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 THE BULLETIN OF SYMBOLIC LOGIC

 Volume 5. Number2. June 1999

 TARSKI'S SYSTEM OF GEOMETRY

 ALFRED TARSKI AND STEVEN GIVANT

 Abstract. This paper is an edited form of a letter written by the two authors (in the name

 of Tarski) to Wolfram Schwabhauser around 1978. It contains extended remarks about
 Tarski's system of foundations for Euclidean geometry, in particular its distinctive features,

 its historical evolution, the history of specific axioms, the questions of independence of
 axioms and primitive notions, and versions of the system suitable for the development of

 1-dimensional geometry.

 In his 1926-27 lectures at the University of Warsaw, Alfred Tarski gave
 an axiomatic development of elementary Euclidean geometry, the part of
 plane Euclidean geometry that is not based upon set-theoretical notions,
 or, in other words, the part that can be developed within the framework
 of first-order logic. He proved, around 1930, that his system of geometry
 admits elimination of quantifiers: every formula is provably equivalent (on
 the basis of the axioms) to a Boolean combination of basic formulas. From
 this theorem he drew several fundamental corollaries. First, the theory is
 complete: every assertion is either provable or refutable. Second, the theory
 is decidable-there is a mechanical procedure for determining whether or
 not any given assertion is provable. Third, there is a constructive consistency
 proof for the theory. Substantial simplifications in Tarski's axiom system
 and the development of geometry based on them were obtained by Tarski
 and his students during the period 1955-65. All of these various results were
 described in Tarski [41], [44], [45], and Gupta [5].
 Aside from the importance of its metamathematical properties, Tarski's

 system of geometry merits attention because of the extreme elegance and
 simplicity of its set of axioms, especially in the final form that it achieved
 around 1965. Yet, until fairly recently, no systematic development of ge-
 ometry based on his axioms existed. In the early 1960s Wanda Szmielew
 and Tarski began the project of preparing a treatise on the foundations of
 geometry developed within the framework of contemporary mathematical
 logic. A systematic development of Euclidean geometry based on Tarski's
 axioms was to constitute the first part of the treatise. The project made
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 ALFRED TARSKI AND STEVEN GIVANT

 some progress: drafts of the first part of the treatise were written. However,
 the project was never completed. Over the years, Szmielew had gradually
 changed her views on the foundations of geometry, and had begun a devel-
 opment along different lines (see Szmielew [38] and the review Moszynska
 [18]). Her untimely death put an end to all prospects for completion of the
 work.

 Eventually, Wolfram Schwabhauser did prepare such a treatise (in Ger-
 man), based in part on the draft of Szmielew and Tarski (see Section 7 for
 details). Around 1978 he asked Tarski to send him suggestions for material
 to be included in the monograph. It was at that time that Tarski and I wrote
 the following notes in the form of a very long letter (some 40 pages) from
 Tarski to Schwabhauser.

 The letter was never intended for print. Over the years, however, a number
 of people urged that it be published because of the insights and the historical
 information that it provides.

 Putting the letter in a form suitable for publication has necessitated some
 editing. For example, the first section originally listed, without comment,
 all of the sentences that played a role in the discussion of the axiom sets for
 Tarski's system (almost all of the sentences were, at one time or another,
 included as axioms in at least one of the versions of Tarski's system). Since
 the letter was intended for Schwabhauser only, there was no explanation
 of the notation and the formalism being used, and no explanation of the
 intuitive geometrical content of the sentences. Such explanations, accom-
 panied by figures, have now been added. A similar remark concerns the
 definitions given in Sections 5 and 6. In the remaining parts of the letter the
 modifications undertaken have been minor: occasional changes of wording,
 deletion or subordination to footnotes of questions and remarks that were
 specifically directed at Schwabhauser, rearrangement of a few paragraphs,
 and so on. Quite recently, some remarks suggested by the referee have been
 added as footnotes.1 The asterisk symbol has been used to distinguish these
 remarks from those made in the original version of the paper.

 The letter proper really begins with Section 2, which outlines the evo-
 lution of Tarski's set of axioms from the original 1926-27 version to the
 final versions used by Szmielew and Tarski in their unpublished manuscript
 and by Schwabhauser-Szmielew-Tarski [29]. There follows, in Section 3,
 a discussion of the distinctive features of Tarski's approach to Euclidean
 geometry-the features which set it apart from other systems of Euclidean
 geometry that can be found in the literature. The fourth section contains
 some historical observations about the individual axioms and their use by
 previous authors. The historically important question of the independence
 of the axioms and of the primitive notions, in reference to Tarski's system,

 'I am indebted to the referee and to Maria Moszyfiska for several helpful suggestions.
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 TARSKI'S SYSTEM OF GEOMETRY

 is addressed in Section 5. Section 6 makes some observations about 1-

 dimensional geometry (which is excluded from the discussion in the earlier
 parts of the letter). Finally, in the last section the work of Wanda Szmielew
 and its relationship to the treatise Schwabhauser-Szmielew-Tarski [29] is
 discussed.

 ?1. List of sentences involved in the discussion. In contrast to other systems
 of geometry (for example Hilbert's system for the geometry of space) in
 which points, lines, planes, etc., are all primitive "geometrical objects",
 in Tarski's system there is only one type of primitive geometrical object:
 points. In other words, all (first-order) variables a, b, c, ... (denoted
 by lower case Roman letters) are assumed to range over points. There
 are two primitive geometrical (that is, non-logical) notions: the ternary
 relation B of "betweenness" and quaternary relation = of "equidistance"
 or "congruence of segments". We shall write B(abc) to express that the
 relation of betweenness holds among the points a, b, and c; intuitively, this
 means that the point b lies on the line segment joining a and c. Similarly, we
 shall write ab = cd to express that the relation of equidistance holds among
 the points a, b, c, and d; intuitively, this means that the distance from a to b
 is the same as the distance from c to d, or, put another way, the line segment
 joining a and b is congruent to the line segment joining c and d.

 The logical symbols of the language include equality, the sentential con-
 nectives of conjunction, disjunction, negation, implication, and the bicondi-
 tional, which are denoted by

 A, V, -, ---, ,

 respectively, the universal quantifier V, and the existential quantifier 3. We
 adhere to the standard conventions regarding omission of parentheses and
 the precedence of logical operators. For instance, conjunction has prece-
 dence over implication, so that the formula o A y/ - 68 is to be read as
 (9p A y) -* 8. The following sentences will be referred to in various parts
 of the discussion. In formulating these sentences we follow the standard
 practice of treating variables not within the scope of a quantifier as being
 universally quantified.

 Ax. 1. Reflexivity Axiom for Equidistance

 ab = ba.

 Ax. 2. Transitivity Axiom for Equidistance

 ab = pq A ab - rs -+ pq - rs.

 Ax. 3. Identity Axiom for Equidistance

 ab cc -- a =b.
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 ALFRED TARSKI AND STEVEN GIVANT

 C

 b

 q a x

 FIGURE 1. Axiom of Segment Construction.

 Ax. 4. Axiom of Segment Construction

 3x (B(qax) A ax - be).

 The intuitive content of this axiom is that, given any line segment bc, one
 can construct a line segment congruent to it, starting at any point a and
 going in the direction of any ray containing a. The ray is determined by the
 point a and a second point q, the endpoint of the ray. The other endpoint
 of the line segment to be constructed is just the point x whose existence is
 asserted. (See Figure 1.)

 d d'

 I II I II

 a b c a' b' c'

 FIGURE 2. Five-Segment Axiom.

 Ax. 5. Five-Segment Axiom

 [a - b A B(abc) A B(a'b'c') A ab - a'b' A bc E b'c'
 A ad - a'd' A bd = b'd'] --- cd _ c'd'.

 The Five-Segment Axiom asserts (in the non-degenerate case) that, given
 two triangles Aacd and Aa'c'd', and given interior points b and b' of the
 sides ac and a'c', from the congruences of certain corresponding pairs of
 line segments (indicated by hatch marks in Figure 2), one can conclude the
 congruence of another pair of corresponding line segments (indicated by
 cross-hatches in Figure 2). Thus, this axiom is similar in character to the
 well-known theorems of Euclidean geometry that allow one to conclude,
 from hypotheses about the congruence of certain corresponding sides and
 angles in two triangles, the congruence of other corresponding sides and
 angles.

 178
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 TARSKI'S SYSTEM OF GEOMETRY

 Ax. 51. Variant of the Five-Segment Axiom

 [a 7 b A b : c A B(abc) A B(a'b'c') A ab = a'b' A be b'c'
 A ad = a'd' A bd = b'd'] -- ed - c'd'.

 This variant differs from the Five-Segment Axiom only in the presence of
 the additional inequality b c in the hypotheses.

 Ax. 6. Identity Axiom for Betweenness

 B(aba) --- a = b.

 c

 P , X \q
 a x

 b

 FIGURE 3. Inner Pasch Axiom.

 Ax. 7. First (or Inner) form of the Pasch Axiom

 B(apc) A B(bqc) -- 3x [B(pxb) A B(qxa)].

 The Pasch axiom in the plane asserts that a line intersecting a triangle in
 one of its sides, and not intersecting any of the vertices, must intersect one of
 the other two sides. In Ax. 7 the line bp that intersects the triangle Aaqc in
 the extension of the side cq (expressed by the hypothesis B (bqc)) is assumed
 to intersect the side ac (the "outer" side of the triangle from the perspective
 of bp). This is expressed by the hypothesis B(apc), which asserts that p is
 a point on the segment ac; the degenerate cases when p coincides with a or
 c are allowed. (Ax. 7 also allows the triangle itself to be degenerate.) The
 conclusion is that the line intersects the side aq in a point x; this is expressed
 by the assertion that B(qxa). Aside from allowing degenerate cases, Ax. 7
 asserts only one special case of the Pasch axiom, namely the case when b lies
 on the extension of the side cq in the direction from c to q. In this case, the
 line bp must intersect the side aq in some point x that is on the segment bp,
 which is expressed by the assertion B(pxb). In other words, it intersects the
 "inner" side of the triangle (from the perspective of bp-see Figure 3). It is
 from this that the name "inner form" derives.

 In the outer form of the Pasch Axiom, formulated as Ax. 71 below, the
 point b lies on the extension of the side cq in the direction from q to c, and
 the line is assumed to intersect the "inner" side of the triangle (from the
 perspective of bp). The conclusion is that it must intersect the side aq in

 179
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 ALFRED TARSKI AND STEVEN GIVANT

 some point x on the extension of the side bp; this is expressed by the assertion
 B(bpx). In other words, it intersects the "outer" side of the triangle (from
 the perspective of bp-see Figure 4). This gives rise to the name "outer
 form".

