NMAI057 - Linear algebra 1

Tutorial 2

TA: Denys Bulavka

Problem 1. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{array}{r}
x+2 y=5 \\
2 x-y=0
\end{array}
$$

Solution. We use the matrix representation for the system and reduce it as follows

$$
\left(\begin{array}{cc|c}
1 & 2 & 5 \\
2 & -1 & 0
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & 2 & 5 \\
0 & -5 & -10
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 2 & 5 \\
0 & 1 & 2
\end{array}\right) \sim\left(\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

After the reduction, we get $x=1$ a $y=2$.

Problem 2. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
x-3 z & =1 \\
-2 x+6 z & =-2
\end{aligned}
$$

Solution. We use the matrix representation for the system and reduce it as follows

$$
\left(\begin{array}{cc|c}
1 & -3 & 1 \\
-2 & 6 & -2
\end{array}\right) \sim\left(\begin{array}{cc|c}
1 & -3 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

We can put a real parameter $t \in \mathbb{R}$ for the z variable and express x in terms of the parameter:

$$
\begin{aligned}
x-3 t & =1 \\
x & =1+3 t
\end{aligned}
$$

The solution set of the system over \mathbb{R} is

$$
\left\{(x, z)^{T} \in \mathbb{R}^{2} \mid x-3 z=1\right\}=\left\{(1+3 t, t)^{T} \mid t \in \mathbb{R}\right\}=\left\{(1,0)^{T}+t(3,1)^{T} \mid t \in \mathbb{R}\right\} .
$$

Problem 3. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
x+y-z & =1 \\
2 x+2 y+z & =5 \\
x-y-z & =-1
\end{aligned}
$$

Solution. We use the matrix representation for the system and reduce it as follows

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
2 & 2 & 1 & 5 \\
1 & -1 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 0 & 3 & 3 \\
0 & -2 & 0 & -2
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

From the final matrix, we get that $z=1, y=1$, and $x=1$. Thus, the vector $(1,1,1)^{T}$ is the unique solution over \mathbb{R}.

Problem 4. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
x+y-z & =1 \\
2 x+2 y+z & =5
\end{aligned}
$$

Solution. We use the matrix representation for the system and reduce it as follows (which we already did in Problem 3)

$$
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
2 & 2 & 1 & 5
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & -1 & 1 \\
0 & 0 & 3 & 3
\end{array}\right)
$$

From the second row of the last matrix, we get that $z=1$. From the first row of the last matrix, we see that y can take an arbitrary real value, and we express x in terms of the parameter $y \in \mathbb{R}$ and the value of z :

$$
\begin{aligned}
x+y-z & =1 \\
x+y-1 & =1 \\
x & =2-y
\end{aligned}
$$

This gives the solution space

$$
\left\{(2-y, y, 1)^{T} \mid y \in \mathbb{R}\right\}=\left\{(2,0,1)^{T}+y(-1,1,0)^{T} \mid y \in \mathbb{R}\right\} .
$$

Note that we can easily verify that $(2-y, y, 1)^{T}$ solves the linear system for all $y \in \mathbb{R}$ by checking that any such vector satisfies both original equations:

$$
\begin{array}{r}
2-y+y-1=2-1+y(-1+1)=1 \\
4-2 y+2 y+1=5
\end{array}
$$

We have verified that $(2-y, y, 1)^{T}$ is a solution for all $y \in \mathbb{R}$.

Problem 5. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
2 x+2 y+z & =5 \\
x-y-z & =-1
\end{aligned}
$$

Solution.

$$
\left(\begin{array}{ccc|c}
2 & 2 & 1 & 5 \\
1 & -1 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -1 & -1 & -1 \\
2 & 2 & 1 & 5
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -1 & -1 & -1 \\
0 & 4 & 3 & 7
\end{array}\right)
$$

From the second row of the last matrix, we see that z can take an arbitrary real value, and we express y in terms of the parameter $z \in \mathbb{R}$:

$$
\begin{aligned}
4 y+3 z & =7 \\
4 y & =7-3 z \\
y & =\frac{1}{4}(7-3 z)
\end{aligned}
$$

