place of the objects 1 and = themselves, that is, if @ and b are not tdentical
with each other.

Now we think of the combinations of these two simple objects as falling into two
classes, the class of entities [die Klasse der Seienden]] and that of nonentities [die der
Nichtserenden]) : each object belonging to the class of entities differs from each object
belonging to the class of nonentities. Every combination of the two simple objects 1
and = belongs to one of these two classes.

If a is a combination of the two objects 1 and = taken as primitive, then we
denote also by a the proposition that a belongs to the class of entities and by @ the
proposition that a belongs to the class of nonentities. We call a a ¢rue proposition if a
belongs to the class of entities; on the other hand, let @ be called a true proposition if
a belongs to the class of nonentities. The propositions a and @ form a contradiction.

The composite [Inbegriff]] of two propositions 4 and B, expressed in signs by

A|B,

and in words by “from A4, B follows” or “if 4 is true, so is B”, is also called a
proposition; here A is called the supposition [[Voraussetzung]] and B the assertion
[ Behauptung]. Supposition and assertion may themselves in turn consist of several
propositions 4,, 4,, or By, B,, B;, and so forth, and we have in signs

A4, a.4,| B, o. Byo. B,

in words “from 4, and 4,, B, or B, or B; follows”, and so forth.

With the sign o. (or) at our disposal it would be possible to avoid the sign |, since
negation has already been introduced ; I use it in this address merely in order to follow
ordinary language as closely as possible.

We shall understand by 4,, 4,,... the propositions that, briefly stated, result
from a proposition A4(z) if we take the thought-objects 1 and = and their combina-
tions in place of the ““arbitrary object” [der * Willkiirlichen’’] x; then we write the
propositions A, 0. 4,0. A;... and A4, a. A,a. 4A;... also as follows: A(z?), in
words “for at least one z”’, and A(z'®), in words ‘““for every z”’, respectively; we
regard this merely as an abbreviated way of writing.

From the two objects 1 and = taken as primitive we now form the following
propositions:

1. =z,
2. {r=ya w@)} wy).

Here z (in the sense of #'®) means each of the two thought-objects taken as primi-
tive and every combination of them ; in 2, y (in the sense of y@) likewise can be each
of these objects and every combination ; further, w(z) is an ‘‘arbitrary’ combination
containing the “arbitrary object”  (in the sense of (). Proposition 2 reads in words
“from z = y and w(z), w(y) follows”.

Propositions 1 and 2 form the definition of the notion = (equals) and accordingly
are also called azioms.

If we put the simple objects 1 and = or particular combinations of them in place



FOUNDATIONS OF LOGIC AND ARITHMETIC 133

of the arbitrary objects z and y in Axioms 1 and 2, particular propositions result,
which may be called consequences [[Folgerungen]] of these axioms. We consider a
sequence of certain consequences such that the suppositions of the last consequence
of the sequence are identical with the assertions of the preceding consequences. If we
then take the suppositions of the preceding consequences as supposition, and the
assertion of the last consequence as assertion, a new proposition results, which can
in turn be called a consequence of the axioms. By continuing this deduction process we
can obtain further consequences.

We now select from these consequences those that have the simple form of the
proposition a (assertion without supposition), and we gather the objects a thus
obtained into the class of entities, whereas the objects that differ from these are to
belong to the class of nonentities. We recognize that only consequences of the form
o = o result from 1 and 2, where « is a combination of the objects 1 and =. Axioms
1 and 2 for their part, too, are satisfied with regard to this partition of the objects into
the two classes, that is, they are true propositions, and because of this property of
Axioms 1 and 2 we say that the notion = (equals) defined by them is a consistent
notion.

I would like to call attention to the fact that Axioms 1 and 2 do not contain any
proposition of the form @ at all, that is, a proposition according to which a combina-
tion is to be found in the class of nonentities. Therefore, we could also satisfy the
axioms by including all the combinations of the two simple objects in the class of
entities and leaving the class of nonentities empty. But the partition, chosen above,
into two classes shows better how we must proceed in subsequent, more difficult, cases.

We now carry the construction of the logical foundations of mathematical thought
further by adjoining to the two thought-objects 1 and = the three additional thought-
objects u (infinite set, infinite [Unendlich]), f (following [Folgendes]), ' (accompany-
ing operation [begleitende Operation])) and stipulating for them the following axioms:

3. f(ux) = u(f,x)’
4. f(uz) = f(uy)|uxr = uy,
5. f(ux) = ul.