 Ax. 71. Second (or Outer) form of Pasch Axiom

 B(apc) A B(qcb) -- 3x [B(axq) A B(bpx)].

 b

 a x q

 FIGURE 4. Outer Pasch Axiom.

 Ax. 72. Variant of Axiom 71

 B(apc) A B(qcb) -, 3x [B(axq) A B(xpb)].

 This variant differs from Ax. 71 only in the final betweenness assertion,
 which is reversed.

 Ax. 73. Weak Pasch Axiom

 B(atd) A B(bdc) - 3x 3y [B(axb) A B(ayc) A B(ytx)].

 C

 y

 t
 d

 x b

 FIGURE 5. Weak Pasch Axiom.

 Ax. 8(1. Lower 1-Dimensional Axiom

 3a 3b (a # b).

 Ax. 8(2). Lower 2-Dimensional Axiom

 3a 3b 3c [-B(abc) A -,B(bca) A -B(cab)].
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 TARSKI'S SYSTEM OF GEOMETRY

 The Lower 2-Dimensional Axiom asserts that there exist three non-collin-

 ear points.

 Ax. 8(n). Lower n-Dimensional Axiom for n = 3, 4, ...

 3a 3b 3c 3pi 3P2...3Pn-i
 n-i n-i

 A Pi = Pj A A apl = api AA bpl = bpi
 1l<i<j<n i=2 i=2

 n-I

 AA cpl = cpi A [-'B(abc) A --B(bca) A-B (cab)] .
 i=2

 The Lower n-Dimensional Axiom for n = 3, 4, ... asserts that there exist
 n - 1 distinct points P1, 2, ... , pn- and three points a, b, c such that each
 of the three points is equidistant from each of the n - 1 points, but the three
 points are not collinear. In other words, the set of all points equidistant
 from each of n - 1 distinct points pi, P2, ..., Pn-l is not always a line. As we
 shall see in a moment, the Lower n-Dimensional Axiom (for every n > 1) is
 just the negation of the corresponding Upper (n - l)-Dimensional Axiom.

 Ax. 9g. Upper O-Dimensional Axiom

 a b.

 Ax. 9(1). Upper 1-Dimensional Axiom

 B(abc) V B(bca) V B(cab).

 The Upper 1-Dimensional Axiom says that any three points are collinear.

 a

 FIGURE 6. Upper 2-Dimensional Axiom.
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 ALFRED TARSKI AND STEVEN GIVANT

 Ax. 9(n). Upper n-Dimensional Axiom for n = 2, 3, ...

 n n

 A Pi # Pi A A apl- api A A bpl bpi
 l<i<j<n i=2 i=2

 n

 A A cp cpi - [B(abc) V B(bca) V B(cab)].
 i=2

 The Upper n-Dimensional Axiom for n = 2, 3, ... asserts that any three
 points a, b, c which are equidistant from each of n distinct points pl, p2,
 ..., Pn must be collinear (see Figures 6 and 7); in other words, the set of all
 points equidistant from each of n distinct points is a line. Notice that Ax. 9(n)
 is not valid in the standard k-dimensional model of Euclidean geometry for
 k > n. For instance, in three dimensions (k = 3) the set of points equidistant
 from two given distinct points (n = 2) is a plane, not a line. Thus, Ax. 9(n)
 asserts that the dimension of the geometry is at most n. Consequently, its
 negation-which is just the Lower (n + 1)-Dimensional Axiom-asserts that
 the dimension is more than n. Notice that in formulating Ax. 9(n) we have
 not stated that p .... Pn are not collinear, not coplanar, etc., but only that
 they are different. This suffices.

 a

 / I

 p3
 \

 b

 FIGURE 7. Upper 3-Dimensional Axiom.

 Ax. 9 (2). Alternative form of Axiom 9(2)

 3y { ([B(xya) V B(yax) V B(axy)] A B(byc))

 V ([B(xyb) V B(ybx) V B(bxy)] A B(cya))

 V ([B(xyc) V B(ycx) V B(cxy)] A B(ayb))}.

 The alternative form of Ax. 9(2) has the merit of being formulated in
 terms of the betweenness relation alone, without recourse to the notion of

 182
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 TARSKI'S SYSTEM OF GEOMETRY

 equidistance. In the non-degenerate case of three non-collinear points a, b,
 and c, it asserts that if from any point x we draw the lines to each of the three
 vertices of Aabc, then at least one of these lines intersects the side opposite
 the vertex. This is true in the plane because any point x lies in one of the
 seven regions determined by the lines through the vertices of the triangle;
 the region to which it belongs is determined by the relation of betweenness
 holding among the point x, one of the vertices of the triangle, and a point
 y on the side of the triangle opposite this vertex. The assertion is obviously
 false in dimensions greater than two.

 ' b, x

 a . c
 ........... ; ..... -

 FIGURE 8. Alternative Form of Axiom 9(2).

 Ax. 92(2). Variant of Ax. 91(2)

 3y {([B(xya) V B(yax) V B(axy)] A B(byc))

 V ([B(xyb) V B(ybx)] A B(cya))

 V ([B(xyc) V B(ycx)] A B(ayb))}.

 In Ax. 91 (2) the case when x is in the interior of Aabc is treated in all three
 disjuncts (in the clauses B(axy), B(bxy), and B(cxy) respectively). It can
 safely be omitted from the second and third disjuncts. This leads directly to
 the variant of Ax 91(2).

 Ax. 10. First Form of Euclid's Axiom

 B(adt) A B(bdc) A a 7 d -- 3x 3y [B(abx) A B(acy) A B(xty)].

 The First Form of Euclid's Axiom says that through any point t in the
 interior of an angle Zbac there is a line-here, the line xy-that intersects
 both sides of the angle-here, in the points x and y (see Figure 9).

 Ax. 101. Variant of Axiom 10

 B(adt) A B(bdc) A a Z d -- 3x 3y [B(abx) A B(acy) A B(ytx)].

 The variant differs from Ax. 10 only in that the final betweenness assertion
 is reversed.

 183
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 x ? ~' '-*y

 FIGURE 9. First Form of Euclid's Axiom.

 Ax. 102. Second Form of Euclid's Axiom

 B(abc) V B(bca) V B(cab) V 3x [ax = bx A ax = cx].

 The second form of Euclid's Axiom says that in any (non-degenerate)
 triangle there is a point that is equidistant from each of the vertices. In other
 words, every triangle can be inscribed in some circle (see Figure 10).

 a

 FIGURE 10. Second Form of Euclid's Axiom.

 Ax. 103. Third Form of Euclid's Axiom

 [B(abf) A ab bf A B(ade) A ad _ de
 A B(bdc) A bd = dc] -- bc- fe.

 The third form of Euclid's Axiom says that the line connecting the mid-
 points of two sides of a triangle is half the length of the third side (see
 Figure 11). This is equivalent to the assertion that the sum of the interior
 angles of a triangle is equal to two right angles.

 a

 c

 fI

 FIGURE 11. Third Form of Euclid's Axiom.
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 TARSKI'S SYSTEM OF GEOMETRY 185

 Ax. 11. Axiom of Continuity

 3a Vx Vy [x E X Ay C Y - B(axy)]

 - 3b Vx Vy [x E X A y C Y - B(xby)].

 a b

 x Y

 FIGURE 12. Axiom of Continuity.

 The Axiom of Continuity asserts: any two sets X and Y such that the
 elements of X precede the elements of Y with respect to some point a (that
 is, B(axy) whenever x is in X and y is in Y) are separated by a point b (see
 Figure 12). This axiom is not formulated within the framework of first-order
 logic, since the variables X and Y are second-order variables (that is, they
 are assumed to range over sets of points). However, in many applications we
 only need instances of the axiom in which the sets X and Y are definable by
 first-order formulas (possibly with the help of parameters). The collection
 of these first-order instances constitutes the (elementary) Axiom Schema of
 Continuty.

 As. 11. Axiom Schema of Continuity

 3a Vx Vy [a A fl - B(axy)] - 3b Vx Vy [a A P - ( B(xby)l,

 where a, f, are first-order formulas, the first of which does not contain any
 free occurrences of a, b, y and the second any free occurrences of a, b, x.

 Ax. 12. Reflexivity Axiom for Betweenness

 B(abb).

 Ax. 13. a =b -- B(aba).

 Ax. 14. Symmetry Axiom for Betweenness

 B(abc) - B(cba).

 Ax. 15. Inner Transitivity Axiom for Betweenness

 B(abd) A B(bcd) - B(abc).

 * * * d
 a b c d

 FIGURE 13. Transitivity Axioms for Betweenness.
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 ALFRED TARSKI AND STEVEN G1VANT

 Ax. 16. Outer Transitivity Axiom for Betweenness

 B(abc) A B(bcd) A b JL c -- B(abd).

 Ax. 17. Inner Connectivity Axiom for Betweenness

 B(abd) A B(acd) -* [B(abc) V B(acb)].

 a c b c d

 FIGURE 14. Inner Connectivity Axiom for Betweenness.

 Ax. 18. Outer Connectivity Axiom for Betweenness

 B(abc) A B(abd) A a - b -- [B(acd) V B(adc)].

 a b c d c a b cd c

 FIGURE 15. Outer Connectivity Axiom for Betweenness.

 Ax. 19. a b -- ac - bc.

 Ax. 20. Uniqueness Axiom for Triangle Construction

 [ac - ac' A bc - bc' A B(adb) A B(ad'b) A B(cdx) A B(c'd'x)

 A d -7 x A d' + x] -- c = c'.

 c Cl

 a d\ b a d'\ b

 x x

 FIGURE 16. Uniqueness Axiom for Triangle Construction.

 The Uniqueness Axiom for Triangle Construction asserts that at most one
 triangle can be constructed on a given segment, using a given side of the
 segment, with prescribed lengths for the other two sides. Specifically, it says:
 given a segment ab, there cannot be two distinct points c and c' on the same
 side of ab such that triangles Aabc and labc' are congruent (see Figure 16).

 186
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 TARSKI'S SYSTEM OF GEOMETRY

 Degenerate triangles are allowed. The side of the segment ab on which the
 points c and c' lie is determined by a point x on the side opposite to c (and
 c') and a point d (respectively d') between a and b; the condition of being
 on the side opposite to x is expressed by the assertion B(cdx) (respectively
 B(c'd'x)).

 b a b

 FIGURE 17. Variant of Axiom 20.

 Ax. 201. Variant of Axiom 20

 (a 4 b A ac = ac' A bc - bc' A B(bdc') A [B(adc) V B(acd)]) - c = c'.

