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The text below is the translation of an
address delivered in German on 21 Sept-
ember 1923 at the annual convention
of the Deutsche Mathematiker-Vereinig-
ung in Marburg an der Lahn. It had
been delivered in Dutch at the 22nd
Vlaamsch Natuur- en Geneeskundig Con-
gres, in Antwerp in August 1923, in an
approximately similar form (Brouwer
1923a).

§ 1 shows how the principles of logic,
which have their origin in finite mathe-
matics, came to be applied to discourse
about the physical world and then to non-
finite mathematics; but in that last field
there is not necessarily a justification for
each of these principles. In particular,
such a justification seems to be lacking
for the principle of excluded middle and
that of double negation.

§ 2 shows how several important re-
sults of classical analysis become unjusti-
fied once the principle of excluded
middle is abandoned. Here Brouwer’s
critique is essentially negative, being
based on counterexamples to classical
theorems; but elsewhere he investigates
which fragments of the Bolzano-Weier-
strass theorem can be preserved in intui-
tionistic analysis (1919, sec. 1, and 1952a ;
see also Heyting 1956, arts. 3.4.4 and
8.1.3) and gives an intuitionistic form of
the Heine-Borel theorem (1926a and
19260 ; see also Heyting 1956, art. 5.2.2).
There are further counterexamples to

theorems of classical analysis in Brouwer
1928a.

§ 3 is an example of the “splitting” of
a classical notion, that of a convergent
sequence, into several overlapping but
distinct intuitionistic notions, here posi-
tively convergent sequence, negatively
convergent sequence, and nonoscillating
sequence. These notions were further in-
vestigated by one of Brouwer’s disciples,
M. J. Belinfante, and we refer the reader
to Belinfante’s papers listed below, p.
630. In order to avoid a number of
complications that arise in the theory of
infinite sequences as elaborated by
Brouwer and Belinfante, J. G. Dijkman
found it convenient (1948) to introduce
the notions of strictly negatively conver-
gent sequence and of strictly nonoscilla-
ting sequence.

Two notes, ‘“ Addenda and corrigenda
and ‘“ Further addenda and corrigenda”,
published by Brouwer in 1954, are appen-
ded to the 1923 paper. They reflect the
development of Brouwer’s ideas in the
intervening years. In the main paper
below (1923b) Brouwer had introduced
an infinite sequence whose definition de-
pends upon the occurrence of a certain
finite sequence of digits in the decimal
expansion of 7. In 71948 he introduced an
infinitely proceeding sequence whose defi-
nition depends upon whether a certain
mathematical problem has, or has not,
been solved at a certain time: let « be a
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mathematical assertion that so far has
not been tested, that is, such that neither
— o nor —— « has been proved ; then, if
between the choice for c,_, and the
choice for c, ‘“the creating subject has
experienced either the truth or the ab-
surdity of «” (1948, p. 1246), a certain
value is chosen for ¢, ; otherwise, another
value is chosen for c,. This method of
definition, by which the choices for the
constituents of an infinitely proceeding
sequence “‘may, at any stage, be made
to depend on possible future mathemati-
cal experiences of the creating subject”
(1953, p. 2), allowed Brouwer to offer
new counterexamples to classical theor-
ems, in particular in analysis (1948a,
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1948b, 1949, 1949a, 1950, 1950a, 1951,
and 1952a). It is in these conditions that
he came to write the two appendices,
1954 and 1954a; 1954b and 1954c¢ consti-
tute a sequel to 1954a.

The translation of the main paper
(1923b) is by Stefan Bauer-Mengelberg
and the editor, and it is printed here with
the kind permission of Professor Brouwer
and Walter de Gruyter and Co. The first
appended paper (1954) was translated by
Stefan Bauer-Mengelberg, Claske M.
Berndes Franck, Dirk van Dalen, and
the editor; the second appended paper
(1954a) was translated by Stefan Bauer-
Mengelberg, Dirk van Dalen, and the
editor.