Here the arbitrary object z (in the sense of z(®) stands for each of the five thought-
objects now taken as primitive and every combination of them. The thought-object
u will be called, simply, infinite set and the combination ux (for example, ul, u(11),
uf) an element of this infinite set u. Axiom 3 then states that each element uz is
followed by a definite thought-object f(ux), which is equal to an element of the set u,
namely, the element u(j'z), that is, which likewise belongs to the set u. Axiom 4
expresses the fact that, if the same element follows two elements of the set u, these
two elements themselves are equal. According to Axiom 5 there is no element in u
that is followed by the element ul ; the element ul may therefore be called the first
element in u.

We now have to subject Axioms 1-5 to an investigation corresponding to that
previously carried out for Axioms 1 and 2; in doing so we must observe that Axioms
1 and 2 now apply to a larger class of objects inasmuch as the arbitrary objects z
and y now denote any arbitrary combination of the five simple objects taken as
primitive.
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We ask again whether certain consequences from Axioms 1-5 form a contradiction
or whether, on the contrary, the five thought-objects taken as primitive, 1, =, u, f,
f’, and their combinations can be so distributed into the class of entities and the class
of nonentities that Axioms 1-5 are satisfied with regard to this partition into two
classes, that is, that every consequence of these axioms becomes a true proposition
with regard to this partition. To answer this question we note that Axiom 5 is the
only one giving rise to propositions of the form a, that is, to propositions asserting
that a combination a of the five thought-objects taken as primitive is to belong to
the class of nonentities. Accordingly, propositions that form a contradiction with 5
must certainly be of the form

6. f(uz®@) = ul;

but such a consequence cannot result from Axioms 1-4 in any way.

To see this, we call the equation (that is, the thought-object) a = b a homogeneous
equation if a and b are combinations of two simple objects each, likewise if @ and b
are combinations of three simple objects each or of four, and so forth ; for example,

(1) = (fjw), (f = (i), (f11) = (ul=),
(fDFD = (111, (§(ff'w) = (luul),
((FHLL)) = (()(11)(11)), (julll=) = (uulllu)

are called homogeneous equations. From Axioms 1 and 2 alone follow, as we have
seen previously, only homogeneous equations, namely, the equations of the form
o = a. In the same way Axiom 3 yields only homogeneous equations if in it we take
any thought-object for . Likewise Axiom 4 certainly always exhibits a homogeneous
equation in the assertion if the assumption is a homogeneous equation, and con-
sequently from Axioms 14 only homogeneous equations can appear as consequences.
But now equation 6, which after all was the one to be proved, is certainly not a
homogeneous equation, since in it we are to take a combination in place of z and
the left side thereby becomes a combination of three or more simple objects, while
the right side remains a combination of the two simple objects u and 1.

The fundamental idea needed for recognizing the truth of my assertion has thus, I
believe, been presented. In order to carry out the proof completely we need the
notion of finite ordinal number, as well as certain theorems concerning the notion of
equinumerousness, which we could in fact easily state and derive at this point; to
develop completely the fundamental idea presented here, we must still consider those
points of view to which I shall refer briefly at the close of my address (see V below).

Thus we obtain the desired partition if we put all objects a, where a is a con-
sequence of Axioms 1-4, into the class of entities and all objects that differ from these
—in particular, the objects f(ux) = ul—into the class of nonentities. Having thus
established a certain property for the axioms adopted here, we recognize that they
never lead to any contradiction at all, and therefore we speak of the thought-objects
defined by means of them, u, f, and §’, as consistent notions or operations, or as
consistently existing. So far as the notion of the infinite u, in particular, is concerned,
the assertion of the existence of the infinite u appears to be justified by the argument
outlined above ; for it now receives a definite meaning and a content that henceforth
is always to be employed.

= —
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The considerations just sketched constitute the first case in which a direct proof of
consistency has been successfully carried out for axioms, whereas the method of a
suitable specialization, or of the construction of examples, which is otherwise custo-
mary for such proofs— geometry in particular—necessarily fails here.

