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PREFACE
This book has been written in an attempt to provide a satisfactory

textbook to be used as a basis for elementary courses in Non-Euclid-

ean Geometry. The need for such a volume, definitely intended for

classroom use and containing substantial lists of exercises, has been

evident for some time. It is hoped that this one will meet the re-

quirements of those instructors who have been teaching the subject

tegularly, and also that its appearance will encourage others to

institute such courses.

x^The benefits and amenities of a formal study of Non-Euclidean

Geometry are generally recognized. Not only is the subject matter

itself valuable and intensely fascinating, well worth the time of any
student of mathematics, but there is probably no elementary course

which exhibits so clearly the nature and significance of geometry

and, indeed, of mathematics in general. However, a mere cursory

acquaintance with the subject will not do. One must follow its

development at least a little way to see how things come out, and

try his hand at demonstrating propositions under circumstances such

that intuition no longer serves as a guide.

For teachers and prospective teachers of geometry in the secondary

schools the study of Non-Euclidean Geometry is invaluable. With-

out it there is strong likelihood that they will not understand the

real nature of the subject they are teaching and the import of its

applications to the interpretation of physical space. Among the

first books on Non-Euclidean Geometry to appear in English was

one, scarcely more than a pamphlet, written in 1880 by G. Chrystal.

Even at that early date the value of this study for those preparing to

teach was recognized. In the preface to this little brochure, Chrystal

expressed his desire to bring
"
pangeometrical speculations under the

notice of those engaged in the teaching of geometry/' He wrote:

"It will not be supposed that I advocate the introduction of pan-

geometry as a school subject; it is for the teacher that I' advocate
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such a study. It is a great mistake to suppose that it is sufficient for

the teacher of an elementary subject to be just ahead of his pupils.

No one can be a good elementary teacher who cannot handle his

subject with the grasp of a master. Geometrical insight and wealth

of geometrical ideas, either natural or acquired, are essential to a

good teacher of geometry; and I know of no better way of cultivat-

ing them than by studying pangeometry.
"

Within recent years the number of American colleges and uni-

versities which offer courses in advanced Euclidean Geometry has

increased rapidly. There is evidence that the quality of the teaching
of geometry in our secondary schools has, accordingly, greatly

improved. But advanced study in Euclidean Geometry is not the

only requisite for the good teaching of Euclid. The study of Non-

Euclidean Geometry takes its place beside it as an indispensable part

of the training of a well-prepared teacher of high school geometry.
This book has been prepared primarily for students who have

completed a course in calculus. However, although some mathe-

matical maturity will be found helpful, much of it can be read

profitably and with understanding by one who has completed a

secondary school course in Euclidean Geometry. He need only
omit Chapters V and VI, which make use of trigonometry and calcu-

lus, and the latter part of Chapter VII.

In Chapters II and III, the historical background of the subject

has been treated quite fully. It has been said that no subject, when

separated from its history, loses more than mathematics. This is

particularly true of Non-Euclidean Geometry. The dramatic story

of the efforts made throughout more than twenty centuries to prove
Euclid's Parallel Postulate, culminating in the triumph of rational-

ism over tradition and the discovery of Non-Euclidean Geometry,
is an integral part of the subject. It is an account of efforts doomed

to failure, of efforts that fell short of the goal by only the scantiest

margin, of errors, stupidity, discouragement and fear, and finally,

of keen, penetrating insight which not only solved the particular

problem, but opened up vast new and unsuspected fields of thought.
It epitomizes the entire struggle of mankind for truth.

A large number of problems has been supplied more than will

be found in other books on this subject. The student will enjoy

trying his hand at original exercises amid new surroundings and
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will find their solution a valuable discipline. But the problems arc

not merjely practice material, they form an integral part of the book.

Many important results are presented in the problems, and in some

instances these results are referred to and even used.

It is believed that the material in the Appendix will be found

helpful. Since most students in this country are not acquainted
with the propositions of Euclid by number, we have reprinted the

definitions, postulates, common notions and propositions of the

First Book. An incidental contact with these propositions in their

classical order may not be the least of the benefits to be derived from

this study. Also included are sections on the hyperbolic functions,

the theory of orthogonal circles and inversion. They are sufficiently

extensive to give the reader who has not previously encountered the

concepts an adequate introduction. These topics, when introduced

at all in other courses, are generally presented in abstract and

isolated fashion. Here they are needed and used, and the student

may possibly be impressed for the first time with their practical

importance.
There will be those who will classify this book as another one of

those works in which the authors "wish to build up certain clearly

conceived geometrical systems, and are careless of the details of the

foundations on which all is to rest." It is true that no attempt has

been made here to lay a complete and thoroughly rigorous founda-

tion for either the Hyperbolic or Elliptic Geometry. We shall not

be inclined to quarrel with those who contend that this should be

done, for we are quite in accord with the spirit of their ideals. But

experience has shown that it is best, taking into account the mathe-

matical immaturity of those for whom this book is intended, to

avoid the confusion of what would have to be, if properly done, an

excessively long, and possibly repellent, preliminary period of ab-

stract reasoning. No attempt is made to conceal the deficiency.

As a matter of fact it is carefully pointed out and the way left open
for the student to remove it later.

The study of Non-Euclidean Geometry is a fine, rare experience.

The majority of the students entering a class in this subject come,

like the geometers of old, thoroughly imbued with what is almost a

reverence for Euclidean Geometry. In it they feel that they have

found, in all their studies, one thing about which there can be no
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doubt or controversy. They have never considered the logic of its

application to the interpretation of physical space; they have not

even surmised that it might be a matter of logic at all. What they
are told is somewhat in the nature of a shock. But the startled

discomposure of the first few days is rapidly replaced during the

weeks which follow by renewed confidence, an eager enthusiasm for

investigation, and a greater and more substantial respect for geom-

etry for what it really is.

Nor is this all. Here some student may understand for the first

time something of the nature, significance and indispensability of

postulates, not only in geometry, but in the formation of any body
of reasoned doctrine. He will recognize that not everything can be

proved, that something must always be taken on faith, and that the

character of the superstructure depends upon the nature of the

postulates in the foundation. In South Wind
y
Norman Douglas has

one of his characters say, "The older I get, the more I realize that

everything depends upon what a man postulates. The rest is plain

sailing." Perhaps it is not too much to hope that a study of Non-

Euclidean Geometry will now and then help some student to know

this, and to formulate the postulates of his own philosophy con-

sciously and wisely.

HAROLD E. WOLFE
INDIANA UNIVERSITY
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I

THE FOUNDATION OF EUCLIDEAN GEOMETRY

"This book has been for nearly twenty-two centuries the encouragement
and guide of that scientific thought which is one thing with the progress
of man from a worse to a better state." - CLIFFORD

1 . Introduction.

Geometry, that branch of mathematics in which are treated the

properties of figures in space, is of ancient origin. Much of its

development has been the result of efforts made throughout many
centuries to construct a body of logical doctrine for correlating the

geometrical data obtained from observation and measurement. By
the time of Euclid (about 300 B.C.) the science of geometry had

reached a well-advanced stage. From the accumulated material

Euclid compiled his Elements, the most remarkable textbook ever

written, one which, despite a number of grave imperfections, has

served as a model for scientific treatises for over two thousand years.

Euclid and his predecessors recognized what every student of

philosophy knows: that not everything can be proved. In building

a logical structure, one or more of the propositions must be assumed,

the others following by logical deduction. Any attempt to prove
all of the propositions must lead inevitably to the completion of a

vicious circle. In geometry these assumptions originally took the

form of postulates suggested by experience and intuition. At best

these were statements of what seemed from observation to be true or

approximately true. A geometry carefully built upon such a foun-

dation may be expected to correlate the data of observation very

well, perhaps, but certainly not exactly. Indeed, it should be clear

that the mere change of some more-or-less doubtful postulate of

1
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one geometry may lead to another geometry which, although radi-

cally different from the first, relates the same data quite as well.

We shall, in what follows, wish principally to regard geometry
as an abstract science, the postulates as mere assumptions. But the

practical aspects are not to be ignored. They have played no small

role in the evolution of abstract geometry and a consideration of

them will frequently throw light on the significance of our results

and help us to determine whether these results are important or

trivial.

In the next few paragraphs we shall examine briefly the foundation

of Euclidean Geometry. These investigations will serve the double

purpose of introducing the Non-Euclidean Geometries and of furnish-

ing the background for a good understanding of their nature and

significance.