 The variant of Ax. 20 uses a shorter, but more sophisticated, way of as-
 serting that c and c' are on the same side of the segment ab (see Figure 17).

 Ax. 21. Existence Axiom for Triangle Construction

 ab - a'b' -> 3c 3x (ac _ a'c' A bc _ b'c' A B(cxp)

 A [B(abx) V B(bxa) V B(xab)]).

 c'

 a

 c

 FIGURE 18. Existence Axiom for Triangle Construction.

 The Existence Axiom for Triangle Construction asserts that, for any tri-
 angle Aa'b'c' and any segment ab congruent to the side a'b', there exists a
 point c on a specified side of ab such that triangles Aabc and Aa'b'c' are
 congruent (see Figure 18). As in Ax. 20, degenerate triangles are allowed.

 187
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 ALFRED TARSKI AND STEVEN GIVANT

 The side of ab is specified as being the one opposite a point p; the point x
 collinear with a and b is used to express that p and c are on opposite sides
 of ab.

 Ax. 22. Density Axiom for Betweenness

 x # z - 3y [x # y Az f y A B(xyz)].

 ----o -*

 x y z

 FIGURE 19. Density Axiom for Betweenness.

 Ax. 23. [B(xyz) A B(x'y'z') A xy x'y' A yz y'z'] - xz - x'z'.

 - I I? I ? II ?*
 x y z x' y z/

 FIGURE 20. Axiom 23.

 Ax. 24. B(xyz) A B(x'y'z') A xz - xz' A yz y'z' - xy -x'y.

 The picture for Ax. 24 is nearly the same as that for Ax. 23; see Figure 20.

 ?2. Historical remarks concerning Tarski's system. The axiom set for Eu-
 clidean geometry adopted in Schwabhauser-Szmielew-Tarski [29] originates
 with Tarski. In its original form it was constructed in 1926-27 and pre-
 sented in his course given that year at the University of Warsaw (see Tarski
 [45], footnote 34). It appeared in the paper Tarski [45], submitted for
 publication in 1940, but published only in 1967 in a restricted number of
 copies.2

 All the axioms are formulated in terms of two primitive notions, the
 ternary relation of betweenness, B, and the quaternary relation of equidis-
 tance, -, among points of a geometrical space. However, in the origi-
 nal axiom set the binary relation of equality between points, =, is also
 treated as a primitive geometrical notion-as opposed to all later ver-
 sions of this set in which this notion is treated as the logical identity.
 The original set consists of twenty axioms, Ax. 1-Ax. 4, Ax. 51, Ax. 6,
 Ax. 72, Ax. 8(2), Ax. 91(2), Ax. 10, Ax. 12-Ax. 21, as well as all instances

 2This paper (which is really a short monograph) is reproduced on pp. 289-346 of Tarski
 [46], volume 4.
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 TARSKI'S SYSTEM OF GEOMETRY

 of the axiom schema As. 11. Thus it is an axiom set for elementary 2-
 dimensional Euclidean geometry. The possibility of modifying the dimen-
 sion axioms Ax. 8(2) and Ax. 91(2) in order to obtain an axiom set for n-
 dimensional geometry is briefly mentioned. (The case n = 1 will be dis-
 regarded in this section and in Sections 3-5.) The passage to an axiom
 set for the full (non-elementary) Euclidean geometry, by replacing all in-
 stances of the axiom schema As. 11 with Ax. 11, is not mentioned explic-
 itly.

 The next version of the axiom set appeared in Tarski [41]. Since =
 is treated there as a logical notion, Ax. 13 and Ax. 19 are easily derivable
 from the remaining axioms, and therefore have been omitted. Ax. 20 is
 replaced by a somewhat more concise variant, Ax. 201; we do not analyze
 this modification since Ax. 20 is dropped entirely in subsequent versions.

 A rather substantial simplification of the axiom set in Tarski [41] was
 obtained in 1956-57 as a result of joint efforts by Eva Kallin, Scott Taylor,
 and Tarski (see Tarski [44], p. 20, footnote). First, four axioms, Ax. 51,
 Ax. 72, Ax. 91(2), and Ax. 10, have been respectively replaced by equivalent
 formulations Ax. 5, Ax. 71, Ax. 9(2), and Ax. 101. In the case of Ax. 91(2)
 the new formulation differs essentially from the old one, in both its form
 and its mathematical content. In the remaining three cases the differences
 are very slight. Some remarks in the later discussion will throw light on
 the purpose of all these modifications. Next, in the modified axiom set
 six axioms, Ax. 12, Ax. 14, Ax. 16, Ax. 17, Ax. 201, and Ax. 21, are shown
 to be derivable from the remaining ones, and hence are omitted. Thus we
 arrive at the set consisting of twelve axioms: Ax. 1-Ax. 6, Ax. 71, Ax. 8(2),
 Ax. 9(2), Ax. 101, Ax. 15, Ax. 18, and all instances of the old axiom schema
 As. 11. This axiom set was discussed by Tarski in his course on the foun-
 dations of geometry given at the University of California, Berkeley, during
 the academic year 1956-57. It appeared in print in Tarski [44]. It was
 pointed out there that, by enriching the logical framework of our system of
 geometry and by replacing the axiom schema As. 11 with the (second-order)
 sentence Ax. 11, we arrive at an axiom set for the full (non-elementary) 2-
 dimensional Euclidean geometry. Also, it was mentioned that, by replacing
 Ax. 8(2) and Ax. 9(2) in either of the two above axiom sets with their n-
 dimensional analogues (n = 3, 4, ... ), which are explicitly listed in Section 1
 above as Ax. 8(n) and Ax. 9(n), axiom sets for n-dimensional geometry are
 obtained.

 Some general metamathematical results, published at about the same time
 in Scott [30] and Szmielew [37], show that the dimension axioms Ax. 8(n) and
 Ax. 9(n), and Euclid's axiom Ax. 101 can be equivalently replaced by a great
 variety of sentences. The results will be discussed in Section 4, in connection
 with the axioms involved. It does not seem that these results lead to any
 formal simplification of the axiom sets discussed here.
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 The last simplifications so far obtained are due to Gupta [5], where it is
 shown that Ax. 6 and Ax. 18 can be derived from the remaining axioms in
 Tarski [44]. Contrary to what could be expected, the derivation is not quite
 easy, and actually in the case of Ax. 18 it is rather involved. The axiom
 sets thus reduced clearly consist of sentences Ax. 1-Ax. 5, Ax. 71, Ax. 8(n)
 and Ax. 9(n) for n = 2, 3, ..., Ax. 101, Ax. 15, and either all instances
 of the schema As. 11, or the single sentence Ax. 11. We shall denote this
 axiom set by EG(n) in the elementary case and FG(n) in the non-elementary
 case.

 Some further results in Gupta [5] provide the possibility of constructing
 various equivalent variants of EG (n) and FG (n); again, however, this does not
 seem to lead to any formal improvements in EG(n) and FG(n). In particular,
 by results in op. cit., pp. 12, 20, 40, 42-91, it turns out to be possible to
 replace Ax. 71 and Ax. 15 by Ax. 7 and Ax. 6 respectively.
 Around 1965 Szmielew, in collaboration with Tarski, prepared a manu-

 script containing a full development of 2-dimensional Euclidean geometry
 based upon a variant of EG(2). As an axiom set she took the collec-
 tion of sentences obtained from EG(2) by replacing Ax. 71, Ax. 101, and
 Ax. 15 with Ax. 7, Ax. 102, and Ax. 6 respectively. The equivalence of this
 variant with EG(2) follows immediately from the previously mentioned re-
 sults in Gupta [5] and Szmielew [37]. As will be seen in Section 7, the
 manuscript just mentioned was used as a basis in preparing a substantial
 portion of the first part of Schwabhauser-Szmielew-Tarski [29]. The ax-
 iom set upon which Part I of that work is founded differs from that of
 the manuscript only in that Ax. 10 (a slight variant of the original form
 of Euclid's axiom, Ax. 101, in EG(n)), is used instead of Ax. 102; more-
 over, for n > 2 the lower and upper dimension axioms differ from those
 in EG(n)-a modification which is made possible by the general result in
 Scott [30]. We shall denote the axiom set of Schwabhauser-Szmielew-Tarski
 [29] by EH(n) in the elementary case and FH(n) in the non-elementary
 case.3

 Obviously, there are a number of basic elementary laws which enter at a
 very early stage in the systematic development of geometry and which do
 not occur in both sets EG(n) and EH(n), or at least in one of them; such
 are for instance Ax. 12, Ax. 14, Ax. 16-Ax. 18, as well as Ax. 6 in EG(n) and
 Ax. 15 in EH(n). It seems that, in general, the derivation of these laws is
 somewhat simpler on the basis of EH(n) rather than EG("). In particular,
 the involved derivation of Ax. 18 from Gupta [5] in EG(n) can be simplified

 3It would be interesting to know whether Ax. 6 may equivalently be replaced by Ax. 15 in
 EH(n) and FH(n). If this were the case, then in all axiom sets discussed, EG() FG (), EH()
 and FH(n), either of the axioms Ax. 6 and Ax. 15 could be equivalently replaced by the other
 for n > 2.
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 in EH(). This may speak somewhat in favor of the selection of EH(), as
 opposed to EG(n), as a basis for the development of Euclidean geometry.4'5

 ?3. Distinctive features of Tarski's system of foundations of geometry.
 Tarski's system of foundations of geometry has a number of distinctive
 features, in which it differs from most, if not all, systems of foundations
 of Euclidean geometry that are known from the literature. Of the earlier
 systems probably the two closest in spirit to the present one are those in Pieri
 [23] and Veblen [51].
 One of the important features of Tarski's development is the clear distinc-

 tion between the full geometry and its elementary part. By "elementary" we
 understand that portion of geometry which, loosely speaking, can be devel-
 oped without the help of set-theoretic notions. In technical terms the system
 of elementary geometry, based upon one of the axiom sets EG(n) or EH(),
 is developed entirely within the framework of first-order predicate logic. On
 the other hand, the system of full geometry, based upon FG(n) or FH(),
 requires as a framework a system of higher-order logic, or else the first-order
 logic enriched by some fragment of (axiomatic) set theory. When speaking
 in these notes of models of elementary or full Euclidean geometry, we can

 4I [Tarski] am not sure that the choice of EH(n) over EG(n) is quite justified. It seems to
 me that the derivation of Ax. 6 and Ax. 7 from EG(2) is not very involved. As regards the
 derivation of Ax. 7, it seems to me considerably simpler than that of Ax. 71, in EH(2), and, as
 opposed to what happens in Schwabhauser-Szmielew-Tarski [29], it can be given at an early
 stage of the development, which is probably more natural. If you [Schwabhauser] wish, I can
 send you the derivation of Ax. 7 which I have found in my old course notes.

 s*There are various finitely axiomatized subsystems of n-dimensional elementary Eu-
 clidean geometry that have also played an important role in modern foundational research.
 One such is the theory of geometrical constructions that can be carried out in n-dimensional
 space using only a straightedge and compass. Tarski [44] observed that a set of axioms
 for this geometry can be obtained from EG( (or, equivalently, from EH(n)) by replacing
 all instances of the Continuity Schema, As. 11, with a single sentence, the Circle Axiom.
 This sentence asserts that any segment which joins two points, one inside and one outside
 a given circle (with which the segment is coplanar), must intersect that circle. Let us de-
 note the resulting set of axioms by CG('). Its models are, up to isomorphisms, just the
 n-dimensional Cartesian spaces over Euclidean ordered fields-ordered fields in which every
 positive number has a square root.