We see that the success of this direct proof here is essentially due to the fact that a
proposition of the form @, that is, a proposition according to which a certain combina.-
tion is to belong to the class of nonentities, occurs as assertion in only one place,
namely, in Axiom 5.

If we translate the well-known axioms for mathematical induction into the
language I have chosen, we arrive in a similar way at the consistency of this larger
number of axioms, that is, at the proof of the consistent existence of what we call the
smallest infinite! (that is, of the ordinal type 1, 2, 3,...).

It is not difficult to provide a foundation for the notion of finite ordinal according
to the principles adopted above; this can be done on the basis of an axiom stating
that every set containing the first element of the ordinal and, whenever any element
belongs to it, containing the succeeding one also, must certainly always contain the
last element. Here we very easily obtain a proof of the consistency of the axioms by
adducing an example, for instance, the number two. The point then is to show that
the elements of the finite ordinal can be so ordered that every subset of it has a first
and a last element—a fact that we prove by defining a thought-object < through
the axiom

(x<yay<z2|z<z

and then recognizing the consistency of the axioms obtained when this new axiom is
added, provided z, y, and z denote arbitrary elements of the finite ordinal. If we also
make use of the fact that the smallest infinite exists, it then follows that for every
finite ordinal a still greater one can be found.

The principles that must constitute the standard for the construction and further
elaboration of the laws of mathematical thought in the way envisaged here are,
briefly, the following.

I. Once arrived at a certain stage in the development of the theory, I may say that
a further proposition is true as soon as we recognize that no contradiction results if it
is added as an axiom to the propositions previously found true, that is, that it leads
to consequences that all are true propositions with regard to a certain partition of the
objects into the class of entities and that of nonentities.

II. In the axioms the arbitrary objects—taking the place of the notion “every”
or “all” in ordinary logic—represent only those thought-objects and their mutual
combinations that at this stage are taken as primitive or are to be newly defined.
In the derivation of consequences from the axioms the arbitrary objects that occur in
the axioms may therefore be replaced only by such thought-objects and their com-
binations. We must also duly note that, when a new thought-object is added and
taken as primitive, the axioms previously assumed apply to a larger class of objects
or must be suitably modified.

III. A set is generally defined as a thought-object m, and the combinations mx are
called the elements of the set m, so that—contrary to the usual conception—the

1 See Hilbert 1900a, sec. 2, ‘“ Die Widerspruchslosigkeit der arithmetischen Axiome”.
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notion of element of a set appears only as a subsequent product of the notion of set
itself.

Just like the notion ‘““set”’, the notions ‘“mapping”’, ““transformation”, ““relation”,
and “function’ are also thought-objects, for which, exactly as was the case above
with the notion “infinite”’, we have to consider suitable axioms and which can then
be recognized as consistently existing if the combinations in question can be distri-
buted into the class of entities and that of nonentities.

Point T expresses the creative principle that, in its freest use, justifies us in forming
ever new notions, with the sole restriction that we avoid a contradiction. The para-
doxes mentioned at the beginning of this address become impossible by virtue of 11
and IIT; this holds in particular for the paradox of the set of all sets that do not con-
tain themselves as elements.

To show that the notion of set defined in III agrees to a large extent in content
with the ordinary notion of set, I will prove the following theorem :

Letl,...,q ..., IDbethe thought-objects taken as primitive at a certain stage in
the development and let a(§¢) be a combination of them containing the arbitrary
object ¢&; further let a(x) be a true proposition (that is, let a(e) be in the class of
entities). Then there certainly exists a thought-object m such that a(mx) represents
only true propositions for the arbitrary object x (that is, that a(mz) is always in the
class of entities), and conversely, also, every object ¢ for which a(£) represents a true
proposition is equated to a combination mz, so that the proposition

é: = mx'®

is true, that is, the objects ¢ for which a(£) becomes a true proposition form the
elements of a set m in the sense of the above definition.

