The principles of arithmetic,

presented by a new method
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(1889)

Written in Latin, this small book was
Peano’s first attempt at an axiomatiza-
tion of mathematics in a symbolic lan-
guage. Peano had already (1888) used
the logic of Boole and Schréder in mathe-
matical investigations and introduced
into it a number of innovations that
marked a definite advance upon the work
of his predecessors: for instance, the use
of different signs for logical and mathe-
matical operations, and a distinction
between categorical and conditional pro-
positions that was to lead him to quan-
tification theory (these were innovations
relatively to Boole and Schréder—not
to Frege, whose work Peano did not
know at that time). In the present work,
after having introduced logical notions
and formulas, Peano undertakes to re-
write arithmetic in symbolic notation.
But he aspires to more than that: the
book deals also with fractions, real num-
bers, even the notion of limit and defi-
nitions in point-set theory.

The initial arithmetic notions are
‘number’’, “one”’, “successor’’, and ““is
equal to”, and nine axioms are stated
concerning these notions. Today we
would consider that Axioms 2, 3, 4, and
5, which deal with identity, belong to the
underlying logic. This leaves the five
axioms that have become universally
known as ““the Peano axioms”. The last
one, Axiom 9, is the translation of the

¢

principle of mathematical induction.
It is formulated in terms of classes, and
it contains a class variable, “k”’ (it even
involves the class of all classes, K).
Peano acknowledges (1891b, p. 93) that
his axioms come from Dedekind (1888,
art. 71, definition of a simply infinite
system ; see also below, pp. 100-101). As
for Frege, Peano learned of his work
immediately after the publication of
Arithmetices principia.®

From the outset, Peano uses the nota-
tion  + 1 for the successor function. He
then introduces addition (§1,18) and
multiplication (§4, 1 and 2) as “defi-
nitions”. These definitions are recursive
definitions, although Peano does not
have at his disposal in his system any-
thing like Dedekind’s powerful Theorem
126 (1888), which justifies such defini-
tions. Peano does not explicitly claim
that these definitions are eliminable, but,
just as he does for ordinary definitions
(that of subtraction, for example), he
puts them under the heading “Defini-
tion”’, although they do not satisfy his
own statement on that score (p. 93),
namely, that the right side of a defini-
tional equation is ‘“an aggregate of

2 In the list of references appended to Arith-
metices principia (below, p. 86, footnote 1)
Frege’s name does not occur; but Peano
mentions and even quotes Frege in his very
next paper on logic (1891).
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signs having a known meaning”. He
proves for addition a theorem (§1, 19)
stating that “for every a and b, a, b e N
D. a4+ beN”, and a similar theorem
(§4, 3) for multiplication; but these
theorems are far from having the same
effect as Dedekind’s Theorem 126.

The ease with which we read Peano’s
booklet today shows how much of his
notation has found its way, either directly
or in a somewhat modified form, into
contemporary logic. ¢ is there, with the
distinction between elementhood and
subclasshood (except for classes of one
element—see formula 56 in Part IV,
p- 90 below; for such classes the dis-
tinction will appear the following year
(1890, p. 192)). The inverted C, O, will
become >.

The logical part of the work presents
formulas of the propositional calculus, of
the calculus of classes, and a few of
quantification theory. Peano’s notation
is quite superior to that of Boole and
Schroder, and it marks an important
transition toward modern logic. Some
distinction is made between the calculus
of propositions and that of classes (e, for
example, already introduces an asym-
metry between propositions and classes) ;
we now have two different calculi, not
just two interpretations of the same cal-
culus. The notation for the universal
quantifier is new and convenient. There
is, however, a grave defect. The formulas
are simply listed, not derived ; and they
could not be derived, because no rules of
inference are given. Peano introduces a
notation for substitution (V 4, p. 91)
but does not state any rule. What is far
more important, he does not have any
rule that would play the role of the rule
of detachment. The result is that, for all
his meticulousness in the writing of
formulas, he has no logic that he can
use. The point is vividly illustrated by the
first proof he gives, that of

11. 2¢eN
(below, p. 94). What is presented as a

proof is actually a list of formulas that
are such that, from the point of view of
the working mathematician, each one is
very close to the next. But, however
close two successive formulas may be, the
logician cannot pass from one to the next
because of the absence of rules of in-
ference. The proof does not get off the
ground.

In the proof just mentioned (and it is
typical of Peano’s proofs), the passage
from formulas (1) and (2) to formula (3)
cannot be carried out by a formal pro-
cedure ; it requires some intuitive logical
argument, which the reader has to supply.
The proof brings out the whole difference
between an axiomatization, even written
in symbols and however careful it may be,
and a formalization. The absence of a
rule of detachment in Peano’s booklet
(and other works) is apparently connec-
ted with his inadequate interpretation of
the conditional. He reads “aDbd” as
“from a one deduces b’ (““ab a deducitur
b”’), which remains vague; truth values
are not used at all in the work below,
and only marginally in Peano’s subse-
quent writings.

In a series of papers (1891, 1891a,
1891b; see also 1890) that form a sequel
to Arithmetices principia and a transition
toward the first volume of the Formulaire
(1895), Peano undertakes to prove the
logical formulas that he simply listed in
the logical part of the work below. Just
like his arithmetic proofs, his logical
proofs suffer from the absence of rules
of inference. In the proof of proposition
9 (1891a, p. 27), for example, he strings
conditionals one after another; when
ultimately he does detach, it is by a
move totally unjustified in his system.
For a pertinent critique of that aspect of
Peano’s work see Frege 1896 and 1896a.
Some of Peano’s explanations tend to
suggest that his logical laws should per-
haps be taken as rules of inference, not
as formulas in a logical language; this,
however, would not yield a coherent
interpretation of his system.



THE PRINCIPLES OF ARITHMETIC 85

In the work below and in the various
editions of the Formulaire that were to
follow, Peano intends to cover much more
ground than Frege does in his Begriffs-
schrift and his subsequent works, but he
does not till that ground to any depth
comparable to what Frege does in his
self-alloted field. Peano’s writings, of
minor significance for logic proper,
showed how mathematical theories can
be expressed in one symbolic language.
These writings rapidly gained a wide
influence and greatly contributed to the
diffusion of the new ideas.