2. The Definitions.

The figures of geometry are constructed from various elements

such as points, lines, planes, curves, and surfaces. Some of these

elements, as well as their relations to each other, must be left unde-

fined, for it is futile to attempt to define all of the elements of

geometry, just as it is to prove all of the propositions. The other

elements and relations are then defined in terms of these fundamental

ones. In laying the foundation for his geometry, Euclid 1

gave

twenty-three definitions.- A number of these might very well have

been omitted. For example, he defined a point as that which has no

part; a line, according to him, is breadthless length, while a plane

surface is one which lies evenly with the straight lines on itself. From

the logical viewpoint, such definitions as these are useless. As a

matter of fact, Euclid made no use of them. In modern geometries,

point, line, and plane are not defined directly; they are described by

being restricted to.satisfy certain relations, defined or undefined, and

certain postulates. One of the best of the systems constructed to

1 In this book, all specific statements pertaining to Euclid's text and all quotations
from Euclid are based upon T. L. Heath's excellent edition: The Thirteen Books of

Eucltd's Elements
> ind edition (Cambridge, 1916). By permission of The Macmillan

Company.
8 These definitions are to be found in the Appendix.
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serve as a logical basis for Euclidean Geometry is that of Hilbert. 8

He begins by considering three classes of things, points, lines, and

planes. "We think of these points, straight lihcs, and planes/* he

explains, "as having certain mutual relations, which we indicate

by such words as are situated^ between^ parallel, congruent, continuous,

etc. The complete and exact description of these relations follows

as a consequence of the axioms of geometry."
The majority of Euclid's definitions are satisfactory enough.

Particular attention should be given to the twenty-third, for it will

play an important part in what is to follow. It is the definition of

parallel lines the best one, viewed from an elementary standpoint,
ever devised.

Parallel straight lines are straight lines which, being in the same plane

and being produced indefinitely in both directions, do not meet one another

in either direction.

In contrast with this definition, which is based on the concept of

parallel lines not meeting, it seems important to call attention to two

other concepts which have been used extensively since ancient

times. 4 These involve the ideas that two parallel lines are lines

which have the same direction or which are everywhere equally dis-

tant. Neither is satisfactory.

The direction-theory leads to the completion of a vicious circle.

If the idea of direction is left undefined, there can be no test to apply
to determine whether two given lines are parallel. On the other

hand, any attempt to define direction must depend upon some knowl-

edge of the behavior of parallels and their properties.

The equidtst'ant-theory is equally unsatisfactory. It depends upon
the assumption that, for the particular geometry under consider-

ation, the locus of points equidistant from a straight line is a straight

line. But this must be proved, or at least shown to be compatible
with the other assumptions. Strange as it may seem, we shall

shortly encounter geometries in which this is not true.

Finally, it is worth emphasizing that, according to Euclid, two

3
Grundlagen der Geometne, yth edition (Leipzig and Berlin, 1930), or The Foundations

of Geometry, authorized translation of the ist edition by E. J. Townscnd (Chicago,

1901). All references will be to the former unless the translation or another edition is

specified. Sec Section 9 for this postulate system.
4
Heath, loc. ctf. t Vol. I, p. 190, flf.
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lines in a plane either meet or are parallel. There is no other possible

relation.

3. The Common Notions.

The ten assumptions of Euclid are divided into two sets: five are

classified as common notions, the others as postulates. The distinction

between them is not thoroughly clear. We do not care to go further

than to remark that the common notions seem to have been regarded

as assumptions acceptable to all sciences or to all intelligent people,

while the postulates were considered as assumptions peculiar to the

science of geometry. The five common notions are:

i . Things which are equal to the same thing are also equal to one another.

1. // equals be added to equals, the wholes are equal.

3 . // equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5 . The whole is greater than the part.

One recognizes in these assumptions propositions of the type

which at one time were so frequently described as "self-evident."

From what has already been said, it should be clear that this is not

the character of the assumptions of geometry at all. As a matter of

fact, no "self-evident" proposition has ever been found.

4. The Postulates.

Euclid postulated the following:

i . To draw a straight line from any point to any point.

z. To produce a finite straight line continuously in a straight line.

3 . To describe a circle with any center and distance.

4. That all right angles are equal to one another.

5. That, if a straight line jailing on two straight lines make the interior

angles on the same side less than, two right angles, the two straight

lines, // produced indefinitely, meet on that side on which are the

angles less than the two right angles.

Although Euclid does not specifically say so, it seems clear that

the First Postulate carries with it the idea that the line joining two

points is unique and that two lines cannot therefore enclose a space.

For example, Euclid tacitly assumed this in his proof of I, 4.* Like-

6 The propositions of Book I arc to be found, stated without proof, in the Appendix.
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wise it must be inferred from the Second Postulate that the finite

straight line can be produced at each extremity in only one way, so

that two different straight lines cannot have a common segment.

Explicit evidence of this implication first appears in the proof of XI,

i, although critical examination shows that it is needed from the

very beginning of Book I. In regard to the Third Postulate, we

merely remark that the word distance is used in place of radius, im-

plying that each point of the circumference is at this distance from

the center. The Fourth Postulate provides a standard or unit angle

in terms of which other angles can be measured. Immediate use of

this unit is made in Postulate 5.

The Fifth 6 Postulate plays a major role in what follows. In fact

it is the starting point in the study of Non-Euclidean Geometry.
One can hardly overestimate the effect which this postulate, to-

gether with the controversies which surrounded it, has had upon

geometry, mathematics in general, and logic. It has been described 7

as "perhaps the most famous single utterance in the history of

science." On account of its importance, we shall return to it soon

and treat it at length.

5. Tacit Assumptions Made by Euclid. Superposition.

In this and the remaining sections of the chapter we wish to call

attention to certain other assumptions made by Euclid. With the

exception of the one concerned with superposition, they were prob-

ably made unconsciously; at any rate they were not stated and

included among the common notions and postulates. These omis-

sions constitute what is regarded by geometers as one of the gravest

defects of Euclid's geometry.
Euclid uses essentially the same proof for Proposition I, 4 that is

used in most modern elementary texts. There is little doubt that,

in proving the congruence of two triangles having two sides and the

included angle of one equal to two sides and the included angle of

the other, he actually regarded one triangle as being moved in or-

der to make it coincide with the other. But there are objections to

6 This postulate is also sometimes referred to as the Eleventh or Twelfth.
7
Keyser, Mathematical Philosophy (New York, 19x1).
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such recourse to the idea of motion without deformation in the

proofs of properties of figures in space.
8

It appears that Euclid

himself had no high regard for the method and used it reluctantly.

Objections arise, for example, from the standpoint that points are

positions and are thus incapable of motion. On the other hand, if

one regards geometry from the viewpoint of its application to

physical space and chooses to consider the figures as capable of dis-

placement, he must recognize that the material bodies which are

encountered are always more-or-less subject to distortion and

change. Nor, in this connection, may there be ignored the modern

physical concept that the dimensions of bodies in motion are not

the same as when they are at rest. However, in practice, it is of

course possible to make an approximate comparison of certain

material bodies by methods which resemble superposition. This

may suggest the formulation in geometry of a postulate rendering

superposition legitimate. But Euclid did not do this, although
there is evidence that he may have intended Common Notion 4 to

authorize the method. In answer to the objections, it also may be

pointed out that what has been regarded as motion in superposition

is, strictly speaking, merely a transference of attention from one

figure to another.

The use of superposition can be avoided. Some modern geometers
do this, for example, by assuming that, if two triangles have two

sides and the included* angle of one equal to two sides and the in-

cluded angle of the other, the remaining pairs of corresponding

angles are equal.
9

6. The Infinitude of the Line.

Postulate i, which asserts that a straight line can be produced

continuously, does not necessarily imply that straight lines are in-

finite. However, as we shall discover directly, Euclid unconsciously

assumed the infinitude of the line.

It was Riemann who first suggested the substitution of the more

general postulate that the straight line is unbounded. In his remark-

able dissertation, LJber die Hypothesen welche der Geometne %u Grunde

* Sec Heath, he. ctt , Vol. I, pp. 114-118.
9

See, for example, Hilbert, loc. ctt. t and also Section 9.



THE FOUNDATION OF EUCLIDEAN GEOMETRY 7

liegen read in 1854 to the Philosophical Faculty at Gottingcn, he

pointed, out that, however certain we may be of the unboundedncss

of space, we need not as a consequence infer its infinitude. He

said,
11 "In the extension of space-construction to the infinitely

great, we must distinguish between unboundedncss and infinite extent;

the former belongs to the extent relations, the latter to the measure

relations. That space is an unbounded threefold manifoldness is an

assumption which is developed by every conception of the outer

world; according to which every instant the region of real per-

ception is completed and the possible positions of a sought object

are constructed, and which by these applications is forever confirm-

ing itself. The unboundedness of space possesses in this way a

greater empirical certainty than any external experience. But its

infinite extent by no means follows from this; on the other hand

if we assume independence of bodies from position, and therefore

ascribe to space constant curvature, it must necessarily be finite

provided this curvature has ever so small a positive value."

We shall learn later that geometries, logically as sound as Euclid's,

can be constructed upon the hypothesis that straight lines are bound-

less, being closed, but not infinite. In attempting to conceive

straight lines of this character, the reader may find it helpful, pro-

vided he does not carry the analogy too far, to consider the great

circles of a sphere. It is well known that in spherical geometry the

great circles are geodesies, i.e., they are the "lines" of shortest

distance between points. It will not be difficult to discover that

they have many other properties analogous to those of straight lines

in Euclidean Plane Geometry. On the other hand there are many
striking differences. We note, for example, that these "lines,"

while endless, are not infinite; that, while in general two

termine a "line7* two points may be so situated that an

number of "lines" can^Be drawn. EfarQUghwfcb&tn; that two
"linesj'

always* intersect in two points and encloses space.
^ ^

'
,
* i i *w jrt*

*
, ^flpjS"f'!f*^^*wt8iBPP>l

cursory consideration of the consequences of attributing

10 Riemann- Gesammeltt Mathcmattsche Werke (Leipzig, 1891).
11 This quotation is from a translation by W. K Clifford, in Nature, Vol. VIII, 1873.