 Another such subsystem is the theory based on the set of axioms PG (n) obtained by deleting
 from EG () all instances of As. 11 (without adjoining the Circle Axiom). This geometry is
 weaker than that of straightedge and compass constructions: up to isomorphisms, its models
 are precisely the n-dimensional Cartesian spaces over Pythagorean ordered fields-ordered
 fields in which, for any elements a and b, there is an element c such that a2 + b2 = c2.

 It should be mentioned that the models of EG(') are, up to isomorphisms, just the n-
 dimensional Cartesian spaces over real closed fields-Euclidean ordered fields in which every
 polynomial of odd degree with coefficients from the field has a root. This is the principal
 representation theorem in Tarski [44]. Of course the theory FG(n) has a unique model, up to
 isomorphisms: the n-dimensional Cartesian space over the field of real numbers.
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 restrict ourselves to standard models, i.e., to familiar Cartesian models over
 the field of real numbers. (This does not apply however to models involved
 in proofs of independence of axioms and primitive notions.)

 Another distinctive feature of Tarski's system is the formal simplicity of the
 axioms upon which the development is based. As opposed to Tarski's system,
 in all the systems of geometry known from the literature, at least some-
 and sometimes even most-axioms are not formulated directly in terms of
 primitive notions, but contain also other notions, previously defined. It is
 evident that the formal complexity of such an axiom set becomes apparent
 only if the axioms are reformulated exclusively in terms of primitive notions
 by eliminating all defined ones. When referring below to axiom sets from
 the literature, we shall assume that such a reformulation has actually been
 carried out.

 As is well known, the notion of simplicity is rather ambiguous, and is open
 to various interpretations. If we consider systems of full geometry which
 are based upon finite axiom sets, we can use as a measure of simplicity the
 most obvious criterion, namely the total length of the axiom set, i.e., the sum
 of the lengths of all its particular axioms. (When determining the length
 of an axiom we count all the occurrences of variables, as well as logical
 and non-logical constants, which appear in this axiom, but we disregard
 parentheses and commas. It makes little difference whether or not we count
 the initial universal quantifiers and immediately following variables which
 are not explicitly printed.)

 If we compare in this sense the formal simplicity of FG() or FH( with
 axiom sets for n-dimensional geometry known from the literature, the con-
 ciseness of the former becomes apparent. For illustration consider the axiom
 set of Pieri [23] for the full 3-dimensional Euclidean geometry. It consists
 of 24 axioms. The only primitive notion used in the system is the ternary
 relation which holds among points a, b, c if, and only if, b and c are equidis-
 tant from a. Most of Pieri's axioms are formulated with the help of some
 defined notions. However, after each of them, with the exception of the two
 non-elementary axioms XXIII and XXIV, he gives a reformulation in which
 all of the defined notions have been eliminated. It now turns out that the

 length of just one of Pieri's 24 axioms, in fact XXI (a form of the Pasch
 axiom) is not much smaller than the total length of the set FG(3), and a
 fortiori of the slightly shorter set FH3). If, in addition to XXI, we consider
 one of Pieri's shorter axioms, say XI, then the sum of the lengths of these
 two axioms proves to exceed the total length of FG(3).

 It would be natural to conjecture that the conciseness of Tarski's axiom set
 has been achieved by including in this set certain geometrical laws of simple
 structure, intuitively clear content, and great deductive power, which had
 not previously been used in constructing sets of axioms. From the remarks
 in the next section, we shall see that this is not the case. On the contrary,
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 nearly every one of Tarski's axioms, or a simple variant of it, has been used
 as an axiom in some earlier work.

 It seems to us that two factors did contribute to the conciseness of the

 axiom set. The first was the selection of the betweenness and equidistance
 relations as the only two primitive notions. Both notions have a clear and
 simple geometrical meaning; the former represents the affine, the latter the
 metric, aspect of geometry. Moreover, the two notions have jointly a great
 expressive power in the sense that they permit us to formulate in a nat-
 ural and concise way most of the basic laws and definitions involved in
 the development of geometry. It should be mentioned that the system of
 geometry outlined in Veblen [51] is based on just the same two primitive
 notions.

 To describe the second factor, notice that laws of elementary geometry
 are traditionally formulated in such a way that limit cases, called also trivial
 or degenerate cases, are excluded by means of special restrictive premises
 appearing in the formulations of the laws. Omission of these restricting
 premises not only simplifies the structure of the laws, but frequently strength-
 ens their deductive power as well, and, in particular, permits us to derive
 from them some more elementary laws, which otherwise would have to be
 formulated as separate axioms. For example, Ax. 7 is usually formulated
 with the restrictive assumption that a, c, b (or a, c, q) are not collinear,
 while Ax. 4 is usually provided with the premise b I4 c; since, however,
 the restrictions in FH() have been omitted, we can first immediately derive
 Ax. 12 from Ax. 3 and Ax. 4, then Ax. 14 from Ax. 6, Ax. 7, and Ax. 12.
 and finally Ax. 15 from Ax. 7 and Ax. 14. For the reasons stated above
 we have omitted all such restrictive premises in constructing our axiom set
 whenever such an omission has not affected the validity of the axiom in-
 volved.

 Turning now to Tarski's system of elementary geometry, we notice that its
 axiom set, EG() or EH(), is infinite, and hence the notion of the total length
 of an axiom set as a measure of its simplicity is in this case not applicable.
 (To save this situation one would have to introduce an ad hoc notion of the
 length of an axiom schema. In fact, in computing the length of the schema
 As. 11 we would treat the letters a and fl as if they were variables of our
 geometrical theory, and not letters standing for formulas of this theory. In
 this case the measure of simplicity of EG (n) and EH() differs but little from
 that of FG() and FH(n).)

 It seems, however, much more interesting to discuss the simplicity of the
 axiom sets using criteria which can equally well be applied to both finite
 and infinite axiom sets. One such criterion is the number of alternations of

 quantifiers. We assume that every sentence involved has been replaced by a
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 logically equivalent sentence a in prenex normal form,

 a = (Q(l)X l lQ()Xl,2 * ) **.. (Q(n)xn Q(n)xn, 2 . . )),

 where n is positive integer, 'p is any quantifier-free formula, and each Q(),
 with i = 1, ..., n, is either the universal quantifier V or the existential
 quantifier 3, with the assumptions that for no i < n are Q(i) and Q(i1') both
 universal or both existential. The number n - 1 is referred to as the number of

 quantifier alternations of the sentence a. Thus a sentence with 0 quantifier
 alternations is either a universal sentence, Vxo xl ... p, or an existential
 sentence, 3xo 3xl ... p; a sentence with 1 quantifier alternation is either
 a universal-existential sentence, Vxo Vxl ... 3yo 3yl ... p, or an existential-
 universal sentence, 3xo 3xl... Vyo Vy ... .p; etc. A set X of sentences in
 prenex normal form has (at most) n quantifier alternations if this is true of
 every sentence in X. In particular we can speak of universal, existential,
 universal-existential, etc., sets of sentences. When comparing two sentences,
 a and z, in prenex normal form, or two sets, S and T, of such sentences, it
 seems natural to consider a, or S, as structurally simpler than r, or T, if the
 number of quantifier alternations is smaller in the former than in the latter.

 If from this point of view we consider the axiom sets EG(") and EH(),
 we notice at once that all the axioms of these sets which are not instances of

 As. 11 are either universal, existential, or universal-existential sentences, or

 else are trivially equivalent to such sentences. However this does not apply
 in general to axioms which are instances of As. 11. In fact. since the num-
 ber of quantifier alternations in the formulas a and fi appearing in As. 11
 can be arbitrarily large, the same is true of the corresponding instances of
 As. 11 when they are written in prenex normal form. Nevertheless, a set X of
 sentences can be constructed which consists entirely of universal-existential
 sentences and which can equivalently replace the set of all instances of As. 11
 in our axiom sets on the basis of the remaining axioms.6 This observation
 is by no means obvious and depends upon some deep metamathematical
 results concerning elementary algebra and geometry (which are discussed
 in the second part of Schwabhauser-Szmielew-Tarski [29]). At any rate, we
 conclude that, by modifying appropriately the axiom sets EG() and EH(n)
 we arrive at universal-existential axiom sets for elementary n-dimensional
 Euclidean geometry; this result was announced in Tarski [44], p. 24. The
 result cannot be improved: no axiom set can be constructed for elemen-
 tary geometry which is structurally simpler in this respect, i.e., which has 0
 quantifier alternations.

 6The set E referred to above consists of sentences which, in geometrical language, provide
 a characterization of those fields which are real closed, thus of sentences to the effect that
 every real number or its negative has a square root, and every polynomial of odd degree with
 real coefficients has a real root.
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 The simplification of an axiom set in either of the two directions discussed
 in the preceding remarks may certainly prove helpful in the metamathemat-
 ical study of the theory based upon this axiom set-in particular, in those
 situations when one attempts to show that certain mathematical structures
 are models of this theory. In addition, the simplification achieved in the sec-
 ond direction, i.e., in fact the construction of a universal-existential axiom
 set, has-as is well known-some interesting model-theoretic consequences
 of a general character.7

 To conclude this section we mention still some features of Tarski's axiom-

 atization (which, however, are certainly shared by various other axiomati-
 zations known from the literature). First, the axiom sets for m-dimensional
 and n-dimensional geometry, m, n > 2 and m r n, are identical except for
 the upper and lower dimension axioms (Ax. 8(m), Ax. 9(m) in one case and
 Ax. 8(), Ax. 9(n) in the other). The question naturally arises whether the
 set obtained from EG(2) or EH(2) by deleting Ax. 9(2) (but not Ax. 8(2)) can
 serve as an adequate axiom set for the elementary dimension-free geometry,
 i.e., the set of first-order sentences valid in all n-dimensional Euclidean ge-
 ometries for n > 2. The conjecture that this is indeed the case is essentially
 due to Scott [30], p. 66, and was affirmed definitively by Gupta [5], p. 407.8

 Second, the sets EG( and EH( are complete, i.e., every first-order sen-
 tence, or its negation, is derivable from these sets. The axiom sets FG( and
 FH?, in addition to being complete in the domain of first-order sentences,
 turn out to be categorical, i.e., any two models of them are isomorphic. As a
 consequence, they are semantically complete, i.e., every sentence formulated
 in the language of this system is either true in all models, or fails in all mod-
 els, of the system. These results are discussed in detail in the second part of
 Schwabhaiuser-Szmielew-Tarski [29].