Arithmetices principta consists of a
long explanatory preface and ten sections:
§ 1 Number and addition, §2 Subtrac-

tion, § 3 Maxima and minima, §4 Multi-
plication, §5 Powers, §6 Division, §7
Various theorems, § 8 Ratios of numbers,
§9 Systems of rationals, irrationals,
§ 10 Systems of quantities. Below we
print the preface and § 1 in extenso; from
§82, 4, 5, and 6 we give the “explana-
tions”’ and “definitions”’, omitting the
theorems, and we leave out the other
sections entirely. The omitted parts
consist almost exclusively of formulas
and are readily available in Peano’s col-
lected works (1958).

The translation is by the editor,
and it is printed here with the kind
permission of the Unione matematica
italiana.

PREFACE

Questions that pertain to the foundations of mathematics, although treated by
many in recent times, still lack a satisfactory solution. The difficulty has its main
source in the ambiguity of language.

That is why it is of the utmost importance to examine attentively the very words we
use. My goal has been to undertake this examination, and in this paper I am presenting
the results of my study, as well as some applications to arithmetic.

I have denoted by signs all ideas that occur in the principles of arithmetic, so that
every proposition is stated only by means of these signs.

The signs belong either to logic or to arithmetic proper. The signs of logic that occur
here are ten in number, although not all are necessary. In the first part of the present
paper [Logical notations]) the use of these signs, as well as some of their properties,
is explained in ordinary language. It was not my intention to present their theory
more fully there. The signs of arithmetic are explained wherever they occur.

With these notations, every proposition assumes the form and the precision that
equations have in algebra; from the propositions thus written other propositions are
deduced, and in fact by procedures that are similar to those used in solving equations.
This is the main point of the whole paper.

Thus, having introduced the signs with which I can write the propositions of arith-
metic, I have, in dealing with these propositions, used a method that, because it will
have to be followed in other studies too, I shall present briefly here.

Among the signs of arithmetic, those that can be expressed by other signs of arith-
metic together with the signs of logic represent the ideas that we can define. Thus, I
have defined all signs except the four that are contained in the explanations of § 1.
If, as I think, these cannot be reduced any further, it is not possible to define the
ideas expressed by them through ideas assumed to be known previously.

Propositions that are deduced from others by the operations of logic are theorems ;
propositions that are not thus deduced I have called azioms. There are nine of these
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axioms (§1), and they express the fundamental properties of the signs that lack
definition.

In §§ 1-6 I have proved the ordinary properties of numbers. For the sake of brevity
I have omitted proofs that are similar to other proofs given before. In order to express
proofs with the signs of logic, the ordinary form of these proofs has to be changed;
this transformation is sometimes rather difficult, but it is by means of it that the nature
of the proof reveals itself most clearly.

In subsequent sections I deal with various subjects, so that the power of the method
will be more apparent.

§ 7 contains a few theorems that pertain to number theory. In §§ 8-9 the definitions
of rational and irrational numbers are found.

Finally, in § 10 I present a few theorems, which, I think, are new, pertaining to the
theory of those objects that Cantor has called Punktmengen (ensembles de points).

In the present paper I have made use of the studies of other writers. The logical
symbols and propositions contained in parts II, ITI, and IV, except for a few, are to
be traced to the works of many writers, especially Boole.!

I introduced the sign e, which should not be confused with the sign O ; I also intro-
duced applications of inversion in logic, as well as a few other conventions, in order to
be able to express any proposition whatsoever.

For proofs in arithmetic, I used Grassmann 1861.

The recent work of Dedekind (1888) was also most useful to me; in it, questions
pertaining to the foundations of numbers are acutely examined.

This little book of mine is intended to give an example of the new method. With
these notations we can state and prove innumerable other propositions, whether they
pertain to rational or to irrational numbers. But to deal with other theories new signs
denoting new objects must be introduced. However, I think that the propositions of
any science can be expressed by these signs of logic alone, provided we add signs
representing the objects of that science.

LOGICAL NOTATIONS
1. Punctuation

The letters @, b,...,2,y,..., 2, ¥, ... denote indeterminate objects. We denote
well-determined objects by signs or by the letters P, K, N, .. ..

We shall generally write signs on a single line. To show the order in which they
should be taken, we use parentheses, as in algebra, or dots, ., :, ."., ::, and so on.

To understand a formula divided by dots we first take together the signs that are
not separated by any dot, next those separated by one dot, then those separated by
two dots, and so on.

For example, let a,b,c,... be any signs. Then ab.cd means (ab)(cd); and
ab.cd:ef .gh.".k means (((ab)(cd))((ef )(gh)))k.

Punctuation signs may be omitted if formulas differing in punctuation have the

! See Boole 1847, 1848, 1854, and Schréder 1877. Schréder had already dealt with some questions
relevant to logic in an earlier work (1873). I presented the theories of Boole and Schréder very
briefly in a book of mine (1888). See also Peirce 1880, 1885, Jevons 1883, MacColl 1877, 1878,
1878a, and 1880.
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same meaning or if only one formula, which is just the one we want to write, has
meaning.

To avoid the danger of ambiguity we never use . or : as signs for arithmetic opera-
tions.

The only kind of parentheses is ( ); if parentheses and dots occur in the same for-
mula, what is contained within parentheses is taken together first.

II. Propositions

The sign P means proposition.

The sign n is read and. Let @ and b be propositions ; then a n b is the simultaneous
affirmation of the propositions @ and b. For the sake of brevity, we ordinarily write ab
instead of @ n b.

The sign — is read not. Let a be a P; then —a is the negation of the proposition a.

The sign v is read or [Jvel]. Let @ and b be propositions; then a u b is the same as
—:—a.=b.

[The sign V means the true, or identity ; but we never use this sign.]

The sign A means the false, or the absurd.

[The sign C means is a consequence of ; thus b C a is read b ts a consequence of the
proposition a. But we never use this sign.]

The sign O means one deduces [deducitur]);? thus ¢ O b means the same as b C a.
If propositions @ and b contain the indeterminate objects z, y, . . ., that is, are condi-
tions between these objects, thena D, , . .
the proposition @ one deduces b. If there is no danger of any ambiguity, we write

b means: whatever z, y, ... may be, from

The sign = means ¢s equal to [est aequalis]. Let a and b be propositions; then
a = b means the same as aJ b.b D a; the proposition @ =, , b means the same as

@Dy, b.bD,,  a.
II1. Propositions of logic
Let a, b, ¢, ... be propositions. Then we have:
1. ada.
2. adb.bDc:D.adec.
3. a=b.=:a0b.bDa.
4, a = a.
5. a=b.=.b=a.
6. a=b.bDc:D.adec.
7. adb.b=c:D.adec.
8. a=b.b=c:D.a=c.
9. a=>b.D.adb.

