NMAI057 – Linear algebra 1

Tutorial 5

Groups and permutations

Date: November 3, 2021

TA: Denys Bulavka

Problem 1. Decide and justify, whether the following are groups:

- (a) $(\mathbb{Q}, \cdot),$
- (b) $(\mathbb{Q}, -),$
- (c) $(\mathbb{Q} \setminus \{0\}, \circ)$, where for all $a, b \in \mathbb{Q}$, $a \circ b = |ab|$,
- (d) (\mathbb{Q}, \circ) , where for all $a, b \in \mathbb{Q}$, $a \circ b = \frac{a+b}{2}$,
- (e) (\mathbb{Q}, \circ) , where for all $a, b \in \mathbb{Q}$, $a \circ b = a + b + 3$,
- (f) $(\mathcal{F}, +)$, i.e., the set of all real functions with one variable \mathcal{F} together with the operation of addition of functions,
- (g) the set of all rotations around the origin in \mathbb{R}^2 together with the operation of function composition,
- (h) the set of all translations (shifts) in \mathbb{R}^2 together with the operation of function composition.
- (i) the set of all matrices in $\mathbb{R}^{n \times n}$ with the operation of matrix multiplication.
- (j) the set of all regular matrices in $\mathbb{R}^{n\times n}$ with the operation of matrix multiplication.
- **Problem 2.** Let (\mathbb{G}, \circ) be a group and $x \in \mathbb{G}$. Decide and justify whether $(\mathbb{G}, *)$ is a group with the binary operation * defined for all $a, b \in \mathbb{G}$ as $a * b = a \circ x \circ b$.
- **Problem 3.** Fill the table for binary operation \circ on set \mathbb{G} so that (\mathbb{G}, \circ) is a group with neutral element 0. Justify.

Problem 4. Solve "permutation" equation $p \circ x \circ q = i$ for p and q.

- (a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).
- (b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).
- (c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9)
- (d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).

Problem 5. Determine the sign of the following permutation

- (a) $p = (1, 3, 5, \dots, 2n 1, 2, 4, 6, \dots, 2n)$
- (b) $p = (1, 4, 7, \dots, 3n 2, 2, 5, 8, \dots, 3n 1, 3, 6, 9, \dots, 3n)$
- (c) $p = (2, 5, 8, \dots, 3n 1, 3, 6, 9, \dots, 3n, 1, 4, 7, \dots, 3n 2)$
- (d) $p = (3, 6, 9, \dots, 3n, 2, 5, 8, \dots, 3n 1, 1, 4, 7, \dots, 3n 2)$

Problem 6. Decide and justify whether the following are Abelian (commutative) groups:

- (a) The set $\{\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \mid z \in \mathbb{Z}\}$ together with matrix product.
- (b) The set $\{\begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in \mathbb{R} \setminus \{0\}\}$ together with matrix product.
- **Problem 7.** Determine graphs, cycles, a factorization into transpositions, the number of inversions, the sign, and the inverse permutations for the following permutations: p, q and their compositions $q \circ p$ and $p \circ q$.

(Permutations are composed as mappings, i.e. $(q \circ p)(i) = q(p(i))$.)

- (a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).
- (b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).
- (c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9).
- (d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).
- **Problem 8.** Show four different arguments why the inverse permutatin has the same sign as the original one.
- **Problem 9.** Show that every permutation on n elements can be decomposed into transpositions of form (1, i) for $i \in \{2, ..., n\}$. Determine a bound of the length of the resulting factorization.
- **Problem 10.** Deretmine powers p^{10} and q^{99} for permutations $p \neq q$.
 - (a) p = (6, 4, 1, 5, 3, 2), q = (6, 4, 3, 2, 5, 1).
 - (b) p = (1, 2, 7, 6, 5, 4, 3, 8, 9), q = (1, 3, 5, 7, 9, 8, 6, 4, 2).
 - (c) p = (5, 4, 3, 2, 1, 9, 8, 7, 6), q = (8, 6, 4, 2, 1, 3, 5, 7, 9).
 - (d) p = (3, 6, 9, 2, 5, 8, 1, 4, 7), q = (9, 8, 7, 6, 5, 4, 3, 2, 1).
- **Problem 11.** Find a permutation on 10 elements s.t. p^i is not the identity (i.e. $p^i \neq i$) for all i = 1, ..., 29.

Problem 12. How many permutations on n elements have sign 1, and how many sign -1?