 7*There is yet another criterion that can be employed to judge the simplicity of a finite
 set of axioms. One set of axioms (written in prenex normal form) can be regarded as being
 simpler than another if the number of distinct variables needed to formulate the axioms is
 smaller. Scott [30], p. 61, showed that any first-order sentence with n + 1 distinct variables
 will be true in every Cartesian space of dimension at least n over the field of real numbers if
 and only if it is true in at least one such space. This theorem implies that axiomatizations of
 n-dimensional subsystems of n-dimensional Euclidean geometry, for example the theory of
 n-dimensional Cartesian spaces over Pythagorean or Euclidean ordered fields, must always
 involve at least n + 2 distinct variables.

 For n > 3, Pambuccian [20] gives a set of axioms equivalent to CG(") that uses exactly
 n + 2 distinct variables. The same paper gives sets of axioms equivalent to PG(2) and to
 CG(2) that use only six distinct variables and five distinct variables respectively; it is shown
 in op. cit. and in Pambuccian [21] that these results are optimal: there are no equivalent sets
 of axioms that use fewer distinct variables.

 8Scott [30] writes: "Though all details have not been completely checked by the author.
 it would seem that an adequate axiomatization of the theory S [elementary dimension-free
 Euclidean geometry] would result by dropping axioms Al 1 and A12 [axioms Ax. 8(2) and
 Ax. 9(2) above] of the system given by Tarski in [3]". The cited work is Tarski [44].
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 ?4. Observations concerning individual axioms. The remarks below, pri-
 marily of a historical nature, concern sentences occurring in FG(n) and
 FH). We disregard, however, the most elementary axioms Ax. 1-Ax. 4,
 Ax. 6, Ax. 15, and Ax. 18.

 The Five-Segment Axiom, Ax. 5, plays the basic role in deriving the fun-
 damental theorems on the congruence of angles and triangles from the as-
 sumptions involving only the congruence of segments (i.e., the equidistance
 relation). It is a slight (and inessential) modification of Axiom XI in Veblen
 [51 ]. A somewhat more complicated but essentially equivalent form of Ax. 5,
 the Six-Segment Axiom, was used as an axiom even earlier, in Mollerup [16].

 The Inner Pasch Axiom, Ax. 7, and Outer Pasch Axiom, Ax. 71, are highly
 simplified and specialized variants of the well-known Pasch Axiom (Axiom
 IV in Pasch [22]; see also Axiom XXI in Pieri [23], mentioned above). In
 selecting Ax. 71 as an axiom in EG( and FG(), and deriving Ax. 7 as a
 theorem, Tarski followed the procedure in Schur [28], p. 7, where Postulate
 6 and Theorem 5 differ but very little from Ax. 71 and Ax. 7 respectively; on
 p. 9 of op. cit., Moore [17] is credited with the idea of this development. A
 weaker form of Ax. 71 occurs as Axiom VIII in Veblen [50]. The proof that
 this procedure can be reversed, i.e., that Ax. 7 can be selected as an axiom
 and Ax. 71 derived as a theorem, is due to Gupta [5], Theorem 3.70.
 We now turn to the lower and upper n-dimensional axioms. In earlier

 versions of his axiom set, Tarski used Ax. 8(2) as the lower 2-dimensional
 axiom and Ax. 91(2) as the upper 2-dimensional axiom. Ax. 8(2) is a simple
 sentence which naturally suggests itself as a lower 2-dimensional axiom, and
 was used in all later versions of Tarski's system. As regards Ax. 91(2), it
 is seen that this axiom, and even more so its simplified variant Ax. 92(2),
 express the following idea: any straight lines in the Euclidean plane which
 intersect in three different points a, b, c, divide the plane into seven regions
 in such a way that every point x of the plane belongs to one of these seven
 regions, and this belonging is characterized by an appropriate betweenness
 relation holding among the point x, one of the vertices of the triangle Aabc,
 and a point y on the side of the triangle opposite this vertex; see, e.g.,
 Enriques [3], pp. 85-86. Ax. 91(2) and Ax. 92(2) are formulated entirely in
 terms of the betweenness relation. Such sentences are useful if one desires to

 construct an axiom set for 2-dimensional affine Euclidean geometry, treating
 the betweenness relation as the only primitive notion; cf. Szczerba-Tarski
 [34] where Ax. 92(2) is actually used for this purpose.9 Ax. 92(2) (and even
 Ax. 91(2)) is rather concise as compared with other known sentences which
 are formulated entirely in terms of the betweenness relation and can serve
 as upper 2-dimensional axioms. The situation changes essentially if we take

 9The full version of this paper appeared soon after these notes were written; see Szczerba-
 Tarski [35].
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 up the task of constructing n-dimensional analogues, Ax. 82(n) and Ax. 92(n)
 of Ax. 8(2) and Ax. 92(2) (which we shall not formulate here explicitly): as n
 increases, the sentences become really involved. Independent of the specific
 axioms discussed here it should be pointed out that, by results in Kordos
 [6], no first-order universal-existential sentence formulated entirely in terms
 of betweenness can serve as a lower n-dimensional axiom for n > 3; hence,
 using dimensional axioms so formulated we can never construct a universal-
 existential axiom set for elementary geometry of dimension n > 3.
 If only for these reasons it is more advantageous to use for elementary

 geometry dimension axioms involving the notion of equidistance. Such are
 indeed Ax. 9(n) which, in case n = 2, occurs explicitly in later versions of
 Tarski's axiom set. We do not know of any place in the literature where these,
 or closely related, sentences were actually used in constructing geometrical
 axiom sets. The sentences Ax. 9(n) are concise in form and have a clear
 mathematical content. Even in the case of n = 2, Ax. 9() is considerably
 shorter than Ax. 92(2), and the difference in length rapidly increases as n
 grows larger. It is also important to notice that, for all values of n, Ax. 9(n) is
 a universal sentence, and hence Ax. 8(n) can be formulated as an existential
 sentence.

 It is worthwhile to recall that, by a result of Scott [30], pp. 63-66, every
 first-order sentence a (formulated in terms of betweenness and equidistance)
 which, just as Ax. 9(n), holds in all Euclidean spaces of dimension < n, but
 fails in all spaces of dimension > n, can equivalently replace Ax. 9(n) in
 EG(n) or FG(), and -a can so replace Ax. 8(n+l) in EG(n+l) or FG(n+l).
 This provides us with a great variety of sentences which can be adopted as
 dimension axioms for Euclidean geometry. Interesting examples, different
 from those discussed above, can be found in the proof of Lemma 4.1 in Scott
 [30]. However, no such sentences known to us are simpler than Ax. 8(n) and
 Ax. 9(n)

 The axiom Ax. 10 in FH), or its variant Ax. 101 in FG(, is one of the
 least known and most concise forms of the famous Axiom of Euclid (the
 Parallel Axiom). It is a specialized variant of the statement found in Lorenz
 [10], vol. I, pp. 101-102, to the effect that every interior point of an angle
 lies always on a line intersecting the two sides of the angle.10 As in the case
 of Ax. 91(2), it is formulated entirely in terms of betweenness, and hence is
 useful in the construction of an axiom set for affine geometry.

 There is a curious structural connection between Ax. 101 and the Outer
 Pasch Axiom, Ax. 71. In fact consider the Weak Pasch Axiom, Ax. 73. It is
 directly derivable from Ax. 71 with the help of Ax. 12. On the other hand,

 'OThe reference to Lorenz is taken exactly from p. 1 la, footnote 4, of Gupta [5]. In early
 Italian editions of Enriques [3] the origin of Ax. 10 is attributed to Legendre, in later editions
 to Lorenz, but no bibliographic details are given.
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 there is a striking similarity between Ax. 73 and Ax. 101. One could say
 that Ax. 73 is an inner form of Ax. 101 or, equivalently, that Ax. 10i is an
 outer form of Ax. 73. It is not known whether Ax. 73 can equivalently re-
 place Ax. 71, nor whether Ax. 73 is derivable from Ax. 101. If both these
 problems, or even just the latter, had a positive solution, this would ex-
 hibit a rather unexpected connection between the Pasch and the Parallel
 Axioms.

 Recall that, by a result in Szmielew [37], p. 51, Ax. 101 can be equiv-
 alently replaced in EG( (as well as Ax. 10 in EH(?)) by any first-order
 sentence which is derivable from this axiom set, but ceases to be derivable
 if Ax. 101 is deleted. While Ax. 101 is formulated entirely in terms of the
 betweenness relation, some equivalent sentences are known which involve
 essentially the equidistance relation, but are as simple as, or even some-
 what simpler than, Ax. 101 and have, perhaps, a somewhat clearer mathe-
 matical content. An example of such a sentence is Ax. 102, which implies
 Ax. 101 by results of Bolyai [1] and which expresses the fact that every tri-
 angle can be inscribed in a circle.11 Another example of such a sentence is
 Ax. 103, which is somewhat longer than Ax. 101, but-in opposition to the
 later-is universal; it essentially expresses the fact that the sum of the angles
 of an arbitrary triangle is equal to two right angles.12 The derivation of
 Ax. 101 from Ax. 103 is based on results of Saccheri [26]; see also Legendre
 [8].