2 [Peano reads a O b ““‘ab a deducitur b”’. Translated word for word, this either would be awkward
(““from a is deduced b”’) or would reverse the relative positions of a and b (‘‘b is deduced from a’’),
which would lead to misinterpretations when the sign is read alone. Peano himself uses ‘“‘on
déduit”’ for ““deducitur’’ when writing in French (for instance, 1890, p. 184), and this led to the
translation adopted here.]]
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10. a=b.0.bDa.

11. abD a.

12. ab = ba.

13. a(bc) = (ab)c = abc.
14. aa = a.

15. a =b.).ac = be.

16. adb.0.acd be.

17. adb.cOd:D.acdbd.
18. adb.adc:=.adbc.
19. a=>b.c =d:0.ac = bd.

20. —-(=a) = a.
21. a="b.=.=q = =b.
22. adb.=. =b) —a.

23. aub.= .. —:=a.=b.

24. —(ab) = (=a) u (=b).

25. —(aub) = (=a)(=b).

26. ad.aub.

27. aub =bua.

28. au(buc) = (eaub)uc=aubuec.
29. ava = a.

30. a(buc) = abuac.

31. a=b.D.auc=>"buc.

32. adb.D.aucdbuec.

33. adb.cOd:D:auc.D. bud.
34. bDa.cla:=.bucDa.

35. a—a = A.

36. alA = A.

37. auA = a.

38. ad A.=.a=A.

39. adb.=.a=b = A.

40. ADa.

4]1. aub=A.=:a=A.b=A.

42, ad.bDc:=:abDec.
43. ad.b=c:=.ab = ac.

Let o be a relation sign (for example, =, ), so that a « b is a proposition. Then,
instead of —.a « b, we write a —« b; that is,

¢==0b.=:=qa=0>.

a=0b.=:=.adb.

Thus the sign —= means is not equal to. If proposition a contains the indeterminate
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z, then a —=, A means: there are x that satisfy condition a. The sign =) means one
does not deduce.

Similarly, if « and B are relation signs, instead of a ab.a Bband a « b .u.a B b, we
can write a .«f. b and a .« U B. b, respectively. Thus, if @ and b are propositions, the
formula a .0=—=. b says: from a one deduces b, but not conversely.

aD==.b:=:a0b.b=Da.

We have the formulas :
adb.bdc.a=Dc:= A.
a=0b.b=c.a=-=c:=A.
aDb.bI==c:D.ad=-=c.
aQ==5b.00c¢:D.ad==c.

But we shall rarely use these devices.

IV. Classes

The sign K means class, or aggregate of objects.

The sign e means 7s. Thusa e bisread aisa b; a ¢ K means a s a class ; a ¢ P means
a 18 a proposition.

Instead of —(a & b) we write a —e b; the sign —e means s not ; that is,
44, a=—eb.=:=qach.

The sign a, b, ¢c ¢ m means: a, b, and ¢ are m; that is,
45. a,b,cem.=:aem.bem.cem.

Let a be a class ; then —a means the class composed of the individuals that are not a.

46. aeK.D:izxe=a.=.x=ca.

Let a and b be classes; a n b, or ab, is the class composed of the individuals that are
at the same time a and b; a U b is the class composed of the individuals that are a or b.

47. a,beK.D.xe.ab:=:xea.xeb.
48. a,be KD . ze.aub:=:xea.u.xeb.

The sign A denotes the class that contains no individuals. Thus,
49, aeKDa=A:=:zea.=, A.

[We shall not use the sign V, which denotes the class composed of all individuals
under consideration. ]
The sign O means is contained tn. Thus a D b means class a is contained in class b.

50. a,beK.D.adb:=:xea.D,. xzeb.

[The formula b C a could mean class b contains class a ; but we shall not use the sign
CJ]

The signs A and O here have a meaning that differs somewhat from the meaning
given above; but no ambiguity will arise. If we are dealing with propositions, these
signs are read the absurd and one deduces ; but, if we are dealing with classes, they are
read nothing and ts contained in.
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If @ and b are classes, the formula a = b means ¢ O .50 a. Thus,
51. a,be KD a=b:=:xea .=, xeb.
Propositions 141 still hold if @, b, . . . denote classes ; in addition, we have:

52. aeb.D.beK.

53. aeb.D.b—== A.
54. aeb.b=c:D.acc.
55. aeb.bDc:D.acc.

Let s be a class and £ a class contained in s; then we say that & is an individual of
class s if k consists of just one individual. Thus,

56. seK.kDs:D:itkes. = k==Atz,yek D, . x=y.

V. Inversion

The sign of inversion is [ ], and we shall explain its use in Part VI. Here we simply
present some special cases.

1. Let a be a proposition containing the indeterminate x; then the expression
[« €] @, which is read the x for which a, or the solutions of the condition a, or its roots,
means the class composed of the individuals that satisfy condition a. Thus,

57. aeP D:[xe]a.e K.
58. aeK D . [ze]l.xea:=a.
59. aeP D ze[xe]a:=a.

Let « and B be propositions containing the indeterminate x; we have:

60.  [2el (@) = ([z e] e[ ¢] B).
61. [ e] =a = =[x €] a.

62. [xe](@uPB) =[x e]lauxe] B
63. Ol B.=.[xe]ad[xe]B.
64. a=,B.=.[re]la=[xe]p.

2. Let z and y be any objects whatsoever ; we consider as a new object the system
composed of the object  and the object y, and we denote it by the sign (z, y) ; and
similarly if we have a greater number of objects. Let « be a proposition containing
the indeterminates x and y ; then [(z, y) £] « means the class composed of the objects
(%, y) that satisfy the condition «. We have:

65. Dy B.=.[(®y) el aD[(x, y)e] B
66. [(,y)e]a == A .= .[re]. [ye]la == A == A.

3. Let x o y be a relation between the indeterminates x and y (for example, in logic,
the relations ¢ = y, x —= y, D y; in arithmetic, z < y, > y, and so on). Then the
sign [¢] « y denotes the x that satisfy the relation x « y. For the sake of convenience,
we use the sign s instead of the sign [¢]. Thus, s ¢ y .=: [z £].  « ¥, and the sign s is read
the objects that. For example, let y be a number ; then s < y denotes the class formed by
the numbers x that satisfy the condition < y, that is, the objects that are smaller than
y, or simply the objects smaller than y. Similarly, if the sign D means divides or is a



THE PRINCIPLES OF ARITHMETIC 91

divisor of, the formula s D means the objects that divide or the divisors. It follows that
Tesoy =zxay.