§1

Within a specific finite “main system” we can always test (that is, either prove
or reduce to absurdity) properties of systems, that is, test whether systems can be
mapped, with prescribed correspondences between elements, into other systems; for
the mapping determined by the property in question can in any case be performed
in only a finite number of ways, and each of these can be undertaken by itself and
pursued either to its conclusion or to a point of inhibition. (Here the principle of
mathematical induction often furnishes the means of carrying out such tests without
individual consideration of every element involved in the mapping or of every
possible way in which the mapping can be performed ; consequently the test even for
systems with a very large number of elements can at times be performed relatively
rapidly.)

On the basis of the testability just mentioned, there hold, for properties conceived
within a specific finite main system, the principle of excluded middle, that is, the
principle that for every system every property is either correct [[richtig]] or impossible,
and in particular the principle of the reciprocity of the complementary species, that is,
the principle that for every system the correctness of a property follows from the
impossibility of the impossibility of this property.

If, for example, the union S(p, ¢) of two mathematical species! p and ¢ contains at
least eleven elements, it follows on the basis of the principle of excluded middle (which
in this case appears as “ principle of disjunction’’) that either p or ¢ contains at least
six elements.

Likewise, if we have proved in elementary arithmetic that, whenever none of the
positive integers ay, a,, . . ., a, is divisible by the prime number c, the product a,a,a0-
...a, is not divisible by c either, it follows on the basis of the principle of the reci-
procity of the complementary species that, if the product a,a.a;. . .a, is divisible by
the prime number c, at least one of the factors of the product is divisible by c.

1 [For the definition of ‘‘species’’ see below, p. 454.]]
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For properties derived within a specific finite main system by means of the prin-
ciple of excluded middle it is always certain that we can arrive at their empirical
corroboration if we have a sufficient amount of time at our disposal.

Tt is a natural phenomenon, now, that numerous objects and mechanisms of the
world of perception, considered in relation to extended complexes of facts and events,
can be mastered if we think of them as (possibly partly unknown) finite discrete sys-
tems that for specific known parts are bound by specific laws of temporal concatena-
tion. Hence the laws of theoretical logic, including the principle of excluded middle,
are applicable to these objects and mechanisms in relation to the respective complexes
of facts and events, even though here a complete empirical corroboration of the
inferences drawn is usually materially excluded a priori and there cannot be any
question of even a partial corroboration in the case of (juridical and other) inferences
about the past. To this incomplete verifiability of inferences that are nevertheless
considered irrefutably correct, as well as to our partial ignorance of the representing
finite systems and to the fact that theoretical logic is applied more often and by more
people to such material objects than to mathematical ones we must probably attri-
bute the fact that an a priori character has been ascribed to the laws of theoretical
logic, including the principle of excluded middle, and that one lost sight of the
conditions of their applicability, which lie in the projection of a finite discrete system
upon the objects in question, so that one even went so far as to look to the laws of
logic for a deeper justification of the completely primary and autonomous mental
activity [Denkhandlung]) that the mathematics of finite systems represents. Accord-
ingly, in the logical treatment of the world of perception the appearance of a contra-
diction never led us to doubt that the laws of logic were unshakable but only to modify
and complete the mathematical fragments projected upon this world.

An a priori character was so consistently ascribed to the laws of theoretical logic
that until recently these laws, including the principle of excluded middle, were applied
without reservation even in the mathematics of infinite systems and we did not allow
ourselves to be disturbed by the consideration that the results obtained in this way
are in general not open, either practically or theoretically, to any empirical corrobora-
tion. On this basis extensive incorrect theories were constructed, especially in the last
half-century. The contradictions that, as a result, one repeatedly encountered gave
rise to the formalistic critique, a critique which in essence comes to this: the language
accompanying the mathematical mental activity is subjected to a mathematical exami-
nation. To such an examination the laws of theoretical logic present themselves as
operators acting on primitive formulas or axioms, and one sets himself the goal of
transforming these axioms in such a way that the linguistic effect of the operators
mentioned (which are themselves retained unchanged) can no longer be disturbed by
the appearance of the linguistic figure of a contradiction. We need by no means despair
of reaching this goal,2 but nothing of mathematical value will thus be gained: an
incorrect theory, even if it cannot be inhibited by any contradiction that would
refute it, is none the less incorrect, just as a criminal policy is none the less criminal
even if it cannot be inhibited by any court that would curb it.