 It seems interesting that none of the above variants of the Parallel Axiom,
 Ax. 10-Ax. 103, is directly related in its intuitive mathematical content to
 the basic idea of Euclid's original axiom, i.e., to the non-existence of two
 intersecting straight lines parallel to a given third line; it seems that the
 expression of this idea in terms of our primitive notions is necessarily more
 complicated.13

 We turn finally to Ax. 11. It is a modified form of the well-known Conti-
 nuity Axiom which, in its application to the theory of real numbers, was first
 stated in Dedekind [2]. The modification consists in the removal of some
 additional conditions often imposed on X and Y such as the condition that
 X U Y is a straight line. This both simplifies and generalizes the formulation

 1 As regards Ax. 102 [as a replacement for Ax. 10 in higher dimensions], I [Tarski] am
 convinced that it suffices for n > 2 if its conclusion is strengthened by the condition that x
 is coplanar with a, b, and c. I believe also that this stronger form can be derived from the
 present form of Ax. 102 for every n > 2, without the help of the Parallel Axiom (using the
 properties of perpendicular projections).

 2Do you [Schwabhauser] know whether there is an equivalent form of Euclid's Ax-
 iom which is formulated entirely in terms of betweenness and is a universal sentence?
 [Schwabhauser subsequently provided a negative answer to this problem; see Theorem 6.42
 in Part II of Schwabhauser-Szmielew-Tarski [29].]

 13In the above discussion of the Parallel Axiom, the historical references are taken from

 Enriques [3], where I [Tarski] do not find any further details, e.g., page numbers.
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 of the axiom, and in consequence facilitates its use. Ax. 11 appears to be
 simpler than all other statements securing the continuity of geometric spaces
 which can be found in the literature.

 ?5. Remarks concerning the independence of axioms and primitive notions.
 We recall that a sentence in a set E of sentences is said to be independent (in ?)
 if it is not derivable from the remaining sentences in ?; the set (whether finite
 or infinite) is called independent if every sentence in E is independent. From
 the discussion in Gupta [5], pp. 1, 40-41c, it follows that in FG(2) each of
 the axioms Ax. 2, Ax. 4, Ax. 5, Ax. 8(2), Ax. 9(2), Ax. 101, Ax. 11, and Ax. 15
 is independent, i.e., cannot be derived from the remaining axioms of FG(2);
 however the independence of the three remaining axioms Ax. 1, Ax. 3, and
 Ax. 71 is still an open question. If, on the other hand, we modify FG(2)
 by replacing Ax. 101 with Ax. 102, then, according to Szczerba [33], axiom
 Ax. 71 proves to be independent as well. To our knowledge, the problem
 whether Ax. 71 is independent in FG(2) itself remains open. This problem
 seems to be connected with the problems concerning the weak Pasch axiom
 mentioned in the preceding section. The proof of independence for each
 of the axioms a mentioned above is carried through in the usual way, i.e.,
 by constructing an independence model in which all other axioms hold and
 a fails. With the exception of Ax. 71, the constructions involved are either
 well known (as in the case of the Parallel Axiom) or else rather simple.
 As regards, however, Szczerba's construction of the independence model
 for Ax. 71 the situation is different; compare the remarks below concerning
 the definability of betweenness in terms of equidistance in 1-dimensional
 geometry.

 On the other hand, the problem of whether the set EG(2) is independent
 has a trivial negative solution, since for every instance a of the schema
 As. 11 we can obviously construct another instance a' which is formally
 different from, but logically equivalent to, a. As a consequence a new,
 rather imprecise problem arises: to describe in a "simple and natural" way
 a set r of first-order sentences which, together with all sentences of EG(2)
 that are not instances of As. 11, would form an independent set logically
 equivalent to EG(2). It is known that such a set F must be infinite; see
 Tarski [44]. We do not know whether this problem will ever find a positive
 solution.

 We may of course apply to EG (2) a weaker notion of independence, treating
 the set of all instances in As. 11 as if it were a single sentence, i.e., we agree
 to consider As. 11 as being independent if at least one of its instances is not
 derivable from those axioms of EG(2) which are not instances of As. 11. In

 this case all the observations made so far concerning the independence of
 axioms in the original and modified versions of FG(2) easily extend to EG (2)
 It seems very likely that all the independence results stated above hold also
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 ALFRED TARSKI AND STEVEN GIVANT

 for axiom sets of higher dimensional geometry. However we haven't checked
 this matter in detail.14

 We now take up the problem of the independence of primitive notions.
 Since in our systems of geometry there are just two primitive notions, B
 and -, we have only two independence problems. In a given geometrical
 system we say that one of our primitive notions, say _, is independent if it
 is undefinable in terms of the other primitive notions, in this case B. Recall
 that _ is definable in terms of B if there is a sentence which can be derived
 from the axioms of the system and which is a possible definition of in
 terms of B, i.e., has the form

 Vx Vy Vz Vu (xy - zu *- /,),

 where y is a formula in which B occurs as the only non-logical constant.
 As is easily seen, we can also assume without loss of generality that just
 four variables, x, y, z, u, occur free in V. In case we consider a system of
 elementary n-dimensional geometry (for n > 2) based, say, on the axiom
 set EG(n), then y must be a first-order formula, i.e., contain only individual
 (that is, first-order) variables ranging over points of the space; - is then
 said to be elementarily, or first-order, definable in terms of B. If, on the
 other hand, we are interested in full geometry, based say on the axiom set
 FG(n), then may also contain second-order variables ranging over sets
 of points, operations on, and relations among, points; y/ may even contain
 higher-order variables ranging over sets of sets of points, etc. (assuming
 that the fragment of set theory, or the higher-order logic, upon which our
 geometry is based admits such variables). The primitive notion = is then
 called second-order, third-order, etc., definable in terms of B.
 It now turns out that, in all systems of geometry considered here,

 is independent, i.e., not definable in terms of B. This can be proved by
 means of the well-known method of Padoa, indeed by exhibiting, for any
 given system, two relational structures (S1, B1, 1) and (S2, B2,-2) which
 are both models of the given system, and in which S1 and B1 respectively
 coincide with S2 and B2, while =1 and =2 do not coincide, i.e., for some x,
 y, z, u, one of the formulas xy =1 zu and xy -2 zu holds and the other
 fails.

 '4These remarks do not concern the axiom sets FH2) and EH(2). I [Tarski] hope that
 you [Schwabhauser] know what the situation [regarding the independence of the axioms] is
 for these sets. Certainly, various facts stated in Gupta [5] can be applied here, but there
 are also some important gaps. [It is remarked on p. 26 of Schwabhiuser-Szmielew-Tarski
 [29] that axioms Ax. 4, Ax. 5, Ax. 6, Ax. 8(2), Ax. 9(2), Ax. 10, and Ax. 11 are independent
 in FH(2).] Kordos [7] states without proof the following information: in FH(2), with Ax. 11
 deleted and Ax. 10 replaced by Ax. 102, the only independence problem that remains open is
 the one concerning Ax. 1. I do not know whether, and to what extent, the information given
 by Kordos continues to hold if we do not delete Ax. 11.
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 (xi, X2?

 / X2 - Y2

 (Y1, Y2 Xi - Y

 / yY2 - z2
 (Z1, Z2) Y--_ Z Y1 - zl

 FIGURE 21. The definition of betweenness in the Cartesian plane.

 To give two such models, consider the set S of all ordered pairs of real
 numbers; thus every x E S has the form x = (xl, x2), where xl, x2 E R. We
 define the relations B1 and _1 among elements of S by stipulating that:

 Bl (xyz) +-+ [(xi - Y)- (Y2 - Z2) = (x2 - Y2) (Y1 - zl)l A

 [O < (xi - yl) -z)][ (x2 - 2) (2 - z2)]

 (i.e., B1 (xyz) if and only if the ratios and orientations of the corresponding
 sides of the triangle with vertices (xl, x2), (y1, Y2) and (xl, Y2), and the
 triangle with vertices (yl, Y2), (z1, 2), and (yl,Z2) are equal, so that the
 triangles are similar and similarly oriented-see Figure 21), and

 Xy _1 ZU *-- (X1 - y1)2 + (X2 - y2)2 = (Z1 - U)2 + (Z2 - U2)2.

 (this is just the definition of equidistance based on the Pythagorean Theorem:
 see Figure 22).

 (xi,X2)

 / 2 -2 (Zl, Z2)

 (y l,y -2) Yl/ yZ2 - U2

 (U1,U2) ----- Zl - Ul

 FIGURE 22. The definition of equidistance in the Cartesian plane.

 It is well known that the structure (S, B1, =) is a model of FG(2); in fact
 it is the ordinary Cartesian 2-dimensional space. Consider now the bijection
 f of S (i.e., the one-one mapping of S onto itself) defined by the formula

 f (x, x2) = (x, 2x2).
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 If B2 and -2 are the relations among elements of S which are the images
 under f of B1 and =1 respectively, then obviously (S, B1,--1) and (S, B2, -2)
 are isomorphic (under f), and hence (S, B2, -2) is also a model of FG(2). It
 is easy to check that actually B1 and B2 coincide. However, -1 and -2 do
 not coincide; we see, for instance, that

 (0, 0)(0, 1) -i (0, 0)(1,0)

 holds for i = 1, but fails for i = 2.
 It seems that the first proof of the undefinability of- in terms of B was

 implicitly given in Veblen [50]. However Veblen was not aware of this fact
 since, curiously enough, what he claims to have proved is that, to the con-
 trary, - is definable in terms of B; see op. cit., p. 344. Analyzing his proof we
 notice the following. He considers a system of affine geometry, say with the
 geometric space S and the betweenness relation B, and constructs in this sys-
 tem a quaternary relation - such that (S, B, =) is a model of 3-dimensional
 Euclidean geometry. However his construction is not a definition in our
 sense, but what could be called a parametric definition, i.e., a definition in
 terms, not only of B, but also of a quintuple of arbitrary points a1, ....
 as (subjected to certain conditions). Thus, strictly speaking, he defines a
 system of quaternary relations a, ...a,5 indexed by quintuples of parameters,
 and therefore he obtains, not a single structure, but an indexed system of
 such structures (S, B, ai...,a5). It is easily seen that two relations _al,...,a5
 and =b,...b5 indexed by different quintuples in general do not coincide, and
 therefore the corresponding models provide a proof of the non-definability
 of in terms of B. This observation was first made in Tarski [40] and again,
 with more details, in Tarski [42].
 It should be mentioned that the proof of independence of a notion by

 the method of Padoa is model-theoretic in nature, and therefore its validity
 does not essentially depend upon the underlying logic or set theory. In
 particular the relation _ is not first-order definable in terms of B, not nth-
 order definable for any n > 1, and in general not definable on the basis
 of any reasonable system of logic or set theory, strong as they may be. In
 connection with Padoa's method see Tarski [40].15

 On the other hand, the relation B proves to be definable in terms of- on
 the basis of EG), and afortiori of FG), for every n > 2. To show this we
 first define an auxiliary quaternary relation-the less-than-or-equal relation
 between segments, expressed by the formula xy < zu-by stipulating that

 (1) xy < zu -> Vv (zv = uv - 3w (xw = yw A yw _ uv)).