4. Let o be a formula containing the indeterminate z. Then the expression ' [%] «,
which is read z’ being substituted for x in «, denotes the formula obtained if, in «, we
read 2’ for z. It follows that z[2] ¢ = «.

5. Let o be a formula that contains the indeterminates z,y,.... Then
(=, y',...)[%y,...] «, whichisread ',y . . . betng substituted for z,y, . .. in «, denotes
the formula obtained if, in o, the letters z7, ¥’, . . . are written for z, y, . . .. It follows

that (2, y) [z, y] « = «.

VI. Functions

The symbols of logic introduced above suffice to express any proposition of arith-
metic, and we shall use only these. We explain here briefly some other symbols that
may be useful.

Let s be a class ; we assume that equality is defined between the objects of the system
s so as to satisfy the conditions:

a = a.
a=b.=.b=a.
a=b.b=c:D.a=c.

Let ¢ be a sign or an aggregate of signs such that, if z is an object of the class s, the
expression gz denotes a new object; we assume also that equality is defined between
the objects gz ; further, if x and y are objects of the class s and if x = y, we assume it
is possible to deduce px = @y. Then the sign ¢ is said to be a function presign [praesig-
num]] in the class s, and we write ¢ ¢ Fés:

seK.DitpeFs.= .z, yes.x =y 0, , o = ¢y.

If, x being any object of the class s, the expression xzp denotes a new object and
zp = yp follows from x = y, then we say that ¢ is a function postsign [[ postsignum] in
the class s, and we write ¢ ¢ ’F :

seK.DitpesF .= 2, yes.x =y 0, ,. 2p = yo.

Ezxamples. Let a be a number ; then a+ is a function presign in the class of num-
bers, and +a is a function postsign; for any number z, formulas @ + z and z + a
denote new numbers; a + ¢ = a + y and x + a = y + a follow from z = y. Thus,

aeN.D:a+ .e. FN.
ae N .D: +a.e. N°F.

Let ¢ be a function presign in the class s. Then [p] ¥ denotes the class composed of
the x that satisfy the condition pz = y; that is,

Def. seK.peFs D:[ply.=.[ze] (pr = ¥y).
The class [p] ¥ may contain one or several individuals, or none at all. We have
seK.peFs:Diy =9px.=.xe[p]y.

But if py consists of just one individual, we have y = ¢z .=. z = [p] ¥.
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Let ¢ be a function postsign; we write similarly :
seK.pe SF D ylp] = [z e] (xp = y).

The sign [ ] is called the inversion sign, and we have already presented some of its
uses in logic. If « is a proposition containing the indeterminate x and a is a class
composed of the individuals x that satisfy the condition «, we have zea .= «, and
thena = [z el e, asin V 1.

Let « be a formula containing the indeterminate x and let ¢ be a function presign
that yields the formula « when written before the letter x; that is, let « = @z. Then
we have ¢ = a[x], and, if 2’ is a new object, we have gz’ = «[x] 2'; that is, if e is a
formula containing the indeterminate , then « [x] ' means what is obtained when, in
«, we put 2’ for z.

Similarly, let « be a formula containing the indeterminate x and let ¢ be a function
postsign, such that zp = «; it follows that ¢ = [2] «. Then, if 2’ is a new object, we
have z'¢p = z' [x] «; that is, 2’ [] « again denotes what is obtained when, in «, we
read z’ for z, asin V 4.

The sign [ ] can have other uses in logic, which we present only briefly, since we
shall not use it in these ways. Let a and b be two classes; then [an] b (or b[na))
denotes the classes x that satisfy the condition & = a n x (or the condition b = z na).
If b is not contained in a, no class satisfies this condition ; if b is contained in a, the sign
b [n a] denotes all classes that contain b and are contained in b U —a.

In arithmetic, let @ and b be numbers ; then b [+ a] (or [ + ] b) denotes the number
x that satisfies the condition b = z + a (or b = a + z), that is, b — a. Similarly we
have b[x a] = [a x]b = b/a. This sign can even find a use in analysis; thus,

y =sinx.=.ze[sin]y (instead of = arc sin y)
dF(z) = f(x)dx .=. F(z) e [d] f(x)dx (instead of F(x) = ff(x)dx).

Let ¢ again be a function presign in a class s and let k£ be a class contained in s ; then
@k denotes the class consisting of all px, where the x are the objects of class & ; that is,

Def. seK.keK.kDs.peFs:D. ok = [ye] (k.[p]ly == A),
or seK.keK.kDs.peFs:D. ok =[ye]((xelzek.px =y..—= A).
Def. seK.keK.kDs.pesF D. ko =[ye] (k.y[p] == A).

Thus, if ¢ ¢ Fs, then @s denotes the class composed of all gz, where the x are
objects of the class s. We have:

seK.peFs.yeps D:plply = y.
seK.a,0eK.aDs.60s.9peFs:0. plaub) = (pa)u (¢b).
seK.peFs D oA = A.
seK.a,0eK.005.aDb.peFs:D. paD b
seK.a,beK.aDs.60s.peFs:D. p(ab) O (pa)(ed).

Let a be a class; then a n K (or K na, or Ka) denotes all classes of the form a nx
(or z n a, or za), where x is any class ; that is, Ka denotes the classes that are contained
in a. The formula x ¢ Ka means the same as x ¢ K.2 O a. We shall sometimes use this
convention ; thus KN means a class of numbers.

Similarly, if a is a class, K u a denotes the classes that contain a.
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Let a be a number; then a + N (or N + a) denotes the numbers greater than the
number a; a X N (or N x a or Na) denotes the multiples of the number a; a¥ denotes
the powers of the number a; N2, N3, ... denote the squares, the cubes, and so on.

Equality, product, and powers can be defined thus for function signs:

Def. seK.p,peFs D .o =y :=:xe8.0, pr = 2.
Def. seK.peFs.feFps.xes:D. yppr = f(px).

Thus, if we assume this definition, we have the new function presign g ; it is called
the product of the signs  and .

Similarly if ¢ and ¢ are function postsigns.

The following proposition holds:

seK.peFs.ps0 5 :0: pps O s.ppps D s.and so on.

