Tutorial 4

Date: October 20, 2021
TA: Denys Bulavka

Problem 1. Compute the following expressions:
(a) $2 A$
(b) $A+B$
(c) $A-B$
(d) C^{T}
(e) $C v$
(f) $A B$
(g) $B C$
for

$$
A=\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right), B=\left(\begin{array}{cc}
-1 & -1 \\
0 & 3
\end{array}\right), C=\left(\begin{array}{ccc}
3 & 0 & 1 \\
2 & -2 & 0
\end{array}\right), v=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

Problem 2. Prove or disprove the following:
(a) For all matrices $A \in \mathbb{R}^{m \times n}, A+A=2 A$.
(b) For all square matrices $A \in \mathbb{R}^{m \times m}, A=A^{T}$.

Problem 3. Compute $(-1) A+2 B C$ for matrices

$$
A=\left(\begin{array}{ll}
3 & 1 \\
4 & 1
\end{array}\right), B=\left(\begin{array}{ll}
5 & 9 \\
2 & 7
\end{array}\right), C=\left(\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right)
$$

Problem 4. Solve the systems of linear equations $(A \mid b)$ and $(B \mid c)$ given by
$A=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$ a $b=\binom{2}{1}$, and
$B=\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 2 & 0\end{array}\right)$ a $c=\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$.
Verify the correctness of your result x (resp. y) by computing the matrix product $A x=b($ resp. $B y=c)$.

Problem 5. Express the elementary row operations as matrix products, i.e., for each elementary row operation, find a matrix $E \in \mathbb{R}^{m \times m}$ such that $E A$ is the result of applying the operation to matrix A for all matrices $A \in \mathbb{R}^{m \times n}$.

Problem 6. Prove or disprove whether for all matrices A, B, C and $\mathbf{0}$ of the same order and real numbers $\alpha, \beta \in \mathbb{R}$, it holds that:
(a) $A+(B+C)=(A+B)+C$
(b) $A+B=B+A$
(c) $A+\mathbf{0}=A$
(d) $\alpha(\beta A)=(\alpha \beta) A$
(e) $\alpha(\beta A)=\beta(\alpha A)$
(f) $A+(-1) A=\mathbf{0}$
(g) $1 A=A$

Problem 7. Give a non-symmetric matrix A and a symmetric matrix B such that their product does not commute, i.e., such that $A B \neq B A$.
Is the product of symmetric matrices commutative?
Problem 8. Prove or disprove the following statements:
(a) For all $A, B \in \mathbb{R}^{n \times n}$, if A is symmetric and commutes with B then A commutes also with B^{T}.
(b) For all $A, B \in \mathbb{R}^{n \times n}$, if A commutes with B then A commutes with B^{T}.