 (In 2-dimensional geometry the definiens asserts that for every point v on
 the perpendicular bisector of the segment zu, there is a point w on the
 perpendicular bisector of the segment xy whose distance from y is that same

 15An English translation this paper appeared as Article X in Tarski [43].
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 v

 x y z u

 FIGURE 23. The definition of < in terms of equidistance.

 as the distance from v to u-see Figure 23). It suffices then to show that the
 following sentence, which is clearly a possible definition of B in terms of,
 is derivable from EG () with the help of (1):

 (2) B(xyz) ,-- Vu (ux < xy A uz < zy -> u = y).

 yu y
 x z X

 FIGURE 24. The definition of betweenness in terms of <.

 (In 2-dimensional geometry the definiens asserts that the only way a point
 u can be in the circle with center x and radius xy, and also in the circle
 with center z and radius zy, is if y = u-see Figure 24.) This presents no
 essential difficulties. The result is essentially due to Pieri [23]; in the outline
 above we follow the argument in Robinson [25], pp. 70-71.

 As a consequence of the definability of B in terms of- we can adopt
 as the only primitive notion of Euclidean geometry, and construct an

 axiom set for this geometry involving exclusively -. Such an axiom set
 can be obtained mechanically from any one of the axiom sets described in
 Section 2 by eliminating from it the relation B on the basis of (1) and (2).
 Clearly such an axiom set would be rather involved and unnatural from the
 point of view of the mathematical content of its axioms. In general it seems
 dubious whether, using - as the only primitive notion, an axiom set could
 be constructed which could compete with EG (n (or EH(, FG(), FH(n))
 in simplicity of form and clarity of mathematical content.16 Probably this
 applies even more strongly if, instead of , the ternary relation expressed
 by the formula xy _ yz is used as the only primitive notion of geometry;

 16*Since these words were written, concise axiom systems that use the equidistance relation
 as the only primitive notion have been given for various important, finitely axiomatized
 subsystems of 2- and 3-dimensional elementary Euclidean geometry. See, for example,
 Schnabel [27], Grochowska [4], and Richter-Schnabel [24].
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 the fact that this ternary relation can be so used follows from results of Pieri
 [23].

 There are various other quaternary and ternary relations among points,
 each of which can be used as the only primitive notion of geometry. Such
 are, in particular, the quaternary and the ternary relations expressed by the
 formulas xy < zu and xy < yz. It seems plausible that these relations,
 especially the former, are better suited for constructing desirable axiom sets.

 ?6. Subsumption of 1-dimensional geometry under geometries of higher
 dimension. We shall make here some remarks concerning the selection of
 axioms and primitive notions for 1-dimensional Euclidean geometry. The
 most natural way of setting up a foundations for this geometry would seem
 to consist in taking as a point of departure any of our four systems of n-
 dimensional geometry with n > 2, preserving its primitive notions and all
 axioms, with the exception of the dimension axioms, and using respectively
 Ax. 8(1) and Ax. 9(1) as lower and upper dimension axioms. It turns out,
 however, that the sentence Ax. 22, which certainly is true in 1-dimensional
 Euclidean geometry, is not derivable from any of the axiom sets thus ob-
 tained, and that Ax. 6, which occurs in FH ,( is not derivable from the set
 obtained from FG(n) by modifying it in the described way. We therefore add
 Ax. 22 to the axiom sets proposed for 1-dimensional geometry, and more-
 over, we replace Ax. 15 by Ax. 6 in the axiom sets obtained from EG() and
 FG). We denote the resulting set by EG(1) EH(1), FG(1) or FH(1), as the
 case may be. The sets EG(1), EH(1) are complete and the sets FG(1), FH(1)
 are categorical.

 As could be expected, the axiom sets just mentioned can be considerably
 simplified. In fact, the axioms of a less elementary character, i.e., Ax. 5,
 Ax. 7 (or Ax. 71), Ax. 10 (or Ax. 101), and As. 11 can be either replaced by
 some elementary consequences which express natural properties specific to
 the straight line, or else entirely eliminated. It seems, for instance, very
 plausible that Ax. 10 can be entirely eliminated, while Ax. 5 can be replaced
 by Ax. 23 and Ax. 24. Also it seems plausible that As. 11 can be replaced by
 an infinite collection of sentences which, loosely speaking, express the fact
 that every segment can be divided into p congruent parts, for each prime
 number p. (Since each of these sentences clearly implies Ax. 22, the latter
 may then be omitted.) In this way we could arrive at natural and elegant
 axiom sets for elementary and full 1-dimensional geometries. However we
 have not considered this matter in details.

 A substantial difference between the axiomatization of 1-dimensional and

 higher dimensional geometries comes to light when we turn to the problems
 concerning the independence of primitive notions. As in the case of higher
 dimensional geometries, = is not definable in terms of B in 1-dimensional
 geometry. To show this we proceed as in the case of FG(2) discussed in
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 Section 5 above. Indeed we consider the usual Cartesian model (R, B1, =1)
 of FG(1), where R is the set of real numbers while B1 and =- are defined by
 the stipulations

 Bl(xyz) - (x < y < z) V (x > y > z),
 xy -1 zu *- (x + u= + y) V (x + z = u + ),

 and we choose an appropriate bijection f of R which preserves the relation
 B1, but not -1. As such a bijection we can use, for instance, the function
 f defined by the stipulations: f(x) = x for x > 0, and f(x) = x + x for
 x< 0.

 On the other hand, in opposition to higher dimensional geometries, the
 problem of the definability of B in terms of _ is rather involved. Ac-
 cording to the observations of Lindenbaum announced (without proof) in
 Lindenbaum-Tarski [9], the situation in the full system FG(1) can be de-
 scribed as follows. Using the Cartesian model we easily see that the problem
 discussed is equivalent to an analogous problem concerning the full system
 of the theory of reals based upon +, 1, and < as the only primitive notions;
 in fact to the problem of the definability of < in terms of + and 1. Rather
 unexpectedly, the latter problem proves in turn to be equivalent to that of
 the non-existence of a function g from and to reals which is not Lebesgue-
 measurable, and satisfies some additional conditions. If the fragment of set
 theory underlying the theory of reals contains the axiom of choice, then we
 can show that such a function g does exist, and consequently that < is not
 definable in terms of + and 1. If, however, in our fragment of set theory we
 can show that every function from reals to reals is measurable, then we may
 well be able to construct an explicit definition of < in terms of + and 1.

 Elaborating on these observations, we should like to point out that for g
 we can take any bijection of the set R of reals for which the Cauchy equation

 g(u + v) = g(u) + g(v)

 is identically satisfied and which is neither increasing nor decreasing. As
 is well-known, with the help of the axiom of choice we can establish the
 existence of such a function g and show, without using the axiom of choice
 (see Sierpiniski [31], p. 442), that no such function is measurable. From
 properties of g it follows easily that g(1) f- 0. Hence we can define a new
 function f by stipulating that f(x) = g(x)/g(1) for every x E R. Of course
 the function f has all the properties of g mentioned above, and in addition
 we have f (1) = 1. Using f in the same way as we did in earlier proofs of
 independence, we construct the structure (R, +', 1', '<) in such a way that
 f maps (R, +, 1, <) isomorphically onto (R, +', 1', <'). Clearly, because of
 the Cauchy equation and the formula f (1) = 1, we see that + coincides
 with +' and 1 with 1'. Since, however, f is not increasing, < does not
 coincide with <'. Therefore, < is not definable in terms of + and 1. Thus
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 we apply here essentially Padoa's method, with this difference however, that
 we do not construct the function f and the model (R, +1, 1', <') explicitly,
 but only prove their existence with the help of the axiom of choice. On
 the other hand, if in the underlying system of set theory we can prove that
 all functions from reals to reals are measurable, then, as is well-known,
 every solution g of Cauchy's equation is monotonic and indeed satisfies the
 condition g(x) = x ? g(1) for every x E R. Hence we can write explicitly a
 possible definition of < in terms of + and 1:

 x < y *- 3g Vu Vv ([g(u + v) = g(u) + g(v)] A [x + g(g(l)) = y ]),

 where the second-order variable g ranges over functions from R to R. (Since
 g (g (1)) = g (1) g (1), the definiens essentially asserts the existence of a non-
 negative number which, when added to x, yields y.) Regarding systems of set
 theory in which the fact that all real functions are Lebesgue-measurable can
 be proved, see Mycielski-Swierczkowski [19] (where bibliographic references
 to earlier papers of Mycielski and Steinhaus can be found) as well as Solovay
 [32].17

 It should be pointed out that the observations regarding the connections
 between the definability of B in terms of and some properties of the
 underlying set theory apply also to the problem of the independence of
 the Pasch Axiom Ax. 71 from the remaining axioms of geometry, and to
 Szczerba's solution of this problem (see Section 5 of these notes).

 So far in this section we have been dealing primarily with full geometry.
 The situation changes rather substantially if we now turn to elementary
 geometry. As before, _ is not definable in terms of B. Because of its
 character, the proof of this fact which we outlined before for full geometry
 actually applies to all reasonable logical formalisms. On the other hand, we
 are now able to give a straightforward proof that B is not first-order definable
 in terms of -, or in an equivalent algebraic formulation, that < is not first-
 order definable in terms of + and 1. In fact, we can give a precise description
 of all sets of reals which are definable in terms of + and 1 (such a description
 can be derived as a very particular consequence of the results in Szmielew
 [36], but it can also be obtained in a much more direct way-see, e.g., the
 proof of Theorem 1 in Tarski [39], p. 232), and from this description we
 easily see that, e.g., the set of non-negative reals is not so definable, although
 it is clearly definable in terms of + and <.

 As regards relations which can serve as the only primitive notion of 1-
 dimensional geometry, we notice that, just as in the case of higher dimen-
 sions, the ternary relation of Pieri expressed by the formula xy - yz is
 elementarily interdefinable with -. In fact, the definition of the quaternary

 17It seems to me [Tarski] very likely that the contents of the "elaborating remarks" made
 above were known to Lindenbaum. The explicit definition of < in terms of + and 1 appears
 here for the first time.
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 -x y-4----- z ~ v x y u

 x y . v u

 FIGURE 25. The definition of equidistance in terms of Pieri's relation.

 relation of equidistance in terms of Pieri's relation is quite simple in the
 present case:

 xy _ uv -

 3z ([xz =zv A (x = v - x = z) A yz -zu A (y = u - y = z)]
 V [xz -zu A (x =u - x = z) A yz z A (y v - y = z)])

 (see Figure 25). Thus Pieri's relation cannot be used as the only primitive
 notion for elementary 1-dimensional geometry, nor for full 1-dimensional
 geometry if the underlying set theory contains the axiom of choice. On the
 other hand, again just as in the case of higher dimensions, the quaternary
 relation xy < uv and the ternary relation xy < yz can be used this way. We
 may notice that, in the case of 1-dimension, B and _ can be defined in terms
 of xy < uv in an extremely simple way:

 B(xyz) - [yx < xz A yz < zx]

 (see Figure 26) and

 xy _ uv - [xy < uv A uv < xy].

 x y z x y z

 FIGURE 26. The definition of betweeness in terms of < in

 1-dimensional geometry.