The functions gp, ppp, . . . are said to be tterated and are generally denoted by the
signs @2, @3, ..., as powers of the operation ¢.

But if ¢ is a function postsign, we can use the following more convenient notation
without ambiguity :

Def. seK.pesF.spDs:0: ¢l = ¢.¢2 = pp.p3 = ppp.and so on.

Assuming this definition, if m, n e N, we have ¢(m + n) = (pm)(pn) ; (pm)n = @(mn).

If we use this definition in arithmetic, we obtain the following. We can denote the
number that follows the number a by the more convenient sign a+ ; then a + 1,
a+ 2,...,and, if b is a number, a + b, have the meaning of a+, a++, ..., which
is clear from the definition in § 1 below. Proposition 6 in § 1 can be written N + O N.
If a, b, and ¢ are numbers, then a :+ b.c means a + be, and a :x b.c means ab.

Function signs possess many other properties, especially if they satisfy the condition
or = @y .J. x = y. A function sign that satisfies this condition is called stmilar by
Dedekind (dhnliche Abbildung).®

But we lack the space to present these properties.

Remarks

A definition, or Def. for short, is a proposition of the form = a or «D. 2 = a,
where a is an aggregate of signs having a known meaning, z is a sign or an aggregate
of signs, hitherto without meaning, and « is the condition under which the definition
is given.

A theorem (Theor. or Th.) is a proposition that is proved. If a theorem has the form
a D B, where « and B are propositions, then « is called the hypothesis (Hyp. or, even
shorter, Hp.) and B the thesis (Thes. or Ts.). Hyp. and Ts. depend on the form of the
theorem ; in fact, if we write —8 0 —a instead of « O B, then =B is the Hp. and —« the
Ts.; if we write =B = A, Hp. and Ts. do not exist.

In any section below, the sign P followed by a number denotes the proposition
indicated by that number in the same section. Propositions of logic are indicated by
the sign L and the number of the proposition.

Formulas that do not fit on one line are continued on the next line without any
intervening sign.

3 [Today ‘“similar’’ has another meaning and instead we would say ‘‘equivalent”.
g y eq
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§ 1. NUMBERS AND ADDITION
Ezxplanations

The sign N means number (postitive integer).

The sign 1 means unity.

The sign a + 1 means the successor of a, or a plus 1.

The sign = means is equal to. We consider this sign as new, although it has the
form of a sign of logic.

Axioms

1eN.

aeN.D.a = a.

a,beND:a=b.=.b=a.
a,bceND.a=bb=c:D.a=c
a=>b.beN:D.aeN.

aeN.D.a+1eN.
a,beN.D:ia=b.=.a+1=056+1.
aeN.D.a+1==1.

keK - lek.zeN.zek:D, 2+ 1ek::D.NOE.

© XSO W=

Definitions
10. 2=1+1;3=2+1;4 =3+ 1; and so forth.

Theorems

11. 2¢eN.

Proof :

P1.D: 1eN (1)
1[a] (P 6) .0: 1:eND.1+1eN (2)
(1) (2) .0: l1+1eN (3)
P10.0: 2=1+1 (4)
4).(3).2,1 + 1)[a, 0] (P5) :D: 2eN (Theorem).

Note. We have written explicitly all the steps of this very easy proof. For the sake
of brevity, we now write it as follows :

P1.1[a] (P6):D:1 + 1eN.P10.(2, 1+1)[a, b] (P5) :0: Th.
or
P1.P6:D:1+1eN.P10.P5:0: Th.

12. 3,4,...eN.
13. a,b,c,deN.a=b.b=c.c=d:D:a=d.

Proof: Hyp. P4 :D:a,¢,deN.a = c.c = d.P 4:0: Thes.
14. a,b,ceN.a =b.b =c.a—==c:=A.
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Proof: P 4.L 39 :0. Theor.

15. a,b,ceN.a=b.b==cD.a==c.

16. a,beN.a=b:0.a+1=0>6+ 1.

16. a,beN.a+1=0b+1:D.a=0.
Proof: P7 = (P 16)(P 16).

17. a,beN.D:ia==b.=.a +1==0b+ 1.

Proof: P7.L 21 :D. Theor.

Definition

18. a,beND.a+b+1)=(a+0b + 1
Note. This definition has to be read as follows: if @ and b are numbers, and if
(@ + b) + 1 has a meaning (that is, if @ + b is a number) but @ + (b + 1) has not

yet been defined, then @ + (b + 1) means the number that follows a + b.
From this definition and also the preceding it follows that

aeNDa+2=a+1+1)=(@@+1)+1,
aeNDa+3=a+C2+1)=@+2)+1
and so forth.

Theorems
19. a,beN.D.a +beN.
Proof: ae N.P6:D:a + 1eN:0:1e[be] Ts. (1)
aeN.D::beN.bebe]Ts:D:a+beN.P6:D:(a +b) +1eN.P18:D:a +
b+ 1)eN:D:(b+ 1)e[be] Ts. (2)
aeN.(1).(2).0::1e[be]Ts..beN.be[be]Ts:0:b + 1e[be] Ts...([be] Ts)[k]P 9
1D ND[be]Ts. (L50)::0:beN.DTs. (3)
(3).(L 42) :D: a, b e N .D. Thesis. (Theor.).
20. Def.a +b+c=(a+d) +c.
21. a,b,ceN.D.a +b+ ceN.
22. a,b,ceN.Dia=b.=.a+c=0b+c.
Proof: a,beN.P7:D.1e[ce]Ts. (1)

a,beN.D::ceN.ce[ce]Ts.0.a=b.=.a+c=b+c:a+c¢,b+ceN:a +
c=b+c=a+c+l=b+c+1-Da=b.=a+(c+1)=bb+ (c+1)
2000 (e + 1) efce] Ts. (2)

a,beN.(1).(2)9::1e[ce]Ts..cece] Ts D. (¢ + 1) e[ce] Ts ::0::¢ce N.O. Ts. (3)

(3) O Theor.

23. a,bceND.a+b+c)=a+b+ec

Proof: a,b e N.P18.P 20 :0.1 e[ce] Ts. (1)
a,beN.D.ceN.ce[ce] TsD:a+ b +¢c)=a+b+cP7Dia+ (b +c) +
l=a+b+c+1.PI18D:a+ b+ (c+1)=a+bdb+(c+1)D.c+1e
[c €] Ts. (2)
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(1) (2) (P 9) .0. Theor.
24. aeND.1+a=a+1.