2 For the unjustified application of the principle of excluded middle to properties of well-

constructed mathematical systems can never lead to a contradiction (see Brouwer 1908, [p. 157,
or 1919a, p. 117).
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§2

The following two fundamental properties, which follow from the principle of
excluded middle, have been of basic significance for this incorrect “‘logical”’ mathe-
matics of infinity (‘“logical” because it makes use of the principle of excluded middle),
especially for the theory of real functions (developed mainly by the Paris school):

1. The points of the continuum form an ordered point species ;3

2. Every mathematical species is either finite or infinite.*

The following example shows that the first fundamental property is incorrect.
Let d, be the vth digit to the right of the decimal point in the decimal expansion of =,
and let m = k, if, as the decimal expansion of = is progressively written, it happens
at d, for the nth time that the segment d,d,,,...d, o of this decimal expansion
forms the sequence 0123456789. Further, let ¢, = (—3$)%1 if v = k,, otherwise let
¢, = (— 3)”; then the infinite sequence cy, ¢y, Cg, . . . defines a real number r for which
none of the conditions r = 0, » > 0, or r < 0 holds.®

When the first fundamental property ceases to hold, the Paris school’s notion of
integral, the notion of L-integral, as it is called, ceases to be useful, because this
notion of integral is bound to the notion “measurable function’ and, according to
the above, not even a constant function satisfies the conditions of ‘““measurability .
For in the case of the function f(z) = r, where r represents the real number defined
above, the values of # for which f(z) > 0 do not form a measurable point species.®

That the second fundamental property is incorrect is seen from the example
provided by the species of the positive integers k, defined above.

When the second fundamental property ceases to hold, so does the “extended
disjunction principle”’, according to which, if a fundamental sequence of elements is
contained in the union S(p, q) of two mathematical species p and ¢, either p or ¢
contains a fundamental sequence of elements; and when the extended disjunction
principle ceases to hold, so does the Bolzano-Weierstrass theorem, which rests upon
it and according to which every bounded infinite point species has a limit point.

The following two theorems are less basic and simple than the fundamental pro-
perties mentioned, yet they are equally indispensable for the construction of the
“logical”’ theory of functions.

1. Every continuous function f(x) defined everywhere in a closed interval i possesses a
maximum, that is, an abscissa value x, having a neighborhood « such that f(x,) = f(x)
for every x that belongs to the intersection of o and i.

3 That is, if on the one hand a < b either holds or is impossible, or on the other a > b either
holds or is impossible, then one of the conditions @ < bora > b or a = b holds.

4 For according to the principle of excluded middle a species s either is finite or cannot possibly
be finite. In the latter case s possesses an element, e, ; for otherwise, on the basis of the principle
of excluded middle, s could not possibly possess an element and would therefore be finite, which
is excluded. Furthermore s possesses an element, e,, distinct from e, ; for otherwise s would not
possibly possess an element distinct from e, and would therefore be finite, which is excluded.
Continuing in this manner, we show that s possesses a fundamental sequence of distinct elements,
e1, €s, . . .. [For the definition of ‘‘fundamental sequence’’ see below, p. 455.])

5 Of course, we can also define r by means of any other property x whose existence or impossi-
bility can be derived for every definite positive integer, while we can neither determine a positive
integer that possesses x nor prove the impossibility of z for all positive integers.

8 However, the notion of R-integral, that is, the notion of Riemann integral, can be applied to
f(x) without further ado.
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The incorrectness of this theorem appears from the following example: If we
enumerate the irreducible binary fractions between 0 and 1 (excluding 0 and 1) by
means of a fundamental sequence 3;, 8, . . . in the ordinary way, that is, so that any
fraction follows all those with a smaller denominator and fractions with the same
denominator are ordered according to the magnitude of the numerator, if we assign
to k, the same meaning as above, if by f,(x) we understand the function that has the
value 2-" for x = §, and vanishes for x = 0 as well as for z = 1, while it remains
linear between x = 0 and « = §, as well as between x = §, and x = 1, and if we put
gn(®) = fu(x) for n = k,, otherwise g,(x) = 0, then the continuous function

which is defined everywhere in the closed unit interval, possesses no maximum.