A translation by H S. White is to be found in David Eugene Smith's A Source Book tn

Mathematics (New York, 1919).
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to straight lines the character of being boundless, but not infinite,

convinces one that Euclid tacitly assumed the infinitude of the line.

One critical point at which this was done is found in the proof of

I, 1 6. This proposition is of such importance in what follows and

its consequences are so far-reaching that we present the proof here.

PROPOSITION I, 16. In any triangle, if one of the sides be produced, the

exterior angle is greater than either of the interior and opposite angles.

Let ABC (Fig. i) be the given triangle, with BC produced to D.

We shall prove that

Let E be the midpoint of AC. Draw BE and produce it to F,

making EF equal to BE. Draw CF. Then triangles BEA and FEC
are congruent and consequently angles FCE and BAC are equal.

But

/.ACD > ^FCE.

Therefore

ACD > /.BAC.

Figure 1

It should be clear now that this proof may fail, if the straight line

is not infinite. As a matter of fact, the same proof can be used in

spherical geometry for a spherical triangle but is valid only so long
as BF is less than a semicircle. If F lies on CD, angle ACD is equal

to angle ECF and consequently to angle BAC. If BF is greater than

a semicircle, angle ACD will be less than angle BAC. Even if -one
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conceives a geometry in which any two of the closed lines intersect

in only, one point, BF may be so long that F will coincide with B or

lie on segment BE. In either case the proof fails.

The proofs of a number of important propositions in Euclidean

Geometry depend upon I, 16. Such propositions as I, 17, 18, 19,

10 and 2.1 will not be valid without restrictions when I, 16 does not

hold.

EXERCISE

Prove Propositions I, 17, 18, 19, 10, n.

7. Pasch
f

$ Axiom.

Another important assumption made by Euclid, without explicit

statement, has been formulated by Pasch 12 as follows.

Let A, B, C be three points not lying in the same straight line and let a

be a straight line lying in the plane of ABC and not passing through any of

points A, B
y
C. Then, if the line a passes through a point of the segment

AB, it will also pass through a point of the segment EC or a point of the

segment AC.

It readily follows from this that, if a line enters a triangle at a

vertex, it must cut the opposite side. Euclid tacitly assumed this

frequently as, for example, in the proof of I, 11.

We shall make use of Pasch's Axiom many times in what follows

at points where intuition cannot be depended upon to guide us as

safely as it did in Euclid. In order to emphasize the importance of

an explicit statement of this axiom as a characteristic of Euclidean

Geometry, we remark that there are geometries in which it holds

only with restrictions. It will be recognized that it is true for

spherical triangles only if they are limited in size.

Pasch's Axiom is one of those assumptions classified by modern

geometers as axioms of order. n These important axioms bring out

the idea expressed by the word between and make possible an order of

sequence of the points on a straight line.

12
Pasch, Vorlcsungen uber ncucre Gtometnc (Berlin, 1916).

13 See Section 9.
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8. The Principle of Continuity.

One of the features of Euclid's geometry is the frequent use of

constructions to prove the existence of figures having designated

properties. The very first proposition is of this type and the reader

will have no difficulty in recalling others. In these constructions,

lines and circles are drawn, and the points of intersection of line

with line, line with circle, circle with circle, are assumed to exist.

Obviously, in a carefully constructed geometry, the existence of

these points must be postulated or proved.

The only one of Euclid's postulates which does anything like this

is the Fifth, and it applies only to a particular situation. What is

needed is a postulate which will ascribe to all lines and circles that

characteristic called continuity. This is done in a satisfactory way by
one due to Dedekind. 14

THE POSTULATE OF DEDEKIND. // all points of a straight line fall into

two classes, such that every point of the first class lies to the left of every point

of the second class, then there exists one and only one point which produces

this division of all points into two classes, this severing of the straight

line into two portions.

"I think I shall not err," remarks Dedekind, "in assuming that

every one will at once grant the truth of this statement; the ma-

jority of my readers will be very much disappointed in learning that

by this commonplace remark the secret of continuity is revealed.

To this I may say that I am glad if every one finds the above prin-

ciple so obvious and so in harmony with his own ideas of a line;

for I am utterly unable to adduce any proof of its correctness, nor

has any one the power. The assumption of this property of the line

is nothing else than an axiom by which w$ attribute to the line its

continuity, by which we find continuity in a line. If space has at all

a real existence, it is not necessary for it to be continuous; many of

its properties would be the same even were it discontinuous. And

if we knew for certain that space was discontinuous there would be

nothing to prevent us, in case we so desired, from filling up its gaps,

in thought, and thus making it continuous; this filling up would

14 Dedekind, Essays on the Theory of Numbers, authorized translation by W. W. Beman

(Chicago, 1901), or Gcsammeltc Matbcmattsche Werhe, Vol. Ill, p. 32.1 (Brunswick, 1931)-
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consist in a creation of new point-individuals and would have to be

effected in accordance with the above principle."

This postulate can easily be extended to cover angles and arcs as

well as linear segments. As an application of the postulate we shall

prove the following proposition :

The segment of line joining a point inside a circle to a point outside the

circle has a point in common with the circle.

Figure 2

Let be the center of the given circle (Fig. i) and r its radius;

let A be the point inside and B the point outside. Then

OA < r < OB.

Draw OC perpendicular to AB, produced if necessary, and note that

OC OA < r.

The points of segment AB can now be divided into two classes:

those points P for which OP < r and those points g for which

OQ r. Since, in every case,

OP < OQ,
it follows that

CP < Cg,

and thus every point P precedes (or follows) every point g. Hence,

by the Postulate of Dedekind, there exists a point R of the segment
AB such that all points which precede it belong to one class and all
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which follow it belong to the other class. We proceed to prove by
reductio ad absurdum that R is on the circle.

Assume that

OR < r

and choose point S on AB, between R and B, such that

RS < r - OK.

Since, in triangle OR^,
OS < OR + RS,

we conclude that

OS < r.

But this is absurd, and consequently OR cannot be less than r.

The reader can easily show in a similar way that OR cannot be

greater than r.

The idea of continuity is frequently introduced into geometry

through what is known as the Postulate of Archimedes. A simple,

but quite satisfactory, statement of the postulate is as follows:

Given two linear segments, there is always some finite multiple of one

which is greater than the other.

This can be shown 15 to be a consequence of the Postulate of Dede-

kind. One observes that it prescribes the exclusion of both infinite

and infinitesimal segments. It holds for arcs and angles as well as

line segments. We shall make use of it upon several occasions.

A large portion of Euclidean Geometry and also of Non-Euclidean

Geometry can be constructed without the employment of the

Principle of Continuity. We shall, however, make no particular

effort to avoid its use in what follows.

9. The Postulate System of Hilbert.

The work of such men as Pasch, Veronese, Peano and Hilbert has

placed Euclidean Geometry on a sound, logical basis. It will be

helpful to conclude this chapter by giving the system of postulates,

slightly abbreviated in form, set down by Hilbert the system re-

ferred to in Section 2.. They are arranged in six sets. It will be re-

called that Hilbert begins with the undefined elements point, line

16 Sec the paper by G. Vitali in Enriques' collection, Questiont nguardanti la geo-

mctna elementare (Bologna, 1900), or a translation into German, Fragen der Elementar-

geometric, Vol. I, p. 135 (Leipzig and Berlin, 1911).
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and plane. These elements are characterized by certain relations

which are described in the postulates.

I. The Postulates of Connection.

i and i. Two distinct points determine one and only one straight line.

3 . There are at least two points on every line, and then an at least three

points on every plane which do not lie on the same straight line.

4 and 5. Three points which do not lie on the same straight line deter-

mine one and only one plane.

6. // two points of a line lie on a plane, then all points of the line lie on

the plane.

7. If two planes have one point in common, they have at least one other

point in common.

8. There exist at least four points which do not lie on the same plane.

Among the theorems to be deduced from the above set of postulates

are the following:

Two distinct straight lines lying on a plane have one point or no

point in common.

A line and a point not lying on that line determine a plane; so

also do two distinct lines which have a point in common.

II. The Postulates of Order.

The postulates of this set describe an undefined relation among the

points of a straight line a relation expressed by the word be-

tween.

i . If A, B and C are points of a straight line and B is between A and C,

then B is also between C and A.

"L. If A and C are two points of a straight line, there exists at least one

other point of the line which lies between them.
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3 . Of any three points of a straight line, one and only one lies between

the other two.

Two points A and B determine a segment; A and B are the ends of

the segment and the points between A and B are the points of the

segment.