Proof: P2.0.1¢[a¢] Ts. (1)
aeNaeae]l Ts: D'l +a=a+1:0:1+@+1)=@+1)+1:D:(a+1)
e[a ] Ts. (2)

(1) (2) .0. Theor.
24'. a,beN.D.1+a+b=a+1+0b.

Proof: Hyp. P24 :0:1 + a = a + 1.P 22 :D. Thesis.
25. a,beN.D.a+b=>+a.

Proof: ae N. P24 :0:1¢[be] Ts.

—_
[
~

aeN.D . beNbebe]Ts D:a+bdb=b0+aP7D:(a+d)+1=(0b+a)+
l@a+b)+1l=a+b+1).b+ta)+1=1+0b+a)l+((®b+a)=(1+0b)
+al+bd)+a=0+1)4+aDa+®+1)=(0B+1)+a:0:(0+1)
e[be] Ts. 2)

(1) (2) .0. Theor.

26. a,b,ceN.D:a=b.=.c+a=c+b.

27. a,b,ceN.D:a+b+c=a+c+0.

28. a,b,c,deN.a=b.c=d:D.a+c=05b+d.

§ 2. SUBTRACTION

Ezxplanations

The sign — is read minus.
The sign < is read s less than.
The sign > is read is greater than.

Definitions

1. a,beN.D:b—a=Nlze](x + a=0).

2. a,beN.D:ia<b.=.b—a—-=A.

3. a,beN.D:b>a.=.a<b

a+b—-—c=@+b —-c;a—-b+c=(@—-b)+c;a—b—c=(a—0b)—ec

§ 4. MULTIPLICATION
Definitions
1. aeN.D.a x1=a.

2. a,beN.Dax(b+1)=axbd+a.
ab=a x b;ab + ¢ = (ab) + ¢; abc = (ab) c.

§5. PowERs
Definitions
1. aeN.D. a' = a.
2. a,beN.D.a**! = aba.
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§ 6. DivisioN
Explanations
The sign |/ is read divided by.
The sign D is read divides, or is a divisor of.
The sign d is read ¢s a multiple of.

The sign Np is read prime number.
The sign 7 is read ¢s prime to.

Definitions
1. a,beN .D.bja = N[z e] (xra = b).
2. a,beN.D:aDb.=.bja—-= A.
3. a,beN.D:bda.=.aDb.
4. Np=Nlze](sDzx.sa > 1.6 < xz:=A).
5. a,beN.D:itanb...=.2Da.aDb.a >1:=A.
6. a,beN.D:.aD(a,b):=:aDa.n.aDbd.
7. a,beN.D-.al(a,b):=:ada.nsdb.

abjc = (ab)/c; albjc = (a/b)/c; alb x ¢ = (a/b) c.
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Letter to Keferstein

RICHARD DEDEKIND
(1890a)

Hans Keferstein, Oberlehrer in Ham-
burg, published a paper (1890) on the
notion of number in which he commented
on Frege’s (1884) and Dedekind’s (1888)
books on the subject. His comments on
Dedekind’s work, although not entirely
negative, included a number of sugges-
tions for amending the text that revealed
his lack of real understanding of some
fundamental points, for example, the
equivalence of two sets. Dedekind felt
obliged to answer with an essay (1890)
in which he showed how pointless the
““corrections” were. He sent it to Kefer-
stein on 9 February 1890, with a letter
in which he suggested that the Hamburg
Mathematical Society, in whose yearly
Mitteslungen Keferstein’s paper had ap-
peared, publish either the essay or,
should Keferstein realize that his sug-
gestions were based upon misunderstand-
ings, a declaration to that effect.

Dedekind’s essay dealt with three
points. The first was an objection of
Keferstein’s to Dedekind’s proof that
there exists an infinite set. This proof has
often been criticized (see, for instance,
below, p. 131) ; but Keferstein’s objection
rested upon a wrong argument, a plain
confusion of the equivalence relation
between sets with their identity, and
Dedekind had no difficulty in answering
him. The second point was Keferstein’s
claim that he had found two conflicting
definitions of infinite sets in the book;
Dedekind pointed out that one was in
fact merely a stylistic variant of the

other. The third point was the substitu-
tion by Keferstein of a new definition of
simply infinite sets for that given by
Dedekind (1888, art. 71). Keferstein’s
purpose was to avoid the notion of chain,
and his proposal amounted in effect to
the abandonment of mathematical induc-
tion; Dedekind showed that this pro-
posal would bar the possibility of provid-
ing an adequate foundation for the theory
of natural numbers.

On 14 February 1890 Keferstein ac-
knowledged receipt of the essay, announc-
ing that at the next meeting of the
Society he would propose its publication,
that he was confident that the proposition
would be accepted, that, moreover, he
did not consider his criticisms, especially
the third one, as mere misunderstandings
on his part and would return to them in
case the essay should be published.

On 27 February 1890 Dedekind sent to
Keferstein a long letter that is a brilliant
presentation of the development of his
ideas on the notion of natural number.
In it he tried to show that his assump-
tions had not been haphazardly chosen
and that each one of them had a pro-
found justification. This is especially
true, Dedekind insisted, of the notion of
chain, which Keferstein wanted to elimi-
nate. Professor Hao Wang published
(1957) an English translation of a major
part of the letter, with commentaries.
The text below is a translation of the
whole letter.

On 19 March 1890 Keferstein thanked
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Dedekind for the letter and asked his
permission to use it in a lecture before the
Hamburg Mathematical Society. Dede-
kind granted this permission in his next
letter, dated 1 April 1890, adding a few
lines of explanation on the notion of
chain.

On 17 November 1890, as publication
of the yearly volume of the Mitteilungen
of the Society was drawing near, Kefer-
stein wrote an ‘“Erwiderung” (1890b)
that was to follow Dedekind’s essay
(1890) in the volume. But on 19 December
1890 he had to inform Dedekind that the
editorial board of the Society had de-
clined to publish Dedekind’s essay, as
well as Keferstein’s rejoinder, the reason
invoked being the lack of space and the
fact that Dedekind’s reply was longer
than Keferstein’s original criticism of
Dedekind’s book. Keferstein also an-
nounced his intention of publishing in
the Society’s coming yearly volume a
note withdrawing his proposed “correc-
tions” to Dedekind’s work. The note
appeared in volume 3 of the Mitteslungen
(p. 31), published in February 1891;
it consisted of a few lines incorporated in
a report of the 11 October 1890 meeting
of the Society.