2. (Heine-Borel covering theorem.) If a neighborhood is assigned to every point
core” of the point species A formed by the points and the limit points of a bounded entire®
point species B, then the whole point species A can be covered by a finite number of these
neighborhoods.

The incorrectness of this theorem appears from the following example : If we choose
for B the number sequence ¢, ¢, Cs, - . ., defined above, while we assign to the number
¢,, for v > k;, the interval (c, — 2 %172 ¢, + 27%1~2), otherwise the interval
(¢, — 27v"2% ¢, + 27v~2), and to a limit point e (if any) of the sequence the interval
(e — %, e + 1), then 4 cannot be covered by a finite number of these neighborhoods.®

In view of the fact that the foundations of the logical theory of functions are
indefensible according to what was said above, we need not be surprised that a large
part of its results becomes untenable in the light of a more precise critique. As an
example, we shall refute one of the best-known classical theorems in this domain,
namely, the theorem that a monotonic continuous function defined everywhere is
“almost everywhere” differentiable, by constructing a monotonic continuous func-
tion that is defined everywhere in the closed unit interval but is nowhere differentiable.

Let 0 £ 2, < 2, £ 1. By the elementary function corresponding to the interval
(%1, ;) we shall understand the continuous function, defined everywhere in the closed
unit interval, that, for z; £ = £ 2,, is equal to

T2 Ngno, TN
27 Ty — X
and, for 0 < z < 2; and z, £ 2 £ 1, is equal to 0; by X', A", X", ... we shall under-

stand the intervals (a/2", (@ + 2)/2") (where @ and n denote positive integers) belong-
ing to the closed unit interval and enumerated in the customary way; and by f,()
we shall understand the elementary function corresponding to A™. Furthermore we

7 [For the definition of ‘“‘point core’’ see below, p. 458.]

8 [“The species of the points that coincide with points of the point species @ is called the
completing [[ergdnzende]] point species or, for short, the completion [ Ergdnzung]) of Q. A point species
that is identical with its completion is called an entire [ganze]] Punktspecies.”” (Brouwer 1919, p. 6.)
For the definition of ““coincide” see below, p. 458, and for that of ‘‘identical with”’, p. 454.])

9 Nor does the theorem hold for a closed bounded entire point species 4. Counterexample : take
for A a species of abscissas (—2)~Y such that an abscissa (—2)~Y belongs to 4 if and only if a
natural number %, satisfying the characterization above is known and v is a natural number
<k, ; then with each abscissa that may belong to 4 associate the same interval as in the text.
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assign to k, the same meaning as above; we put g,(x) = z and (for n = 2) g,(x) =
falz) for n = k,, otherwise g,(x) = 0. Then the function

is a monotonic continuous function that is defined everywhere in the closed unit
interval but is nowhere differentiable.

§3

As an example illustrating the fact that even older and more firmly consolidated
theories in the field of the mathematics of infinity are affected by the rejection of the
principle of excluded middle and the consequent rejection of the Bolzano-Weierstrass
theorem, even if in much smaller measure than the theory of real functions, we take
the notion of convergence of infinite series.

Let us say that an infinite series %, + u, + %3 + --- with real terms, for which
the sum of the first » terms is denoted by s,, is nonoscillating if for every ¢ > 0 it
has been established that it is impossible to have at the same time an infinite sequence
of positive integers n,, ny, ns,... increasing beyond all bounds and an infinite
sequence of positive integers m,, my, mg, . .. such that

[8p, +m, — Sn,| > & for every v;

then according to the classical theory on the basis of the principle of excluded middle
such a nonoscillating series is:

1. Negatively convergent, that is, there exists a real number s with the property
that for every ¢ > 0 it has been established that it is impossible to have an infinite
sequence of positive integers n,, ny, ng, . . . increasing beyond all bounds such that

|s —s,,| > & forevery v;
2. Bounded, that is, there exist two real numbers g, and g, such that
g1 < 8, < go forevery n;

3. Positively convergent, that is, there exists a real number s with the property that
for every ¢ > 0 there exists a positive integer n, such that

|s — s,] < e foreveryn > n,.