To prove this, we take the following axiom : let m be a thought-object for which
the propositions

7. g(ﬁ[mf = ¢,
8. a®|mé =«

are true; that is, if ¢ is an object such that a(£) belongs to the class of entities, then
mé = £1is to hold, otherwise m¢é = «. We add this axiom to the axioms that hold for
the objects 1,..., o,..., I, and we then assume that a contradiction thus appears,
that is, that for the objects 1,..., o, ..., f, m, the propositions

p(m)  and  p(m),

say, are at the same time consequences, p(m) being a certain combination of the
objects 1,..., t, m. Here 8 means in words the stipulation: m¢ = « if a(£) belongs to
the class of nonentities. Wherever in p(m) the object m appears in the combination
mé, let us, in accordance with' Axioms 7 and 8 and taking 2 into account, replace the
combination m¢ by ¢ or «; let g(m) (where g(m) now no longer contains the object m
in a combination mzx) be obtained in this way from p(m) ; then g(m) would have to be
a consequence of the axioms? originally posited for 1,..., «,..., f, and therefore
would have to remain true even if we took for m any one of these objects, say, the

2 [The German text has ‘““dem...Axiome”, but the argument seems to call for the plural;
the version in Hilbert 1930a has the plural.]]
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object 1. Since the same considerations also hold for the proposition p(m), the
contradiction

g1) and  g(1)
would therefore also exist at the original stage at which the objects 1, ..., «,..., t
were taken as primitive; but this cannot be, if we assume that the objects 1, ...,
exist consistently. We must therefore reject our assumption that a contradiction
occurs ; that is, m exists consistently, which was to be proved.

IV. If we want to investigate a given system of axioms according to the principles
above, we must distribute the combinations of the objects taken as primitive into
two classes, that of entities and that of nonentities, with the axioms playing the role
of prescriptions that the partition must satisfy. The main difficulty will consist in
recognizing the possibility of distributing all objects into the two classes, that of
entities and that of nonentities. The question whether this distribution is possible is
essentially equivalent to the question whether the consequences we can obtain from
the axioms by specialization and combination in the sense explained earlier lead to a
contradiction or not, if we still add the familiar modes of logical inference such as

{(a|b) a. @|b)} | b,
{(@ao.b) a. (ao.c)}|{ao. (ba.c).

We can then recognize the consistency of the axioms either by showing how a possible
contradiction would already have to have occurred at an earlier stage in the develop-
ment of the theory or by making the assumption that there is a proof leading from
the axioms to a certain contradiction and then showing that such a proof is not pos-
sible, because it would itself contain a contradiction. Thus the proof sketched above
for the consistent existence of the infinite came down to the recognition that a proof
of equation 6 from Axioms 1-4 is not possible.

V. Whenever in the preceding we spoke of several thought-objects, of several
combinations, of various kinds of combinations, or of several arbitrary objects, a
bounded number of such objects was to be understood. Now that we have established
the definition of the finite number we are in a position to comprehend the general
meaning of this way of speaking. The meaning of the “arbitrary’ consequence and
of the “differing” of one proposition from all propositions of a certain kind is also
now, on the basis of the definition of the finite number (corresponding to the idea of
mathematical induction) susceptible of an exact description by means of a recursive
procedure. It is in this way that we can carry out completely the proof, sketched
above, that the proposition f(uz®) = ul differs from every proposition obtained as a
consequence of Axioms 1-4 by a finite number of steps; we need only consider the
proof itself to be a mathematical object, namely, a finite set whose elements are
connected by propositions stating that the proof leads from 1-4 to 6, and we must
then show that such a proof contains a contradiction and therefore does not exist
consistently in the sense defined by us.

The existence of the totality [Inbegriff] of real numbers can be demonstrated in a
way similar to that in which the existence of the smallest infinite can be proved; in
fact, the axioms for real numbers as I have set them up (1903, pp. 24-26) can be
expressed by precisely such formulas as the axioms hitherto assumed. In particular,
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so far as the axiom I called the completeness axiom [[Vollstandigkeitsaxiom] is con-
cerned, it expresses the fact that the totality of real numbers contains, in the sense of
a one-to-one correspondence between elements, any other set whose elements satisfy
also the axioms that precede ; thus considered, the completeness axiom, too, becomes
a stipulation expressible by formulas constructed like those above, and the axioms
for the totality of real numbers do not differ qualitatively in any respect from, say,
the axioms necessary for the definition of the integers. In the recognition of this fact
lies, I believe, the real refutation of the conception of the foundations of arithmetic
associated with L. Kronecker and characterized at the beginning of my lecture as
dogmatic.

In the same way we can show that the fundamental notions of Cantor’s set theory,
in particular Cantor’s alephs, have a consistent existence.