On 23 December 1890 Dedekind wrote
his last letter to Keferstein, acknowledg-
ing receipt of his returned manuscript

My dear Doctor,

as well as of a copy of Keferstein’s
“Erwiderung”’. He expressed his regrets
that, although the polemic and the cor-
respondence had taken so much of his
time, Keferstein’s reply still contained
many misunderstandings.

Dedekind’s time and efforts were,
however, not wasted at all. The con-
troversy produced the letter below, which
remains a masterly presentation of his
ideas.

Dedekind’s essay and the Dedekind-
Keferstein correspondence are preserved
in the Niedersdchsische Staats- und
Universitéatsbibliothek in Gottingen. They
come from the Dedekind estate. Kefer-
stein’s letters are the originals, as re-
ceived by Dedekind ; Dedekind’s letters
and his essay, as well as Keferstein’s
“Erwiderung”, are clean copies in
Dedekind’s hand. Dedekind’s letter of 27
February 1890 is reproduced below with
the kind permission of the Library (where
it has the classmark: Gottingen, UB,
Cod. Ms. Nachlass Dedekind, 13).

Stefan Bauer-Mengelberg translated
the parts of the letter omitted from Pro-
fessor Wang’s paper and introduced
some changes into the text of Professor
Wang’s translation. Permission to make
use of that translation was granted by
Professor Wang and 7The journal of
symbolic logic.

I should like to express my sincerest thanks for your kind letter of the 14th of this

month and for your willingness to publish my reply. But I would ask you not to rush
anything in this matter and to come to a decision only after you have once more
carefully read and thoroughly considered the most important definitions and proofs
in my essay on numbers, if you have the time. For I think that most probably you
will then be converted on all points to my conception and to my treatment of the
subject ; and this is just what I should value most, since I am convinced that you really
have a deep interest in the matter.

In order to further this rapprochement wherever possible, I should like to ask you
to lend your attention to the following train of thought, which constitutes the genesis
of my essay. How did my essay come to be written ? Certainly not in one day ; rather,
it is a synthesis constructed after protracted labor, based upon a prior analysis of the
sequence of natural numbers just as it presents itself, in experience, so to speak, for our
consideration. What are the mutually independent fundamental properties of the
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sequence N, that is, those properties that are not derivable from one another but from
which all others follow ¢ And how should we divest these properties of their specifically
arithmetic character so that they are subsumed under more general notions and under
activities of the understanding without which no thinking is possible at all but with
which a foundation is provided for the reliability and completeness of proofs and for
the construction of consistent notions and definitions ?

When the problem is posed in this way, one is, I believe, forced to accept the follow-
ing facts:

(1) The number sequence N is a system of individuals, or elements, called numbers.
This leads to the general consideration of systems as such (§ 1 of my essay).

(2) The elements of the system N stand in a certain relation to one another; a
certain order obtains, which consists, to begin with, in the fact that to each definite
number n there corresponds a definite number »’, the succeeding, or next greater,
number. This leads to the consideration of the general notion of a mapping ¢ of a
system (§ 2), and since the image ¢(n) of every number = is again a number, n’, and
therefore ¢(V) is a part of N, we are here concerned with the mapping ¢ of a system
N wnto itself, of which we must therefore make a general investigation (§ 4).

(3) Distinct numbers a and b are succeeded by distinct numbers a’ and b; the
mapping ¢, therefore, has the property of distinctness, or stmilarity® (§ 3).

(4) Not every number is a successor n’; in other words, ¢(XN) is a proper part of N.
This (together with the preceding) is what makes the number sequence N infinite (§ 5).

(6) And, in particular, the number 1 is the only number that does not lie in @(N).
Thus we have listed the facts that you (p. 124, 1. 8-14) regard as the complete charac-
terization of an ordered, simply infinite system N.

(6) I have shown in my reply (I1I),2 however, that these facts are still far from being
adequate for completely characterizing the nature of the number sequence N. All
these facts would hold also for every system S that, besides the number sequence N,
contained a system 7T, of arbitrary additional elements ¢, to which the mapping ¢
could always be extended while remaining similar and satisfying ¢(7') = 7'. But such
a system § is obviously something quite different from our number sequence N, and
I could so choose it that scarcely a single theorem of arithmetic would be preserved in
it. What, then, must we add to the facts above in order to cleanse our system S again
of such alien intruders ¢ as disturb every vestige of order and to restrict it to N?
This was one of the most difficult points of my analysis and its mastery required lengthy
reflection. If one presupposes knowledge of the sequence N of natural numbers and,
accordingly, allows himself the use of the language of arithmetic, then, of course, he
has an easy time of it. He need only say: an element n belongs to the sequence N
if and only if, starting with the element 1 and counting on and on steadfastly, that is,
going through a finite number of iterations of the mapping ¢ (see the end of article
131 in my essay), I actually reach the element » at some time; by this procedure,
however, I shall never reach an element ¢ outside of the sequence N. But this way
of characterizing the distinction between those elements ¢ that are to be ejected
from S and those elements » that alone are to remain is surely quite useless for our
purpose ; it would, after all, contain the most pernicious and obvious kind of vicious

1 [See footnote 3, p. 93 above.]]
2 [This refers to sec. III in Dedekind 1890 ; see introductory note.]]
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circle. The mere words “finally get there at some time”’, of course, will not do either;
they would be of no more use than, say, the words ‘“karam sipo tatura”, which I
invent at this instant without giving them any clearly defined meaning. Thus, how
can I, without presupposing any arithmetic knowledge, give an unambiguous con-
ceptual foundation to the distinction between the elements » and the elements ¢?
Merely through consideration of the chains (articles 37 and 44 of my essay), and yet,
by means of these, completely ! If I wanted to avoid my technical expression ‘‘chain”
I would say: an element n of S belongs to the sequence N if and only if » is an
element of every part K of S that possesses the following two properties : (i) the element
1 belongs to K and (ii) the image ¢(K) is a part of K. In my technical language : N
is the intersection [[Gemeinheit]] 1o, or py(1), of all those chains K (in 8) to which the
element 1 belongs. Only now is the sequence N characterized completely. In passing
I would like to make the following remark on this point. Frege’s Begriffsschrift and
Grundlagen der Arithmetik came into my possession for the first time for a brief period
last summer (1889), and I noted with pleasure that his way of defining the non-
immediate succession of an element upon another in a sequence agrees in essence
with my notion of chain (articles 37 and 44); only, one must not be put off by his
somewhat inconvenient terminology.

