NMAI057 - Linear algebra 1

Tutorial 5

Date: October 27, 2021
TA: Denys Bulavka

Problem 1. Establish sufficient conditions for a triangular matrix to be regular.
(Recall that an upper triangular matrix A has arbitrary values on and above the main diagonal, but it is all zero below the diagonal. Formally, for all $i>j$ it holds that $a_{i j}=0$. Any lower triangular matrix A must satisfy the same condition in the reverse order w.r.t. the main diagonal or, in another words, A^{T} must be upper triangular.)

Problem 2. Consider the block matrix

$$
A=\left(\begin{array}{cc}
\alpha & a^{T} \\
b & C
\end{array}\right)
$$

where $\alpha \neq 0, a, b \in \mathbb{R}^{n-1}$ and $C \in \mathbb{R}^{(n-1) \times(n-1)}$. Apply to A one iteration of Gaussian elimination and use it to derive a recursive test of regularity.

Problem 3. Find the inverse to the matrix

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
2 & 3 & 5 \\
3 & 5 & 10
\end{array}\right) .
$$

Problem 4. Invert the matrices of the elementary row operations.
Recall that the matrices representing the elementary row operations are:
(a) Multiplying the i-th row with $\alpha \neq 0$:

$$
E_{i}(\alpha)=\left(\begin{array}{ccccc}
1 & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \alpha & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right)
$$

(b) Adding the α-multiple of the j-th row to the i-th row for $i \neq j$:

$$
E_{i j}(\alpha)=\left(\begin{array}{ccccc}
1 & 0 & \ldots & \ldots & 0 \\
& \ddots & \ddots & & \vdots \\
& & 1 & \ddots & \vdots \\
& \alpha & & \ddots & 0 \\
& j & & & 1
\end{array}\right) .
$$

(c) Swapping the i-th and j-th row:

$$
E_{i j}=i\left(\begin{array}{ll}
0 & 1 \\
j \\
1 & 0 \\
i & j
\end{array}\right) .
$$

Problem 5. For $n \in \mathbb{N}$, invert the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & \ldots & 2 \\
1 & 2 & 3 & \ldots & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2 & 3 & \ldots & n
\end{array}\right)
$$

Problem 6. Simplify the following expression assuming A, B are regular matrices of the same order:

$$
\left(I-B^{T} A^{-1}\right) A+\left(A^{T} B\right)^{T} A^{-1}
$$

Problem 7. (a) Prove that for all $A, B \in \mathbb{R}^{n \times n}$, if A is regular then

$$
\left(A B A^{-1}\right)^{k}=A B^{k} A^{-1}
$$

(b) Let $A \in \mathbb{R}^{n \times n}$ be a regular matrix. Find the limit (in case you are not familiar with the formal definition, use the intuitive notion) for

$$
\lim _{k \rightarrow \infty} A D^{k} A^{-1}, \quad \text { where } \quad D=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \frac{1}{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \frac{1}{n}
\end{array}\right)
$$

and compute its rank.
(c) Apply the above result to compute the limit for any matrix A with the first column equal $e_{1}=(1,0, \ldots, 0)^{T}$ and the first row equal $e_{1}^{T}=(1,0, \ldots, 0)$.