Let us now consider the following five nonoscillating series (where k, again has
the same meaning as above):

(a) u, = 1/2™ for every n;

(b) u, =2 4+ 1/2" for n = ky, u, = —2 + 1/2" for n = k, + 1, otherwise u, =
1/2%;

() u, =mn + 1/2" for n = ky, u, = —n + 1/2" for n = k, + 1, otherwise u, =
1/27;

(d) u, = 1 for n = k,, otherwise u, = 1/2";
(e) u, = n for n = k,, otherwise u, = 1/2".
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The series (a) turns out to be positively convergent and therefore also negatively con-
vergent and bounded ; the series (b) to be negatively convergent and bounded, but
not positively convergent ; the series (c) to be negatively convergent, but not bounded
and therefore not positively convergent either; the series (d) to be bounded, but not
negatively convergent and therefore not positively convergent either; the series (e),
finally, to be not bounded, not negatively convergent, and not positively convergent.

To illustrate the consequences of the distinction made above we shall consider the
Kummer convergence criterion, which reads as follows: “If B, B,, ... are positive
numbers and if, for the infinite series of positive terms r» = u; + uy + ug + -+ -, we
have

lim {Bn u”+ = Bm} > 0,
then r is positively convergent”.
The proof of this convergence criterion is customarily carried out as follows.
On the basis of what has been assumed we select M and k in such a way that, for
n=M,
un
"u, + 1

- Bn+1 > k:

Bnun - Bn+1un+1 > kun+1:
Bnun - Bn+pun+p > k(un+1 +e 4+ un+p):

Bnun
un+1+"'+un+p< k’

whence boundedness follows for the series r, = %,y + Uy o + -+ (n = M) and
therefore also for the series » = u; + %y + - - -. On the basis of this boundedness the
series r is then declared to be not only nonoscillating, which is permitted for a series
of positive terms, but also positively convergent.

The last inference, however, rests upon the Bolzano-Weierstrass theorem and must
be rejected along with it.

Pringsheim (1916, p. 378) offers an altogether different and more instructive proof.
After he has proved the positive convergence of r for the case of the positive conver-
gence as well as for the case of the positive divergence of b = 1/B; + 1/B, + - - -, he
assumes that the series b must be either positively convergent or positively divergent,
and for this reason he declares that the general criterion has been proved.

But the assumption mentioned is inadmissible ; for it, too, rests upon the Bolzano-
Weierstrass theorem.

It is worth noting, now, that Kummer himself expressed (1835) his criterion only
with the auxiliary condition lim B,u, = 0 and that with this auxiliary condition the
positive convergence of the series r is actually ensured by the criterion, as is
immediately evident from the proof above.

That not only the derivations of the Kummer convergence criterion without any
auxiliary condition are inadequate!® but also the criterion itself is incorrect is shown

10 The inadequacy of these derivations, in contradistinction to the correctness of the proof
originally carried out by Kummer himself for the restricted criterion, was indicated to me by my
student M. J. Belinfante as an example of the significance of the principle of excluded middle for
the theory of infinite series.
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by the series (d) above, which is neither positively convergent nor negatively conver-
gent. For, if we determine the successive B, for this series from the relations

Un

B, =4 and B"u,,-}-l_

B,.. =1 forevery =,

all B, turn out to be positive, so that the extended convergence criterion is satisfied
here, although positive convergence does not exist. This omission of the Kummer
auxiliary condition, which took place after Kummer and was prompted by Dini, has
thus considerably curtailed the scope of the convergence criterion in question.

ADDENDA AND CORRIGENDA
(1954)

Regarding my paper ““Over de rol van het principium tertii exclusi in de wiskunde,
in het bijzonder in de functietheorie” (1923a), published thirty years ago in volume 2
of Wis- en Natuurkundig Tijdschrift, which has since been discontinued, I would now
like to make the following remarks.

I. Page 1, line 4 [Jabove, page 335, line 1], the term ‘““to test’’ [‘“toetsen” (1923a),
or “priifen” (1923b)]) is used for either proving or reducing to absurdity. In subse-
quent intuitionistic literature, however, a property of a mathematical entity is said
to be “tested” if either its contradictoriness or its noncontradictoriness is ascertained,
and “judged” [[*“geoordeeld ] if either its presence or its absurdity is ascertained.