4. Given three points A, B and C, which are not on the same straight line,

and a straight line in the plane of ABC not passing through any of

the points A, BorC, then if the line contains a point of the segment

AB, it also contains a point either of the segment BC or of the

segment AC. (Pasch's Axiom.)

As deductions from the postulates already stated, we note the

following:
Between any two points of a straight line there is always an un-

limited number of points.

Given a finite number of points on a straight line, they can always
be considered in a sequence A, B, C, D, E, , K, such that

B lies between A and C9 D, E, , K; C lies between A, B and

D, E, , K; etc. There is only one other sequence with the

same properties, namely, the reverse, K, , E, D, C9 B, A.

Every straight line of a plane divides the points of the plane which

are not on the line into two regions with the following properties:

Every point of one region determines with every point of the other a

segment containing a point of the line; on the other hand, any two

points of the same region determine a segment not containing a

point of the line. Thus we say that two points are on the same side

of a line or on opposite sides. In a similar way, a given point of a line

divides the points of a line into half-lines or rays, each ray consisting

of all points of the line on one side of the given point.

A system of segments AB, BC, CD, . . . . , KL is called a broken line

joining A to L. The points A, B, C, D, , L, as well as the

points of the segments, are called the points of the broken line. If

A and L coincide, the broken line is called a polygon. The segments
are called the sides of the polygon, and the points A, B, C, D, ,

K SLTC called the vertices. Polygons having 3, 4, 5, , n

vertices are called, respectively, triangles, quadrangles, penta-

gons, , w-gons. If the vertices of a polygon are distinct and
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none lies on a side, and if no sides have a point in common, the poly-

gon is called a simple polygon.

It follows that every simple polygon which lies in a plane divides

the points of the plane not belonging to the polygon into two re-

gions an interior and an exterior having the following prop-
erties : A point of one region cannot be joined to a point of the other

by a broken line which does not contain a point of the polygon.
Two points of the same region can, however, be so joined. The

two regions can be distinguished from one another by the fact that

there exist lines in the plane which lie entirely outside the polygon,
but there is none which lies entirely within it.

III. The Postulates of Congruence.

This set of postulates introduces a new concept designated by the

word congruent.

i. If A and B are two points of a straight line a and A' is a point on

the same or another straight line a'
, then there exists on a', on a

given side of A', one and only one point B
f

such that the segment

AB is congruent to the segment A'B' . Every segment is congruent

to itself.

^. If a segment AB is congruent to a segment A'B' and also to another

segment A"B", then A'B' is congruent to segment A"B".

3. If segments AB and BC of a straight line a have only point B in com-

mon, and if segments A'B' and B'C of the same or another straight

line a' have only B' in common, then if AB and BC are, respectively,

congruent to A'B' and B'C, AC is congruent to A'C .

The system of two rays h and k emanating from a point and lying

on different lines is called an angle Q>, K). The rays are called the

sides of the angle and the point its vertex. It can be proved that an

angle divides the points of its plane, excluding and the points on

the sides, into two regions. Any two points of either region can

always be jointed by a broken line containing neither nor any

point of either side, while no point of one region can be so joined

to a point of the other. One region, called the interior of the angle,

has the property that the segment determined by any two of its
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points contains only points of the region; for the other region,

called the exterior, this is not true for every pair of points.

4. Given an angle (h, k) on plane a, a line a' on the same or a different

-plane a', a point 0' on a'
,
and on line a' a ray h

f

emanating from

0'
,
then on a' and emanating from 0' there is one and only one ray

k
1

such that the angle (h*', 4') is congruent to angle (, ) and the

interior of (/>', &') is on a given side of a .

5. // the angle (A, k) is congruent to angle (h*', &') and also to angle

(/>", A"), *h* **tl* (h '> *') w congruent to angle (h" , k"*).

The last two postulates characterize angles in the same way that

III. i and i characterize segments. The final postulate of this set

relates the congruence of segments and the congruence of angles.

6. //, for triangle? ABC and A'B'C, AB, AC and angle BAC are, re-

spectively, congruent to A'B', A'C and angle B'A'C, then the

angle ABC is congruent to angle A'B'C
'

.

IV. The Postulate of Parallels.

Given a line a and a point A not lying on a, then there exists, in the plane

determined by a and A, one and only one line which contains A but not any

point of a. (Playfair's Axiom.)

V. The Postulate of Continuity.

Given any two segments AB and CD, there always exists on the line AB a

sequence of points A\, A%, As, ,
An , such that the segments AA\,

A\Ai, AzAz, ,
An~\An are congruent to CD and B lies between A

and An . (Postulate of Archimedes.)

VI. The Postulate of Linear Completeness.

It is not possible to add, to the system of points of a line, points such that

the extended system shall form a new geometry for which all of the foregoing

linear postulates are valid.

Upon this foundation rests the geometry which we know as

Euclidean.
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THE FIFTH POSTULATE

"One of Euclid's postulates his postulate 5 had the fortune to be

an epoch-making statement perhaps the most famous single utterance

in the history of science." CASSIUS J. KEYSER l

10. Introduction.

Even a cursory examination of Book I of Euclid's Elements will

reveal that it comprises three distinct parts, although Euclid did not

formally separate them. There is a definite change in the character

of the propositions between Proposition 2.6 and Proposition 2.7.

The first twenty-six propositions deal almost entirely with the

elementary theory of triangles. Beginning with Proposition 17,

the middle section introduces the important theory of parallels and

leads adroitly through Propositions 33 and 34 to the third part.

This last section is concerned with the relations of the areas of

parallelograms, triangles and squares and culminates in the famous

I, 47 and its converse.

In connection with our study of the common notions and postu-

lates we have already had occasion to examine a number of the

propositions of the first of the three sections. It is a fact to be

noted that the Fifth Postulate was not used by Euclid in the proof
of any of these propositions. They would still be valid if the Fifth

Postulate were deleted or replaced by another one compatible with

the remaining postulates and common notions.

Turning our attention to the second division, consisting of Prop-

1 This quotation, as well as the one at the beginning of Chapter VIII, is taken from

C. J. Keyser's book, Mathematical Philosophy y by permission of E. P. Dutton and Com-

pany, the publishers.

17
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ositions 27-34, wc s^a" ^nd ** profitable to state the first three and

recall their proofs.

PROPOSITION 1, 17. If a straight line falling on two straight lines make

the alternate angles equal to one another, the straight lines will be parallel

to one another.

Let ST (Fig. 3) be a transversal cutting lines AB and CD in such a

way that angles BST and CTS are equal.

Assume that AB and CD meet in a point P in the direction of B

and D. Then, in triangle SPT, the exterior angle CTS is equal

to the interior and opposite angle TSP. But this is impossible. It

follows that AB and CD cannot meet in the direction of B and D.

By similar argument, it can be shown that they cannot meet in the

direction of A and C. Hence they are parallel.

Figure 3

PROPOSITION I, 18. // a straight line falling on two straight lines

make the exterior angle equal to the interior and opposite angle on the same

side, or the interior angles on the same side equal to two right angles, the

straight lines will be parallel to one another.

The proof, which follows easily from I, 17, is left to the reader.

When we come to Proposition 19, the converse of Propositions 17

and 18, we reach a critical point in the development of Euclidean

Geometry. Here, for the first time, Euclid makes use of the prolix

Fifth Postulate or, as it is frequently called, the Parallel Postulate.
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PROPOSITION I, 19. A straight line falling on parallel straight lines

makes the alternate angles equal to one another, the exterior angle equal to the

interior and opposite angle, and the interior angles on the same side equal to

two right angles.

Let AB and CD (Fig. 4) be parallel lines cut in points S and T,

respectively, by the transversal ST.
*

'

Assume that angle BST is greater than angle CTS. It follows

easily that the sum of angles BST and STD is greater than two right

angles and consequently the sum of angles AST and CTS is less than

two right angles. Then, by Postulate 5, AB and CD must meet.

B

Figure 4

We conclude that angle BST cannot be greater than angle CTS.

In a similar way it can be shown that angle CTS cannot be greater

than angle BST. The two angles must be equal and the first part of

the proposition is proved. The remaining parts are then easily

verified.

There is evidence2 that the postulates, particularly the Fifth, were

formulated by Euclid, himself. At any rate, the Fifth Postulate,

as such, became the target for an immediate attack upon the Ele-

ments, an attack which lasted for two thousand years. This does

not seem strange when one considers, among other things, its lack of

terseness when compared with the other postulates. Technically

the converse of 1, 17, it looks more like a proposition than a postulate

and does not seem to possess to any extent that characteristic of

being "self-evident." Furthermore, its tardy utilization, after so

2 Sec Heath, fa. at., Vol. I, p. 101.
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much had been proved without it, was enough to arouse suspicion

with regard to its character.

As a consequence, innumerable attempts were made to prove the

Postulate or eliminate it by altering the definition of parallels. Of

these attempts and their failures we shall have much to recount later,

for they have an all-important bearing upon our subject. For the

present we wish to examine some of the substitutes for the Fifth

Postulate.

1 1 . Substitutes (or the Fifth Postulate.