(7) After the essential nature of the simply infinite system, whose abstract type is
the number sequence N, had been recognized in my analysis (articles 71 and 73), the
question arose : does such a system exist at all in the realm of our ideas? Without a
logical proof of existence it would always remain doubtful whether the notion of
such a system might not perhaps contain internal contradictions. Hence the need
for such proofs (articles 66 and 72 of my essay).

(8) After this, too, had been settled, there was the question: does what has been
said so far also contain a method of proof sufficient to establish, in full generality,
propositions that are supposed to hold for all numbers » ? Yes! The famous method of
proof by induction rests upon the secure foundation of the notion of chain (articles
59, 60, and 80 of my essay).

(9) Finally, is it possible also to set up the definitions of numerical operations con-
sistently for all numbers n ? Yes! This is in fact accomplished by the theorem of article
126 of my essay.

Thus the analysis was completed and the synthesis could begin; but this still
caused me trouble enough! Indeed the reader of my essay does not have an easy task
either; apart from sound common sense, it requires very strong determination to
work everything through completely.

I shall now turn to some parts of your paper that I did not mention in my recent
reply [18907 because they are not as important ; but perhaps my remarks about them
will contribute something more to the clarification of the issue.

(a) P. 121, 1. 19.3 Why the mention of a part here ? I later (article 161 of my essay)

ascribe a number [Anzahl]] to each finite system and to no other.

(b) P. 122, 1. 8. Here we have a confusion between mapping and map ; instead of

3 [Keferstein had written: “In fact he [Dedekind] later ascribes each number to a certain part
[Teil] of such a system...”.]]
4 [Keferstein had written: ““... to the mapping ¢ of S we can match an inverse mapping

#(S) ...”.]
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“mapping ¢(8")” it should be ‘“mapping ¢ of the system §’”’. Not $(8’) but ¢ is a map-
ping (the mapping cartographer) [ Abbildung (der abbildende Maler)]}, which generates
the map ¢(S’) = S from the system S’ (the original). Such confusions can become quite
dangerous in our investigations.

(c) P. 123, 1. 1-2.% These words might perhaps apply to Frege, but they certainly
do not apply to me. I define the number [Zahl]] 1 as the basic element of the number
sequence without any ambiguity in articles 71 and 73, and, just as unambiguously, I
arrive at the number [Anzahl]] 1 in the theorem of article 164 as a consequence of the
general definition in article 161. Nothing further may be added to this at all if the mat-
ter is not to be muddled.

(@) P. 123, 11. 29-31.6 The preceding remark, (c), has already taken care of this. And
how would the greater reliability and the lesser prolixity shape up in actual fact?

(e) P. 124, 11. 21-24.7 The meaning of these lines (as well as of the preceding and
subsequent ones) is not quite clear to me. Do they perhaps express the desire that my
definition of the number sequence N and of the way in which the element n’ follows
the element » be propped up, if possible, by an intuitive sequence ? If so, I would resist
that with the utmost determination, since the danger would immediately arise that
from such an intuition we might perhaps unconsciously also take as self-evident
theorems that must rather be derived quite abstractly from the logical definition of
N. If I call (article 73) n’ the element following n, that is only a new technical expression
by means of which I merely bring some variety into my language ; this language would
sound even more monotonous and repelling if I had to deny myself this variety and
were always to call n’ only the map ¢(n) of n. But one expression is to mean exactly
the same as the other.

(f) P. 124, 1. 33—p. 125, 1. 7.8 The word “merely” [““lediglich ]}, taken from the
third line of my definition in article 73, is obviously meant to indicate the sole restric-
tton to which the word ““entirely ” [*“ gdnzlich ’], which occurs just before, is subject ;°

5 [Keferstein had written: “In our opinion, both Frege (1884, pp. 89-90) and Dedekind, who
incidentally derives the notion of cardinal number only from the previously defined notion of
ordinal number (1888, pp. 21 [article 73]] and 54 [Jarticle 161]), have, when all is said and done,
introduced the notion of the number 1 without an adequate definition™.J]

6 [Keferstein had written: ““. .. especially since, by the previous introduction of the number 1,
the latter [Dedekind]] seems not only to gain in reliability but also to lose in prolixity’’.]

7 [Keferstein had written: “Since Dedekind does not emphasize this fact [that N can be re-
garded as a sequence in which ¢(n) = n’ immediately follows n]], the notions of sequence and of
succession in a sequence turn up in an apparently abrupt way in the definition of ordinal numbers
that comes at that point”.]]

8 [Keferstein had written: ‘“When the above comments are properly taken into account,
there remains in these propositions at most one point that could give offense, namely, the demand
that we entirely disregard the particular character of the elements and retain merely their dis-
tinguishability, since objects remain distinguishable, after all, only if they still exhibit differences.
If we strike out the words ‘ihre Unterscheidbarkeit festhilt und nur’ [see footnote 9]), however,
the difficulty vanishes, since the relations in which the elements are put with one another by the
ordering mapping ¢ are conceived by precisely a pure mental activity that remains completely
independent of the particular character of the objects toward which it is directed”.]]

¢ [The German text to which Dedekind refers reads: “ Wenn man bei der Betrachtung eines
einfach unendlichen, durch eine Abbildung ¢ geordneten Systems N von der besonderen Beschaffen-
heit der Elemente génzlich absieht, lediglich ihre Unterscheidbarkeit festhilt und nur die Beziehun-
gen auffalt, in die sie durch die ordnende Abbildung ¢ zueinander gesetzt sind, so heilen diese
Elemente natirliche Zahlen oder Ordinalzahlen oder auch schlechthin Zahlen,und das Grundelement
1 heiBt die Grundzahl der Zahlenreihe N”°. (1888, art. 73).]
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if one were to remove this restriction—if, in other words, the word ‘entirely’’ were to
assume its full meaning—then we would lose the distinguishability of the elements,
which, after all, is indispensable for the notion of the simply infinite system. This
“merely ”’, therefore, does not seem at all superfluous to me, but necessary. I do not
understand how it could arouse any objection.

Repeating the wish I expressed at the beginning and begging you to excuse the
thoroughness of my discussion, I remain with kindest regards

Yours very truly,

R. DEDEKIND
27 February 1890
Petrithorpromenade 24