II. Page 3, footnote (*) [above, page 336, footnote 2], the noncontradictoriness of
applications of the principle of excluded middle to the attribution of a property E to
a well-constructed mathematical system was pointed out. In subsequent intuitionistic
literature, however, it became apparent that for the simultaneous application of the
principle mentioned to the attribution of a property E to each element of a mathe-
matical species S noncontradictoriness remains ensured only for finite S. For infinite
S the simultaneous attribution mentioned can very well be contradictory.

ITII. Page 3, footnote (****) [above, page 337, footnote 5], for the construction,
given in the text, of a real number r for which none of the relations r = 0, » > 0,
and r < 0 holds, we allowed every property x for which neither a finite number
possessing « nor the impossibility of = for every finite number is known. To this
we must add the condition that « can be judged for every finite number.

IV. Page 4, line 18 up [[above, page 338, line 12]), the classical Heine-Borel covering
theorem was formulated for an arbitrary ““closed” bounded point species. The intui-
tionistic critique of this theorem that follows there should have been preceded by an
exposition of the intuitionistic splitting of the classical notion ““closed”. For, if in a
Cartesian or in a “located” [*““afgebakende’’]] compact topological space R we under-
stand by a core the species of the points that coincide with a given point, by an
accumulation core of a core species ¢ a core of which every neighborhood contains an
infinitely proceeding sequence of cores of @) that are mutually apart, and by a limat
core of a core species @ a core of which every neighborhood contains a core of @, if we
then say that a core species @ containing all of its accumulation cores is a-closed and
that a core species @) that contains all of its limit cores is B-closed, if, accordingly, we
call the union of a core species @ and its accumulation cores the a-closure of @ and the
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species of limit cores of ¢ the B-closure of @, if we take the formulation cited above
of the classical Heine-Borel covering theorem as applying to ““closed’’ bounded core
species @, then this formulation is intuitionistically correct only if by ““closed ” is meant
““B-closed’ and if, moreover, @ is a core species located in R, that is to say, it is from
every core of R at a distance that is computable with unlimited accuracy. In particu-
lar, therefore, with regard to the number sequence ¢y, ¢, cs, . . . referred to on page 4,
line 13 up [[above, page 338, line 17], which is bounded and is located in the number
continuum, the classical covering theorem is intuitionistically valid only for its
B-closure, that is to say, for its union with its limit number, but not for its a-closure,
referred to on page 4, line 13 up [above, page 338, line 19]], that is to say, for its union
with the number 0, if this number should turn out to be identical with the limit number.
Nor is the classical covering theorem intuitionistically valid for number core species
that are B-closed and bounded but not located in the number continuum, as, for example,
the union of the number cores p,, p,, P3, . - .,in whichp, = 1 forv < kyandp, = — 1
for v > k,.

V. The example given on page 5, lines 1-13 [above, page 338, line 8u, to page 339,
line 5]), of a monotonic, continuous, nowhere differentiable function defined every-
where in the closed unit interval possesses these properties exclusively as a function
of the (classical) continuum of approximations made according to a law, not as a
function of the (intuitionistic) continuum of more or less freely proceeding approxi-
mations. A connection between monotonicity and differentiability of full functions
of the intuitionistic continuum can be found in my 1923, p. 24.

FURTHER ADDENDA AND CORRIGENDA
(1954a)

With reference to point V of my 1954, pp. 104-105 [above, pp. 341-342], I give
below an example of a continuous, monotonic, nowhere differentiable, real, full function
of the intuitionistic closed unit continuum K.

For a natural number n we understand by x,(z) the real function of K that for the
“even n-cores’’? x = a/n (a being an integer and 0 < a < n) is equal to 0, for the
“odd n-cores” x = (2a + 1)/2n (a being an integer and 0 < a < n) is equal to 1/4n,
and for every a (0 £ a < n) is linear between x = a/n and x = (2a + 1)/2n as well
as between z = (2a + 1)/2n and z = (@ + 1)/n.® Further we put ¢, () = x and, for
n = 2, f being an opaque fleeing property and «;(f) being its critical number,* we

1 [For the definitions of ‘‘continuous”, ‘“‘full”’, and ‘‘unit continuum’’ see below, pp. 458-459;
see also Brouwer 1953, p. 3, line 2u, to p. 4, line 6.]]