When, in the preceding chapter, attention was directed to the

importance of the Fifth Postulate in elementary geometry and in

what is to follow here, the reader may have been disturbed by an

inability to recall any previous encounter with the Postulate. Such

a situation is due to the fact that most writers of textbooks on

geometry use some substitute postulate, essentially equivalent to the

Fifth, but simpler in statement. There are many such substitutes.

Heath 3

quotes nine of them. The one most commonly used is

generally attributed to the geometer, Playfair, although it was

stated as early as the fifth century by Proclus.

12. Playfair's Axiom.

Through a given pomt can be drawn only one parallel to a given line.
4

If Playfair's Axiom is substituted for the Fifth Postulate, the

latter can then be deduced as follows:

A

/T

Figure 5

Given lines AB and CD (Fig. 5) cut by the transversal ST in such

a way that the sum of angles BST and DTS is less than two right

3 Loc. ctt , Vol. I, p. izo.
4 That one parallel can always be drawn follows from I, 2.7 and I, z8.
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angles. Construct through S the line QSR, making the sum of angles
RST and DT^ equal to two right angles. This line is parallel to

CD by I, 2.8. Since lines QSR and ASB are different lines and, by Play-
fair's Axiom, only one line can be drawn through S parallel to CD,
we conclude that AB meets CD. These lines meet in the direction of

B and D, for, if they met in the opposite direction, a triangle would

be formed with the sum of two angles greater than two right angles,

contrary to I, 17.

Those writers of modern textbooks on geometry who prefer

Playfair's Axiom to the Fifth Postulate do so because of its brevity
and apparent simplicity. But it may be contended that it is neither

as simple nor as satisfactory as the Postulate. C. L. Dodgson
5

points out that there is needed in geometry a practical test by which

it can be proved on occasion that two lines will meet if produced.
The Fifth Postulate serves this purpose and in doing so makes use

of a simple geometrical picture two finite lines cut by a trans-

versal and having a known angular relation to that transversal.

On the other hand, Playfair's Axiom makes use of the idea of

parallel lines, lines which do not meet, and about the relationship

of which, within the visible portion of the plane, nothing is known.

Furthermore, he shows that Playfair's Axiom asserts more than the

Fifth Postulate, that
"
all the additional assertion is superfluous

and a needless strain on the faith of the learner."

EXERCISES

i. Deduce Playfair's Axiom from the Fifth Postulate.

i. Prove that each of the following statements is equivalent to Playfair's Axiom:

GO If a straight line intersects one of two parallel lines, it will intersect the

other also.

(Jf) Straight lines which arc parallel to the same straight line arc parallel to one

another.

13. The Angle-Sum of a Triangle.

A second alternative for the Fifth Postulate is the familiar theo-

rem:

The sum of the three angles of a triangle is always equal to two right

angles.*

That this is a consequence of Playfair's Axiom, and hence of the

8 Euclid and His Modern Rwals, pp. 40-47, ind edition (London, 1885).
6 As a matter of fact, the assumption does not have to be so broad. It is sufficient

to assume that there exists one triangle for which the angle-sum is two right angles.

Sec Section 2.4.
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Fifth Postulate, is well known. In order to deduce Playfair's

Axiom from this assumption, we shall need two lemmas which are

consequences of the assumption.

Lemma 1. An exterior angle of a triangle is equal to the sum of

the two opposite and interior angles.

The proof is left to the reader.

Lemma 2. Through a given point P, there can always be drawn

a line making with a given line p an angle less than any given

angle ,
however small.

B

From P (Fig. 6) draw PA\ perpendicular to p. Measure A\At

equal to PA\ in either direction on p and draw PA*. Designate by 6

the equal angles A\PA^ and A\AJP. Then 7

Next measure A*Az equal to PA* and draw PA*. Then

/LAsPA* - ^A^P =
* - ~

Repeated construction leads to a triangle PAn_\An for which

IT

lw

n being any positive integer greater than unity. By the Postulate of

7 The letter ir is used here to designate two right angles.
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Archimedes, there exists a number k such that

ka > v.

Then, if a positive integer n, greater than unity, is chosen such that

i" > k,

it follows that

and the lemma is proved.

We are now prepared to prove that, if the sum of the three angles

of a triangle is always equal to two right angles, through any point
can be drawn only one parallel to a given line.

Let P (Fig. 6) be the given point and p the given line. Draw PA\

perpendicular to p and at P draw PB perpendicular to PA\. By I,

18, PB is parallel to p. Consider any line through P and inter-

secting p, such as PA*. Since

it follows that

Then PB is the only line through P which does not cut p, for, no

matter how small an angle a line through P makes with PB, there

are, by Lemma i, always other lines through P making smaller

angles with PB and cutting p, so that the first line must also cut p

by the Axiom of Pasch.

14. The Existence of Similar Fi$ures.

The following statement is also equivalent to the Fifth Postulate

and may be substituted for it, leading to the same consequences.

There exists a pair of similar triangles, i.e., triangles which are not con-

gruent, but have the three angles of one equal, respectively, to the three angles

of the other.

To show that this is equivalent to the Fifth Postulate, we need

only show how to deduce the latter from it, since every student of

Euclid knows that the use of the Postulate leads to a geometry in

which similar figures exist.
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Given two triangles ABC and A'R'C f

(Fig. 7) with angles A, B
and C equal, respectively, to angles A', B' and C'. Let /IB be greater
than /i'B'. On /IB construct AD equal to /4'B' and on AC construct

AE equal to A'C'. Draw D. Then triangles ADE and /4'5'C' are

congruent. The reader can easily show that AE is less than AC,
for the assumption that AE is greater than or equal to AC leads to a

contradiction. It will not be difficult now to prove that the quadri-
lateral BCED has the sum of its four angles equal to four right

angles.

Very shortly we shall prove,
8 without the use of the Fifth Postu-

late or its equivalent, that (a) the sum of the angles of a triangle can

never be greater than two right angles, provided the straight line is

assumed to be infinite, and (i) if one triangle has the sum of its

angles equal to two right angles, then the sum of the angles of every

triangle is equal to two right angles. By the use of these facts, our

proof is easily completed.

By drawing BE, two triangles, BDE and BCE, are formed. The

angle-sum for neither is greater than two right angles; if the angle-
sum for either were less than two right angles, that for the other

would have to be greater. We conclude that the sum of the angles
for each triangle is equal to two right angles and that the same is

then true for every triangle.

8 See Section 14.
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15. Equidistant Straight Lines.

Another noteworthy substitute is the following:

There exists a pair of straight lines everywhere equally distant from one

another.

Once the Fifth Postulate is adopted, this statement follows, for

then all parallels have this property of being everywhere equally

distant. If the above statement is postulated, we can easily deduce

the Fifth Postulate by first proving that there exists a triangle with

the sum of its angles equal to two right angles.

A P S _^___ R B

Fisure 8

Let AB and CD (Fig. 8) be the two lines everywhere equally dis-

tant. From any two points and <g on CD draw OP and QR per-

pendicular to AB, and from any point S on AB draw ST perpendic-

ular to CD. By hypothesis OP, QR and ST are equal. Since right

triangles OPS and OTS are congruent,
/ PSO = Z TOS.

Similarly

It follows that the sum of the angles of triangle OSQ is equal to two

right angles.

16. Other Substitutes.

We conclude by stating without comment three other substitutes.

The reader can show, in the light of later developments, that these

are equivalent to the Fifth Postulate.

Given any three pints not lying in a straight line, there exists a circle

fassing through them.

If three of the angles of a quadrilateral are right angles, then the fourth

angle is also a right angle.

Through any point within an angle less than two-thirds* of a right angh
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there can always be drawn a straight line which meets both sides of the

angle.

These seven specimens of substitute for the Fifth Postulate are of

interest as such. But they serve also to bring out the importance of

the Fifth Postulate in Euclidean Geometry. Its consequences in-

clude the most familiar and most highly treasured propositions of

that geometry. Without it or its equivalent there would be, for

example, no Pythagorean Theorem; the whole rich theory of

similar figures would disappear, and the treatment of area would

have to be recast entirely. When, later on, we abandon the Postu-

late and replace it in turn by others which contradict it, we shall

expect to find the resulting geometries strange indeed.

1 7. Attempts to Prove the Fifth Postulate.

We have already noted the reasons for the skepticism with which

geometers, from the very beginning, viewed the Fifth Postulate as

such. But the numerous and varied attempts, made throughout

many centuries, to deduce it as a consequence of the other Euclidean

postulates and common notions, stated or implied, all ended un-

successfully. Before we are done we shall show why failure was

inevitable. Today we know that the Postulate cannot be so de-

rived.

But these attempts, futile in so far as the main objective was con-

cerned, are not to be ignored. Naturally it was through them that

at last the true nature and significance of the Postulate were re-

vealed. For this reason we shall find it profitable to give brief

accounts of a few of the countless efforts to prove the Fifth Postu-

late.