 There is still another problem concerning the primitive notions of elemen-
 tary 1-dimensional geometry, of a more serious nature, which has recently
 been raised and investigated by Makowiecka in a series of papers. In oppo-
 sition to higher dimensional geometries, the 1-dimensional geometry based
 upon B and = has a rather meager power of expression. There are many
 geometrical notions which are elementarily definable in the case of higher
 dimensions, but, when restricted to collinear points, are not so definable in
 the case of dimension one (although they are second-order definable in full
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 1-dimensional geometry). These are notions which, loosely speaking, are
 essentially involved in constructing within the geometrical space (i.e., within
 the standard model of our system of geometry) the field of real numbers, and
 in proving that the geometrical space is isomorphic to the Cartesian model
 over this field. (When developing 1-dimensional elementary geometry with
 B and = as the only primitive notions, we can still construct within geomet-
 rical spaces algebraic structures in which the spaces can be isomorphically
 represented; however, in opposition to higher dimensions, we take for these
 structures not fields, but much simpler structures, in fact ordered Abelian
 groups.)

 To avoid such situations and to be able to subsume the 1-dimensional case

 under the development of geometries with arbitrary dimensions, we have
 to change our conception of 1-dimensional geometry and provide it with
 stronger primitive notions. As an example we may consider the quaternary
 relation K discussed in Makowiecka [11], [12]. In the field of real numbers
 it is defined by the elementary formula

 K(xyzu) +_ [(x - u)2 = (y - u) . (z - u)].

 The relation K is a geometric notion in the sense that it is preserved under
 every similarity transformation of R onto itself. It is easily seen that the
 basic field operations + and ? are elementarily definable in terms of K and
 two arbitrary distinct real numbers, say 0 and 1. As a consequence, every
 relation among numbers which is geometric in the above sense and definable,
 or elementarily definable, in terms of + and - is also definable, or elementarily
 definable, in terms of K. This applies, in particular, to the relations B and

 . Indeed we have:

 B(yuz) - Vx (K(xyzu) -* x = u)

 (the definiens asserts that the product (y - u) - (z - u) is non-negative only
 in the trivial case when it is 0-in other words, one of y and z coincides with
 u or else y - u and z - u have opposite signs, so that u is greater than one
 of y and z and less than the other),

 xu = uy +- K(xyyu)

 (this is a definition of Pieri's relation in terms of K-the definiens asserts
 that (x - u)2 = (y - u)2), and

 xx/ = yy/

 3u ([xu = uy A (x = y -- x = u) A x'u - uy' A (x' = y - x' = u)]

 V [xu = uy' A (x = y' - x = u) A x'u uy A (x' = y -- x' = u)])

 (this is just the definition of the equidistance relation in terms of Pieri's rela-
 tion that we encountered previously). For this reason K can be used as the
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 only primitive notion for the new conception of elementary 1-dimensional
 geometry.

 On the other hand K can be shown not to be elementarily definable in
 terms of B and _ (although it is second-order definable in these terms).
 The proof of this result reduces to showing that in the field of real numbers
 * is not elementarily definable in terms of +, <, and 1. The latter fact
 can be established as follows: an immediate consequence of Theorem 2 in
 Tarski [39], p. 233,18 is that the only particular real numbers elementarily
 definable in terms of +, < and 1 are rational numbers; however the irrational
 number x2 is obviously elementarily definable in terms of + and ? (see also
 Makowiecka [13], pp. 677-678).

 Makowiecka has given several other examples of geometric relations which
 are elementarily interdefinable with K in 1-dimensional space, so that each
 of them can serve as the only primitive notion of elementary 1-dimensional
 geometry. However she has also shown that no ternary relation can be used
 for this purpose, and that actually no set of ternary relations can serve as
 the set of primitive notions for elementary 1-dimensional geometry. In this
 connection see Makowiecka [12], [14], [15].

 For any given n > 1 we can consider a quaternary relation Kn among
 points of n-dimensional Cartesian space defined by the formula

 Kn(xyzu) -> [(xi- 2 = Y u) (Zi u i)

 where

 x = (xi,..,xn), (Yi...1 nn), z= (zn), u (,..., un)

 are arbitrary n-tuples of real numbers. As in the 1-dimensional case, Kn can
 serve as the only primitive notion of elementary n-dimensional geometry;
 hence, in opposition to the 1-dimensional case, it is interdefinable with =
 or with Pieri's relation whenever n > 2. Obviously the set of all n-tuples
 (xl,..., Xn) with xi = 0 for i = 2, ..., n forms a 1-dimensional subspace
 of our Cartesian space which may be identified with the usual 1-dimesional
 Cartesian space. It becomes then clear that Kn, when restricted to this
 subspace, coincides with K1 = K. Thus the connection between Kn and K1
 is exactly the same as the one between the n-dimensional and 1-dimensional
 equidistance relations. It seems therefore proper to speak of all relations
 Kn as the same relation K and treat it as the common primitive notion for
 Euclidean geometries of any number of dimensions. Compare Makowiecka
 [13].19

 18For an English translation see [43], p. 134.
 19Makowiecka does not seem to be concerned with non-elementary definability. From

 a certain point of view a defect of her approach is that it compels us to base geometry on
 primitive notions with less intuitive, geometrical content.
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 ?7. Historical remarks concerning the development of geometry on the basis
 of Tarski's system. To our knowledge the publication of Schwabhauser-
 Szmielew-Tarski [29] marks the first time that a detailed and systematic
 development of geometry based on some variant of Tarski's system of axioms
 and primitive notions will appear in print and become generally accessible.
 However, unpublished versions of such a detailed development have existed
 for over fifty years.20 In fact, a systematic presentation was given for the
 first time by Tarski himself in his course at the University of Warsaw during
 the academic year 1926-27 (see Tarski [45], footnote 34, page 45). Various
 versions of such a presentation were later given in courses on the foundations
 of geometry, held at the University of California, Berkeley, by Tarski, e.g.,
 in 1956-57 and 1961-62, and by Szmielew during her visiting professorship
 in 1959-60.

 In the early 1960s Szmielew and Tarski decided to join their efforts to pre-
 pare a comprehensive treatise on the foundations of geometry. In opposition
 to earlier works of this kind, the intended topic of the treatise was the study
 of various systems of geometry-in particular parabolic (i.e., Euclidean),
 hyperbolic, and elliptic geometries-developed within the framework of
 contemporary mathematical logic and investigated by means of contem-
 porary metamathematical (both proof-theoretical and model-theoretical)
 methods. A systematic development of Euclidean geometry (with any given
 dimension) was to constitute the first part of the treatise. During her stay in
 Berkeley as a visiting research worker Szmielew, in collaboration with Tarski,
 prepared a manuscript of this part of the treatise (the first draft completed
 in 1965, the second in 1967).21

 The manuscript contains the development of 2-dimensional geometry,
 including the introduction of coordinates and the representation of every
 model as a Cartesian space; a final chapter with indications how the devel-
 opment can be extended to higher dimensions is lacking. As was pointed

 20Recall that these words were written around 1978.

 21I [Tarski] made some search, both in my memory and in the NSF project reports, Tarski
 et al. [48], [49], and [47]. I reached the following conclusions concerning the chronology
 of Wanda's work on the manuscripts involved; they are not certain, but seem to me very
 plausible. Some time during Wanda's stay in Berkeley in 1960, or perhaps during my visit to
 Warsaw in 1961, we decided to start working on a treatise on the foundations of geometry,
 and to prepare the development of Euclidean geometry, based upon some variant of my
 axiom system, as the first part of the treatise. Not much progress was made between 1961
 and 1964, when I was again for a short time in Warsaw, but probably Wanda's ideas regarding
 the development ripened in this period. She worked intensively on our project during her
 stay in Berkeley in the spring and summer of 1965, and prepared a draft of the work; this
 is, I believe, the draft which she made available to you [Schwabhauser]. She continued the
 work during her next visit, in the spring and summer of 1967, and completed a manuscript
 which was ready to be put in final form for publication, except for an addition concerning the
 extension of the results to higher dimensions. I do not remember whether we ever returned
 to the development of this manuscript in later years.
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 out in Section 2, the axiomatic foundations adopted in the manuscript are
 essentially a variant of Tarski's system: the logical framework and the prim-
 itive notions are the same; the axiom set varies from EG(2) and FG(2) in
 that Ax. 15, Ax. 71, and Ax. 101 have been respectively replaced with Ax. 6,
 Ax. 7, and Ax. 102. Thus, this axiom set is very closely related to the one
 adopted in Schwabhauser-Szmielew-Tarski [29]. However, the actual de-
 velopment of geometry on this basis differs rather substantially from those
 presented by Tarski in his courses (and, as it seems to us, from other earlier
 developments that can be found in the literature). While the presentation in
 Tarski's courses followed essentially the classical lines of Hilbert's work,22
 the manuscript embodies a number of Szmielew's own original ideas which,
 in our opinion, result in a new, elegant, and concise presentation.

 The manuscript served as a base for courses on the foundations of geometry
 given subsequently by Szmielew at the University of Warsaw. It was used
 also for this same purpose by Schwabhauser both during his visit to Berkeley
 in 1965-66, and in later courses which he taught in Germany.

 For various reasons work on the treatise was not pursued intensely after
 the manuscript had been completed, and the untimely death of Szmielew
 in 1976 brought the whole project to a final close. Quite independently
 from Szmielew and Tarski, Schwabhauser started work on a treatise of
 a similar character several years ago. He made substantial use of their
 manuscript in preparing for publication the first part of his treatise, i.e., the
 first part of Schwabhauser-Szmielew-Tarski [29]. Indeed, Sections 1-8, 10,
 and the initial part of Section 9 of that work follow strictly the lines of their
 manuscript. In view of the whole situation he proposed in 1977, and Tarski
 concurred, that the first part of the treatise appear in print as the joint work
 of the three authors involved.
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