2 [For the definition of ‘“core’’ see below, p. 458; see also Brouwer 1953, p. 3, line 2u, to p. 4,
line 6.

3 [From the intuitionistic point of view the definition of y,(x) does not seem unobjectionable ;
see Remark in 2.2.8 of Heyting 1956, p. 27.]]

4 [“We shall call a hypothetical property f of natural numbers a fleeing property if it satisfies
the following conditions:

(1) For each natural number it can be decided either that it possesses the property f or that it
cannot possibly possess the property f;

(2) No method is known for calculating a natural number possessing the property f;

(3) The assumption of existence of a natural number possessing the property f is not known to
lead to an absurdity.

In particular, a fleeing property is called opague if the assumption of existence of a natural
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put 4, (%) = xn(x) if n = ky(f), otherwise ¢,(z) = 0. Then

P(x) = 2 ()
v=1
is a continuous, monotonic, nowhere differentiable, real, full function of K.

For one must take into account the possibility («) that at some time it turns out
that «,(f) is nonexistent, so that, for all values of x, J)(x) possesses an ordinary
derivative equal to 1.

But one must also take into account the possibility (8) that at some time a natural
number m = k,(f) will be found. In that case (x) has, for all values of x that lie
apart® from the m-cores, an ordinary derivative, either equal to 3/2 or equal to 1/2;
for all even m-cores z it has a right derivative (nonexistent for x = 1) equal to 3/2,
and a left derivative (nonexistent for x = 0) equal to 1/2; and for all odd m-cores x
it has a right derivative equal to 1/2 and a left derivative equal to 3/2, while for every
value of x the possibility must be taken into account that at some time it shall turn
out either to be an m-core or to lie apart from the m-cores.

Therefore, with respect to the existence of an ordinary derivative, or of a right and
a left derivative, of y(x) one must, for every value of x, take into account possibilities
lying mutually apart, so that for no single value of x an ordinary derivative can be
calculated.

By the nature of the case this function ¥(z) is not “completely differentiable’ in
the sense of Brouwer 1923, § 3, p. 20.%

So far as the function g(x), mentioned in Brouwer 1923a, p. 5 [above, p. 339], is
concerned, it must, according to the explanations that follow below, be abandoned
as an example of a continuous, monotonic, nowhere differentiable function, even for
the classical closed unit continuum K,.”

§2

By a £ we understand a closed A“"*V.interval;® for v 2 0, by an A® we under-

stand a k¥ entirely or partially covered by K ; further, after ordering the 2 for all
values of v in a single fundamental sequence® ', 6", 8", ..., to be called 7, by a

number possessing f is not known to be noncontradictory either.” (Brouwer 1952, p. 141 ; see also
1928a, p. 161.)

The critical number of a fleeing property is apparently what Brouwer (1929a, p. 161) calls the
Lésungszahl of the property, that is, the (hypothetical) least natural number that possesses the
property.]|

5 [*“We say that [a number core]] a lies apart from [[a number core]] b if there is some natural
number n such that |b — a| > 2-".”" (Brouwer 1953, p. 4.) See also below, p. 462, footnote 10a.]]

8 [The definition of ‘‘ completely differentiable’’ requires too many preliminary definitions to be
reproduced here ; we refer the reader to the passage indicated in the text.]]

7 A similar disappearance of a counterexample, due to the disappearance of the absence of a
requisite algorithm, belongs to the realm of possibilities when one considers (x) simply for a
fixed fleeing property f.

[The classical continuum is the species of predeterminate intuitionistic real numbers; see
Brouwer 1952, p. 142, bottom half of first column, and p. 143, top of first column, as well as
above, p. 342, V.]|

8 [For the definition of ‘“ A-interval’’ see below, p. 457.]]

® [For the definition of ‘fundamental sequence”’ see below, p. 455.]]
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unitary standard number we understand an infinitely proceeding sequence!® ., ¢z,
6¢a, ... in which, for every v, 8 is an A and 6“v+1’ consists entirely of inner
points of v, Then, the species of unitary standard numbers is identical with the
species of accretion sequences'! of a dressed fan w,*2? of which we can say—because
every unitary number core, that is, every number core of K, coincides with a unitary
standard number—that it represents K.