18. Ptolemy.

A large part of our information about the history of Greek geom-

etry has come to us through the writings of the philosopher, mathe-

matician and historian, Proclus (410-485 A.D.). He tells us that

Euclid lived during the sovereignty of the first Ptolemy and that the

latter himself wrote a book on the Fifth Postulate, including a proof.

This must have been one of the earliest attempts to prove the Postu-

late. Proclus does not reproduce the proof, but from his comments

we know that Ptolemy made use of the following argument in

attempting to prove 1, 19, without using the Postulate.
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Consider two parallel lines and a transversal. The two extensions

of the lines on one side of the transversal are no more parallel than

their two extensions on the other side of it. Then, if the sum of the

two interior angles on one side is greater than two right angles, so

also is the sum of those on the other. But this is impossible, since

the sum of the four angles is equal to four right angles. In a similar

way it can be argued that the sum of the interior angles on one side

cannot be less than two right angles. The conclusion is obvious.

19. Proclus.

Proclus himself pointed out the fallacy in the above argument by

remarking that Ptolemy really assumed that through a point only

one parallel can be drawn to a given line. But this is equivalent to

assuming the Fifth Postulate.

Proclus submitted a proof of his own. He attempted to prove

that if a straight line cuts one of two parallel lines it will cut the

other also. We already know that the Fifth Postulate follows

readily from this. He proceeded thus:

-6

Figure 9

Given two parallel lines AB and CD (Fig. 9) with the straight line

EF cutting AB at E. Assume that a point P moves along EF in the

direction of F. Then the length of the perpendicular from P to AB

eventually becomes greater than any length and hence greater than

the distance between the parallels. Hence EF must cut CD.

The fallacy lies in the assumption that parallels are everywhere

equally distant or at any rate that parallels are so related that, upon

being produced indefinitely, the perpendicular from a point on one

to the other remains of finite length. The former implies the Fifth

Postulate, as has already been proved; the latter does also, as we

shall see later. 10

10 Sec Section 47.
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SO. Nasiraddin.

For our next example we pass to the thirteenth century and con-

sider the contributions of Nasiraddin (1101-1174), Persian astron-

omer and mathematician, who compiled an Arabic version of Euclid

and wrote a treatise on the Euclidean postulates. He seems to have

been the first to direct attention to the importance, in the study of

the Fifth Postulate, of the theorem on the sum of the angles of a

triangle. In his attempt to prove the Postulate one finds the germs

of important ideas which were to be developed later.

Nasiraddin first asserted, without proof, the following:

F H J

Figure 10

If two straight lines AB and CD (Fig. 10) are so related that suc-

cessive perpendiculars such as EF9 GH, //, etc., drawn to CD from

points E, G, 7, etc. of AB, always make unequal angles with AB,

which are always acute on the side toward B, and consequently

always obtuse on the side towards A, then the lines AB and CD

continually diverge in the direction of A and C and, so long as they

do not meet, continually converge in the direction of B and D, the

perpendiculars continually growing longer in the first direction and

shorter in the second. Conversely, if the perpendiculars continually

become longer in the direction of A and C and shorter in the direction

of B and D, the lines diverge in the first direction and converge in the

other, and the perpendiculars will make with AB unequal angles,

the obtuse angles all lying on the side toward A and C and the acute

angles on the side towards B and D.

Next he introduced a figure destined to become famous. At the
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extremities of a segment AB (Fig. n) he drew equal perpendiculars

AD and BC on the same side, then joined C and D.

Figure 11

To prove that angles CDA and DCB are right angles, he resorted to

reductio ad absurdum, using, without much care, the assumption
stated above. Thus, if angle DCB were acute, DA would be shorter

than CJ3, contrary to fact. Hence angle DCB is not acute. Neither

is it obtuse. Of course he tacitly assumed here that, when angle

DCB is acute, angle CDA must be obtuse. His argument led to the

conclusion that all four angles of the quadrilateral are right angles.

Then, if DB is drawn, the triangles ABD and CDB are congruent
and the angle sum of each is equal to two right angles.

If everything were satisfactory so far, we know that the Fifth

Postulate would follow easily. Nasiraddin himself presented an

elaborate and exhaustive proof of this. But it is not difficult to pick

flaws in the foregoing argument. For example, the assumptions
made at the beginning are no more acceptable without proof than

the Fifth Postulate itself. Again, when in Figure n it is assumed

that angle DCB is acute, it does not follow that angle CDA is ob-

tuse, as a matter of fact it will later be proved,
11 without use of the

Fifth Postulate, that in such a figure these angles must be equal.

21. Wallis.

John Wallis (1616-1703) became interested in the work of Nasi-

raddin and described his demonstrations in a lecture at Oxford in

1651. In 1663 he offered a proof of his own. We describe it here

because it is typical of those proofs which make use of an assumption

equivalent to the Fifth Postulate.

Wallis suggested the assumption that, given a triangle, it is

11 See Section 41.
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possible to construct another triangle similar to it and of any size.

Then he argues essentially as follows:

Given lines AB and CD (Fig. n), cut by the transversal EF in

points G and //, respectively, and with the sum of angles BGH and

DHG less than two right angles. It is to be proved that AB and CD
will meet if sufficiently produced.

It is easy to show that

LEGE > ZG//D.

Then, if segment HG is moved along EF, with HD rigidly attached

to it, until //coincides with the initial position of G, HD takes the

position GI, lying entirely above GB. Hence, during its motion,

HD must at some time cut GB as, for example, when it coincides

with yX, cutting GB at L. Now if one constructs a triangle on base

GH similar to triangle GJL and this has been assumed to be

possible it is evident that HD must cut GB.

22. Saccheri.

In the next chapter we shall learn of the discovery of Non-Eu-

clidean Geometry by Bolyai and Lobachewsky early in the nine-

teenth century. However, this discovery had all but been made by
an Italian Jesuit priest almost one hundred years earlier. In 1889
there was brought to light a little book which had been published
in Milan in 1733 ancl l n slncc forgotten. The title of the book was

Eucltdes ab omm naevo vindicates
1 -

(Euclid Freed of Every Flaw),

12 This book was divided into two parts, the first and more important of which is

now available in English translation Halseed, Gtrolamo Saccheri s Ettcltdes Vindicates,

(Chicago, 192.0), or see David Eugene Smith, A Source Book in Mathematics, p. 351

(New York, 1919).
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and the author was Gcrolamo Sacchcri (1667-1733), Professor of

Mathematics at the University of Pavia.

While teaching grammar and studying philosophy at Milan,
Saccheri had read Euclid's Elements and apparently had been partic-

ularly impressed by his use of the method of reductio ad absurdum.

This method consists of assuming, by way of hypothesis, that a

proposition to be proved is false; if an absurdity results, the con-

clusion is reached that the original proposition is true. Later,

before going to Pavia in 1697, Saccheri taught philosophy for three

years at Turin. The result of these experiences was the publication
of an earlier volume, a treatise on logic. In this, his Logica demon-

strattva, the innovation was the application of the ancient, powerful
method described above to the treatment of formal logic.

It was only natural that, in casting about for material to which his

favorite method might be applied, Saccheri should eventually try it

out on that famous and baffling problem, the proof of the Fifth

Postulate. So far as we know, this was the first time anyone had

thought of denying the Postulate, of substituting for it a contra-

dictory statement in order to observe the consequences.

Saccheri was well prepared to undertake the task. In his Logica

demonstrativa he had dealt ably and at length with such topics as

definitions and postulates. He was acquainted with the work of

others who had attempted to prove the Postulate, and had pointed
out the flaws in the proofs of Nasiraddin and Wallis. As a matter

of fact, it was essentially Saccheri 's proof which we used above to

show that the assumption of Wallis is equivalent to the Postulate.

To prepare for the application of his method, Saccheri made use

of a figure with which we are already acquainted. This is the

isosceles quadrilateral with the two base angles right angles.

Assuming that, in quadrilateral ABCD (Fig. n), AD and BC were

equal and that the angles at A and B were right angles, Saccheri

easily proved, without using the Fifth Postulate or its consequences,

that the angles at C and D were equal and that the line joining the

midpoints of AB and DC was perpendicular to both lines. We do not

reproduce his proofs here, because we shall have to give what is

equivalent to them later on. Under the Euclidean hypothesis, the

angles at C and D are known to be right angles. An assumption
that they are acute or obtuse would imply the falsity of the Postu-
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late. This was exactly what Sacchcri's plan required. He con-

sidered three hypotheses, calling them the hypothesis of the right

angle, the hypothesis of the obtuse angle and the hypothesis of the acute

angle. Proceeding from each of the latter two assumptions, he ex-

pected to reach a contradiction. He stated and proved a number of

general propositions of which the following are among the more

important :

i . // one of the hypotheses is true for a single quadrilateral', of the type

under consideration, it is true for every such quadrilateral.

i. On the hypothesis of the right angle, the obtuse angle or the acute

angle, the sum of the angles of a triangle is always equal to, greater

than or less than two right angles.

3. // there exists a single triangle for which the sum of the angles is

equal to, greater than or less than two right angles, then follows the

truth of the hypothesis of the right angle, the obtuse angle or the

acute angle.