From the first row of the last matrix, we can express x in terms of the parameter $z \in \mathbb{R}$:

$$
\begin{aligned}
x-y-z & =-1 \\
x-\frac{1}{4}(7-3 z)-z & =-1 \\
x & =-1+\frac{1}{4}(7-3 z)+z=\frac{1}{4}(3+z)
\end{aligned}
$$

This gives the solution space

$$
\left\{\left.\left(\frac{1}{4}(3+z), \frac{1}{4}(7-3 z), z\right)^{T} \right\rvert\, z \in \mathbb{R}\right\}=\left\{\left.\left(\frac{3}{4}, \frac{7}{4}, 0\right)^{T}+z\left(\frac{1}{4},-\frac{3}{4}, 1\right)^{T} \right\rvert\, z \in \mathbb{R}\right\}
$$

Problem 6. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=3 \\
& x_{1}-2 x_{2}-x_{3}-x_{4}=1
\end{aligned}
$$

Solution. We use the matrix representation for the system and reduce it as follows

$$
\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 3 \\
1 & -2 & -1 & -1 & 1
\end{array}\right) \sim\left(\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 3 \\
0 & -3 & -2 & -2 & -2
\end{array}\right)
$$

From the second row of the last matrix, we see that x_{3} and x_{4} can take arbitrary real values, and we express x_{2} in terms of the parameters $x_{3}, x_{4} \in \mathbb{R}$:

$$
\begin{aligned}
-3 x_{2}-2 x_{3}-2 x_{4} & =-2 \\
-3 x_{2} & =-2+2 x_{3}+2 x_{4} \\
x_{2} & =\frac{2}{3}\left(1-x_{3}-x_{4}\right)
\end{aligned}
$$

From the first row of the last matrix, we can now express x_{1} in terms of the parameters $x_{3}, x_{4} \in \mathbb{R}$:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =3 \\
x_{1}+\frac{2}{3}\left(1-x_{3}-x_{4}\right)+x_{3}+x_{4} & =3 \\
x+1 & =3-\frac{2}{3}\left(1-x_{3}-x_{4}\right)-x_{3}-x_{4}=\frac{7}{3}-\frac{1}{3}\left(x_{3}+x_{4}\right)
\end{aligned}
$$

This gives the solution space

$$
\begin{aligned}
& \left\{\left.\left(\frac{7}{3}-\frac{1}{3}\left(x_{3}+x_{4}\right), \frac{2}{3}\left(1-x_{3}-x_{4}\right), x_{3}, x_{4}\right)^{T} \right\rvert\, x_{3}, x_{4} \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\frac{7}{3}, \frac{2}{3}, 0,0\right)^{T}+x_{3}\left(-\frac{1}{3},-\frac{2}{3}, 1,0\right)^{T}+x_{4}\left(-\frac{1}{3},-\frac{2}{3}, 0,1\right)^{T} \right\rvert\, x_{3}, x_{4} \in \mathbb{R}\right\} .
\end{aligned}
$$

The solution set is a plane containing the point $\left(\frac{7}{3}, \frac{2}{3}, 0,0\right)^{T}$.

Problem 7. Over \mathbb{R}, find all solutions for the system of linear equations

$$
\begin{aligned}
2 y-3 z & =-1 \\
x-5 y+4 z & =1 \\
-3 x+y+2 z & =-3
\end{aligned}
$$

Solution. We use the matrix representation for the system and reduce it as follows

$$
\left(\begin{array}{ccc|c}
0 & 2 & -3 & -1 \\
1 & -5 & 4 & 1 \\
-3 & 1 & 2 & -3
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -5 & 4 & 1 \\
0 & 2 & -3 & -1 \\
0 & -14 & 14 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -5 & 4 & 1 \\
0 & 2 & -3 & -1 \\
0 & 0 & -7 & -7
\end{array}\right)
$$

The unique solution is the vector $(2,1,1)^{T}$.