As a function of a variable number core z, either of K, or of K, g(x) is now obtained
as follows.'® Let f be a fleeing property ; let «,(f) be its critical number; let p, and
q, be respectively the least and the greatest endcores of 6 ; and let ¢,(x) be the
continuous function of K,, or of K, that for the part of " that belongs to K,, or to
K, is equal to

9y — Py

& = Pvgnop X =Py
2m qy — Py

and, for x < p, as well as for x = ¢,, is equal to 0. Then we put g,(x) = z forv = 1,

g,(x) = @,(x) for v = k,(f), and g,(x) = O for all other values of v. Finally, we put

9@ = £ g,@).

If we call a 8 for which v = «,(f) the critical interval of f and if we represent this
by i(f), then (at least for the current examples of r and f) not a single indication is
at hand concerning the position of a possible i(f); therefore, it seems at the outset
that for every z every possibility of obtaining a guarantee for the nonbelonging to
t(f) is lacking, and so is for every unitary finite binary fraction!* x every possibility
of computing a ratio 1/3 for the lengths of the segments into which it would have to
divide a possible i(f) to which it would belong; therefore finally it seems that for
every x every possibility of computing an ordinary derivative is lacking.

§3

This situation, however, changes when one intends to make the infinitely proceeding
process of the creation, by free choices, of a unitary standard number u run parallel to
the infinitely proceeding process of the successive judgments of the assignment of f
to the successive natural numbers and moreover to take care that the creation pro-
cess of u continually lags sufficiently far behind the process of judging that was just
mentioned to prevent contact with an #(f) that might possibly appear, so that there
must come into existence a number core x of K for which g(x) possesses an ordinary
derivative equal to 1.

Once this insight has been obtained, it is not far-fetched to observe that the way,
indicated here, in which » comes to exist is at hand for all the accretion sequences

10 TSee the definition of ‘‘unbounded choice sequence’ below, p. 446; “infinitely proceeding
sequence’’ was used in Brouwer 1952, p. 142, bottom of first column; see also 3.1.1. in Heyting
1956, pp. 32-34.]

11 [*“ Accretion sequence’ (‘‘accretiereeks”’) is here apparently used for ‘infinitely proceeding
sequence in a dressed spread”.]]

12 [For the definition of ““dressed fan’’ see Brouwer 1953, p. 16, first paragraph.]|

13 [The remark made in footnote 3 applies to the function g(x).]]

14 [For the definition of “finite binary fraction” see below, p. 457, footnote 1.]
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of the elements of a subfan w’ of w that is obtained from w by the deletion, from the
species of constituents!® that are admitted for the nodes of w, of a possible i(f), as
well of the two A-intervals that are of the same length as i(f) and are partially covered
by i(f). Therefore, for every number core x of K that is represented by this dressed
fan w’, g(x) possesses an ordinary derivative.

By means of the same fan w' it is even possible to exhibit, for every natural number
n, a measurable core species S, that is contained in K, has a content greater than
1 — 2-%" and in which g(z) everywhere possesses an ordinary derivative.'® For that
one establishes first of all for every n one of the following facts: either for v £ n no
critical interval of f occurs among the 2 or for some m < n a critical interval of
f occurs among the A™. Further, there is chosen for S,, in the first case, the core
species of K represented by w’ and, in the second case, the species of the cores of K
that lie apart from the two endcores of #(f). If we further observe that the union of
the infinitely proceeding sequence of the S, forms a measurable core species that is
contained in K and has content 1, then g(x) turns out to be a continuous, monotonic,
real, full function of K that is differentiable almost everywhere.

And since the predeterminate elements of w’ represent number cores of K,, K, also
possesses an (everywhere dense, ever unfinished, and ever enumerable) core species in
which g(z) is everywhere differentiable.

15 [For the definition of ‘“‘constituent” see Brouwer 1953, p. 7.])
16 [For the definitions of ‘‘measurable core species” and ‘‘content” see Brouwer 1919, pp.
26-33; see also Heyting 1956, chap. V, secs. 1 and 3.])