4. Two straight lines lying in the same plane either have (even on the

hypothesis of the acute angle) a common perpendicular or, if pro-

duced in the same direction, either meet one another once at a finite

distance or else continually approach one another.

Making Euclid's tacit assumption that the straight line is infinite,

Saccheri had no trouble at all in disposing of the hypothesis of the

obtuse angle. Upon this hypothesis he was able to prove the Fifth

Postulate, which in turn implies that the sum of the angles of a

triangle is equal to two right angles, contradicting the hypothesis.
It will be seen later, however, that if he had not assumed the in-

finitude of the line, as he did in making use of Euclid I, 18 in his

argument, the contradiction could never have been reached.

But the hypothesis of the acute angle proved more difficult. The

expected contradiction did not come. As a matter of fact, after a

long sequence of propositions, corollaries and scholia, many of

which were to become classical theorems in Non-Euclidean Geom-

etry, Saccheri concluded lamely that the hypothesis leads to the

absurdity that there exist two straight lines which, when produced
to infinity, merge into one straight line and have a common per-

pendicular at infinity. One feels very sure that Saccheri himself was

not thoroughly convinced by a demonstration involving such hazy

concepts. Indeed, it is significant that he tried a second proof,
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though with no greater success. Had Saccheri suspected that he had

reached no contradiction simply because there was none to be

reached, the discovery of Non-Euclidean Geometry would have been

made almost a century earlier than it was. Nevertheless, his is

really a remarkable work. If the weak ending is ignored, together

with a few other defects, the remainder marks Saccheri as a man

who possessed geometric skill and logical penetration of high order.

It was he who first had a glimpse of the three geometries, though he

did not know it. He has been aptly compared with his fellow-

countryman, Columbus, who went forth to discover a new route to

a known land, but ended by discovering a new world.

23. Lambert.

In Germany, a little later, Johann Hemrich Lambert (1718-1777)

also came close to the discovery of Non-Euclidean Geometry. His

investigations on the theory of parallels were stimulated by a dis-

sertation by Georgius Simon Kliigel which appeared in 1763. It

appears that Kliigel was the first to express some doubt about the

possibility of proving the Fifth Postulate.

There is a striking resemblance between Saccheri's Eucltdes Vtndt-

catus and Lambert's Theone der Parallelhmen^ which was written m
1766, but appeared posthumously. Lambert chose for his funda-

mental figure a quadrilateral with three right angles, that is, one-half

the isosceles quadrilateral used by Saccheri. He proposed three

hypotheses in which the fourth angle of this quadrilateral was in

turn right, obtuse and acute. In deducing propositions under the

second and third hypotheses, he was able to go much further than

Saccheri. He actually proved that the area of a triangle is pro-

portional to the difference between the sum of its angles and two

right angles, to the excess in the case of the second hypothesis and to

the deficit in the case of the third. He noted the resemblance of the

geometry based on the second hypothesis to spherical geometry in

which the area of a triangle is proportional to its spherical excess,

and was bold enough to lean toward the conclusion that in a like

manner the geometry based on the third hypothesis could be verified

13 This tract, as well as Sacchcn's treatise, is reproduced in Engcl and Stackcl,

Dte Theone der Parallellmten von Eukltdbts auf Gauss (Leipzig, 1895).
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on a sphere with imaginary radius. He even "remarked that in the

third case there is an absolute unit of length.

He, like Saccheri, was able to rule out the geometry of the second

hypothesis, but he made the same tacit assumptions without which

no contradictions would have been reached. His final conclusions

for the third geometry were indefinite and unsatisfactory. He
seemed to realize that the arguments against it were largely the

results of tradition and sentiment. They were, as he said, argumenta
ab amort et mvidia ducta, arguments of a kind which must be banished

altogether from geometry, as from all science.

One cannot fail to note that, while geometers at this time were

still attempting to prove the Postulate, nevertheless they were

attacking the problem with more open minds. The change had been

slow, but there is no doubt that old prejudices were beginning to

disappear. The time was almost ripe for far-reaching discoveries to

be made.

24. Legendre.

Finally, we must not fail to include, in our discussion of the at-

tempts to prove the Postulate, some account of the extensive writ-

ings of Adrien Marie Legendre (1751-1833). Not that he made any
valuable original contribution to the subject, for most of his results

had already been obtained substantially by his predecessors. But

the simple, straightforward style of his proofs brought him a large

following and helped to create an interest in these ideas just at a

time when geometers were on the threshold of great discoveries.

Some of his proofs, on account of their elegance, are of permanent
value.

His attack upon the problem was much like Saccheri *s and the

results which he obtained were to a large extent the same. He

chose, however, to place emphasis upon the angle-sum of the

triangle and proposed three hypotheses in which the sum of the

angles was, in turn, equal to, greater than and less than two right

angles, hoping to be able to reject the last two.

Unconsciously assuming the straight line infinite, he was able to

eliminate the geometry based on the second hypothesis by proving
the following theorem:

The sum of the three angles of a triangle cannot be greater than two right

angles.
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Assume that the sum of the angles of a triangle ABC (Fig. 13) is

180 4- a and that angle CAB is not greater than cither of the others.

Figure 13

Join A to D, the midpoint of BC, and produce AD to E so that DE
is equal to AD. Draw CE. Then triangles BDA and CDE are con-

gruent. It follows easily that the sum of the angles of triangle AEC
is equal to the sum of the angles of triangle ABC, namely to 180 -f a,

and that one of the angles CAE and CEA is equal to or less than one-

half angle CAB. By applying the same process to triangle AEC,
one obtains a third triangle with angle-sum equal to 180 -f a and

one of its angles equal to or less than ~ /.CAB. When this con-

struction has been made n times, a triangle is reached which has the

sum of its angles equal to 180 -j- a and one of its angles equal to or

less than /LCAB.
i rt

By the Postulate of Archimedes, we know that there is a finite

multiple of a, however small a. may be, which exceeds angle CAB,

i.e.,

Z.CAB < ka.

If n is chosen so large that

k < i",

then

- /.CAB < a,
in

and the sum of two of the angles of the triangle last obtained is

greater than two right angles. But that is impossible.
One recognizes at once the similarity of this proof to that of
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Euclid I, 1 6. Here also one sees how important for the proof is the

assumption of the infinitude of the line.

But, although he made numerous attempts, Legendre could not

dispose of the third hypothesis. This, as Gauss remarked, was the

reef on which all the wrecks occurred. We know now that these

efforts were bound to be futile. It will be of interest, however, to

examine one of his attempted proofs that the sum of the angles of a

triangle cannot be less than two right angles.

Assume that the sum of the three angles of triangle ABC (Fig. 14)

is 1 80 a and that angle BAG is not greater than either of the

others.

~ C F

Figure 14

Construct on side BC a triangle BCD congruent to triangle ABC,
with angles DEC and DCB equal, respectively, to angles BCA and

CBA. Then draw through D any line which cuts AB and AC pro-

duced in E and F, respectively.

The sum of the angles of triangle BCD is also 180 - a. Since,

as proved above, the sum of the angles of a triangle cannot be greater

than two right angles, the sum of the angles of triangle BDE and

also of triangle CDF cannot be greater than 180. Then the sum of

all of the angles of all four triangles cannot be greater than 710
-

-La. It follows that the sum of the three angles of triangle AEF
cannot be greater than 180 -

-LOL.
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If this construction is repeated until n such triangles have been

formed in turn, the last one will have its angle sum not greater than

180 - 2.
M

. But, since a finite multiple of a can be found which is

greater than two right angles, n can be chosen so large that a tri-

angle will be reached which has the sum of its angles negative, and

this is absurd .

The fallacy in this proof lies in the assumption that, through any

point within an angle less than two-thirds of a right angle, there

can always be drawn a straight line which meets both sides of the

angle. This is equivalent, as we have already remarked, to the

assumption of the Fifth Postulate.

The proofs of the following sequence of important theorems are

essentially those of Legendre.

If the sum of the angles of a triangle is equal to two right angles, the same

is true for all triangles obtained from it by drawing lines through vertices

to points on the opposite sides.

D

Figure 15

If the sum of the angles of triangle ABC (Fig. 15) is equal to two

right angles, then the same must be true for triangle ABD, one of

the two triangles into which triangle ABC is subdivided by the line

joining vertex B to point D on the opposite side. For the sum of

the angles of triangle ABD cannot be greater than two right angles

(as proved above, with the tacit assumption of the infinitude of the

straight line), and if the sum were less than two right angles, that

for triangle BDC would have to be greater than two right angles.
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// there exists a triangle with the sum of its angles equal to two right

angles, an isosceles r'tght triangle can be constructed with the sum of its

angles equal to two right angles and the legs greater m length than any given

line segment.

Let the sum of the angles of triangle ABC (Fig. 16) be equal to

two right angles. If ABC is not an isosceles right triangle, such a

triangle, with the sum of its angles equal to two right angles, can

be constructed by drawing altitude BD and then, if neither of the

Figure 16

resulting right triangles is isosceles, measuring off on the longer leg

of one of them a segment equal to the shorter. For example, if BD
is greater than AD, measure DE equal to AD and draw AE.

