NMAI057 - Linear algebra 1
 Tutorial 5
 Groups and permutations

Date: November 3, 2021
TA: Denys Bulavka

Problem 1. Decide and justify, whether the following are groups:
(a) (\mathbb{Q}, \cdot),
(b) $(\mathbb{Q},-)$,
(c) $(\mathbb{Q} \backslash\{0\}, \circ)$, where for all $a, b \in \mathbb{Q}, a \circ b=|a b|$,
(d) (\mathbb{Q}, \circ), where for all $a, b \in \mathbb{Q}, a \circ b=\frac{a+b}{2}$,
(e) (\mathbb{Q}, \circ), where for all $a, b \in \mathbb{Q}, a \circ b=a+b+3$,
(f) $(\mathcal{F},+)$, i.e., the set of all real functions with one variable \mathcal{F} together with the operation of addition of functions,
(g) the set of all rotations around the origin in \mathbb{R}^{2} together with the operation of function composition,
(h) the set of all translations (shifts) in \mathbb{R}^{2} together with the operation of function composition.
(i) the set of all matrices in $\mathbb{R}^{n \times n}$ with the operation of matrix multiplication.
(j) the set of all regular matrices in $\mathbb{R}^{n \times n}$ with the operation of matrix multiplication.

Problem 2. Let (\mathbb{G}, \circ) be a group and $x \in \mathbb{G}$. Decide and justify whether $(\mathbb{G}, *)$ is a group with the binary operation $*$ defined for all $a, b \in \mathbb{G}$ as $a * b=a \circ x \circ b$.

Problem 3. Fill the table for binary operation \circ on set \mathbb{G} so that (\mathbb{G}, \circ) is a group with neutral element 0. Justify.
(a)

\circ	0	1
0		
1		

(b)

\circ	0	1	2
0			
1			
2			

(c)

(d)

\circ	0	1	2	3
0				
1		0		
2				
3				

Problem 4. Solve "permutation"equation $p \circ x \circ q=\imath$ for p and q.
(a) $p=(6,4,1,5,3,2), q=(6,4,3,2,5,1)$.
(b) $p=(1,2,7,6,5,4,3,8,9), q=(1,3,5,7,9,8,6,4,2)$.
(c) $p=(5,4,3,2,1,9,8,7,6), q=(8,6,4,2,1,3,5,7,9)$
(d) $p=(3,6,9,2,5,8,1,4,7), q=(9,8,7,6,5,4,3,2,1)$.

Problem 5. Determine the sign of the following permutation
(a) $p=(1,3,5, \ldots, 2 n-1,2,4,6, \ldots, 2 n)$
(b) $p=(1,4,7, \ldots, 3 n-2,2,5,8, \ldots, 3 n-1,3,6,9, \ldots, 3 n)$
(c) $p=(2,5,8, \ldots, 3 n-1,3,6,9, \ldots, 3 n, 1,4,7, \ldots, 3 n-2)$
(d) $p=(3,6,9, \ldots, 3 n, 2,5,8, \ldots, 3 n-1,1,4,7, \ldots, 3 n-2)$

Problem 6. Decide and justify whether the following are Abelian (commutative) groups:
(a) The set $\left\{\left.\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right) \right\rvert\, z \in \mathbb{Z}\right\}$ together with matrix product.
(b) The set $\left\{\left.\left(\begin{array}{cc}a & a \\ a & a\end{array}\right) \right\rvert\, a \in \mathbb{R} \backslash\{0\}\right\}$ together with matrix product.

Problem 7. Determine graphs, cycles, a factorzation into transpositions, the number of inversions, the sign, and the inverse permutations for the following permutations: p, q and their compositions $q \circ p$ and $p \circ q$.
(Permutations are composed as mappings, i.e. $(q \circ p)(i)=q(p(i))$.)
(a) $p=(6,4,1,5,3,2), q=(6,4,3,2,5,1)$.
(b) $p=(1,2,7,6,5,4,3,8,9), q=(1,3,5,7,9,8,6,4,2)$.
(c) $p=(5,4,3,2,1,9,8,7,6), q=(8,6,4,2,1,3,5,7,9)$.
(d) $p=(3,6,9,2,5,8,1,4,7), q=(9,8,7,6,5,4,3,2,1)$.

Problem 8. Show four different arguments why the inverse permutatin has the same sign as the original one.

Problem 9. Show that every permutation on n elements can be decomposed into transpositions of form $(1, i)$ for $i \in\{2, \ldots, n\}$. Determine a bound of the length of the resulting factorization.

Problem 10. Deretmine powers p^{10} and q^{99} for permutations p a q.
(a) $p=(6,4,1,5,3,2), q=(6,4,3,2,5,1)$.
(b) $p=(1,2,7,6,5,4,3,8,9), q=(1,3,5,7,9,8,6,4,2)$.
(c) $p=(5,4,3,2,1,9,8,7,6), q=(8,6,4,2,1,3,5,7,9)$.
(d) $p=(3,6,9,2,5,8,1,4,7), q=(9,8,7,6,5,4,3,2,1)$.

Problem 11. Find a permutation on 10 elements s.t. p^{i} is not the identity (i.e. $p^{i} \neq \imath$) for all $i=1, \ldots, 29$.

Problem 12. How many permutations on n elements have sign 1 , and how many sign -1 ?