If two such isosceles right triangles which are congruent are

adjoined in such a way that the hypotenuse of one coincides with

that of the other, a quadrilateral will be formed with its angles all

right angles and its sides equal. With four such congruent quadri-

laterals there can be formed another of the same type with its sides

twice as long as those of the one first obtained. If this construction

is repeated often enough, one eventually obtains, after a finite number

of operations, a quadrilateral of this kind with its sides greater than

any given line segment. A diagonal of this quadrilateral divides it

into two right triangles of the kind described in the theorem.

// there exists a single triangle with the sum of its angles equal to two

right angles y
then the sum of the angles of every triangle will be equal to two

right angles.

Given a triangle with the sum of its three angles equal to two

right angles, it is to be proved that any other triangle ABC has its

angle sum equal to two right angles. It may be assumed that ABC
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(Fig. 17) is a right triangle, since any triangle can be divided into

two right triangles. By the preceding theorem, there can be con-

structed an isosceles right triangle DBF, with the sum of its three

angles equal to two right angles and its equal legs greater than the

legs of triangle ABC. Produce CA and CB to A 1

and B', respectively,

so that CA f = CB f = ED = F, and join A' to B and to B f

. Since

triangles A'CB' and DBF are congruent, the former has the sum of

its angles equal to two right angles and the same is true for triangle

A'BC and finally for ABC.

As an immediate consequence of these results, Legendre obtained

the theorem:

// there exists a single triangle with the sum of its angles less than two

right angles, then the sum of the angles of every triangle will be less than

two right angles.

25. Some Fallacies in Attempts to Prove the Postulate.

Of the so-called proofs of the Fifth Postulate already considered,

some have depended upon the conscious or unconscious use of a

substitute, equivalent to the Postulate in essence, and have thus

begged the question. Others have made use of the rcductio ad ab-

surdum method, but in each case with results which have been

nebulous and unconvincing. But there are other types of attempted

proof. Some of them are very ingenious and seem quite plausible,

with fallacies which are not easy to locate. We shall conclude this

chapter by examining two of them.
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26. The Rotation Proof.

This ostensible proof, due to Bernhard Friedrich Thibaut 14

(1775-1831) is worthy of note because it has from time to time

appeared in elementary texts and has otherwise been indorsed. The

substance of the proof is as follows:

In triangle ABC (Fig. 18), allow side A3 to rotate about A, clock-

N

wise, until it coincides with CA produced to L. Let CL rotate

clockwise about C until it coincides with BC produced to M. Fin-

ally, when BM has been rotated clockwise about B, until it coin-

cides with AB produced to N, it appears that AB has undergone a

complete rotation through four right angles. But the three angles

of rotation are the three exterior angles of the triangle, and since

their sum is equal to four right angles, the sum of the interior angles

must be equal to two right angles.

11 Grundrtss derretnen Mathtmattk, ind edition (Gottingen, 1809).
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This proof is typical of those which depend upon the idea of

direction. The circumspect reader will observe that the rotations

take place about different points on the rotating line, so that not

only rotation, but translation, is involved. In fact, one sees that

the segment AB, after the rotations described, has finally been

translated along AB through a distance equal to the perimeter of

the triangle. Thus it is assumed in the proof that the translations

and rotations are independent, and that the translations may be

ignored. But this is only true in Euclidean Geometry and its

assumption amounts to taking for granted the Fifth Postulate.

The very same argument can be used for a spherical triangle, with

the same conclusion, although the sum of the angles of any such

triangle is always greater than two right angles.

The proof does not become any more satisfactory if one attempts
to make the rotations about a single point, say A. For if PQ is

drawn through A y making angle PAL equal to angle MCA, one must

not conclude that angle PAB will equal angle CBN. This would,

as Gauss 16
pointed out, be equivalent to the assumption that if two

straight lines intersect two given lines and make equal corresponding

angles with one of them, then they must make equal corresponding

angles with the other also. But this will be recognized as essentially

the proposition to be proved. For if two straight lines make equal

corresponding angles with a third, they are parallel by Euclid I, 2.8.

To conclude that they make equal angles with any other line which

intersects them amounts to the assumption of I, 2.9.

27. Comparison of Infinite Areas.

Another proof, which has from time to time captured the favor

of the unwary, is due to the Swiss mathematician, Louis Bertrand 16

16 See his correspondence with Schumacher, Engel and Stackel, loc ctt
, pp. 117-130.

16
Developpement nouveau de la partie elementaire des Mathematiqucs, Vol. II,

p. 19 (Geneva, 1778)
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(1731-1811). He attempted to prove the Fifth Postulate directly,

using in essence the following argument:

Fisure 19

Given two lines AP\ and A\B\ (Fig. 19) cut by the transversal AA\
in such a way that the sum of angles P\AA\ and AA\E\ is less than

two right angles, it is to be proved that AP\ and A\Bi meet if suffi-

ciently produced.
Construct AB so that angle BAA\ is equal to angle B\A\A^ where

A% is a point on AA\ produced through A\. Then AP\ will lie within

angle BAAi, since angle P\AA\ is less than angle BiAiA*. Construct

AP29 AP3y . . . . , APn so that angles P\AP^ P*AP^ . . . . ,
Pn-\APn

are all equal to angle BAP\. Since an integral multiple of angle

BAP i can be found which exceeds angle BAA\, n can be chosen so

large that APn will fall below AA\ and angle BAPn be greater than

angle BAA\. Since the infinite sectors BAP\ 9 P\AP^ . . . . ,
Pn-\APn

can be superposed, they have equal areas and each has an area equal

to that of the infinite sector BAPn divided by n.

Next, on AA\ produced through A\ 9 measure A\A^ A^A^ . . . .
,

An~\An all equal to AAi, and construct AzB29 A^B*, . . . .
,
AnBn so

that they make with AAn the same angle which A\B\ makes with

that line. Then the infinite strips BAA\B\ 9 B\AiA2Bz 9
. . . . ,

Bn-iAn-\AnBn can be superposed and thus have equal areas, each

equal to the area of the infinite strip BAAnBn divided by n. Since

the infinite sector BAPn includes the infinite strip BAAnBn ,
it follows

that the area of the sector BAP\ is greater than that of the strip
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i, and therefore AP\ must intersect A\R\ if produced suffi-

ciently far.

The fallacy lies in treating infinite magnitudes as though they

were finite. In the first place, the idea of congruence as used above

for infinite areas has been slurred over and not even defined. Again,

one should note that reasoning which is sound for finite areas need

not hold for those which are infinite. In order to emphasize the

weakness of the proof, one may compare, using the same viewpoint,

the areas of the infinite sectors BAAn and B{A\An . Since these sectors

can be superposed, one might as a consequence conclude that they

have equal areas. On the other hand, the former appears to be larger

than the latter and to differ from it by the area of the infinite strip

BAAiBi. As a matter of fact, any comparison of infinite magnitudes
must ultimately be made to depend upon the process of finding the

limit of a fraction, both the numerator and the denominator of which

become infinite.'



THE DISCOVERY OF NON-EUCLIDEAN GEOMETRY

"Out of nothing I have created a strange new universe."

JOHANN BOLYAI

28. Introduction.

The beginning of the nineteenth century found the obstinate

puzzle of the Fifth Postulate still unsolved. But one should not get

the impression that the efforts to prove the Postulate, made through-
out more than twenty centuries, were altogether fruitless. Slowly
but surely they had dk^cted the speculations of geometers to the

point where the discovery of Npn-EucJidean Geometry could not

long be delayed. In retrospect, one wonders at first that this

preparation should have taken so long, but on second thought
marvels that such a momentous discovery came as early as it did.

At the time the new ideas were crystalizing, the philosophy of

Kant (1714-1804) dominated the situation, and this philosophy
treated space not as empirical, but as intuitive. From this view-

point, space was regarded as something already existing in the mind

and not as a concept resulting from external experience. In that day
it required not only perspicacity, but courage, to recognize that

geometry becomes an experimental science, once it is applied to

physical space, and that its postulates and their consequences need

only be accepted if convenient and if they agree reasonably well with

experimental data.

But the change of viewpoint gradually came. The discovery of

Non-Euclidean Geometry led eventually to the complete destruction
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of the Kantian space conception and at last revealed not only the

true distinction between concept and experience but, what is even

more important, their interrelation.

We are not surprised that, when the time came, the discovery of

Non-Euclidean Geometry was not made by one man, but inde-

pendently by several in different parts of the world. This has hap-

pened more than once in the history of mathematics and it will

doubtless happen again. The father of Johann Bolyai, one of the

founders of Non-Euclidean Geometry, predicted this when, in a

letter to his son urging that he make public his discoveries without

delay, he wrote,
1 "It seems to me advisable, if you have actually

succeeded in obtaining a solution of the problem, that, for a two-

fold reason, its publication be hastened: first, because ideas easily

pass from one to another who, in that case, can publish them;

secondly, because it seems to be true that many things have, as it

were, an epoch in which they are discovered in several places

simultaneously, just as the violets appear on all sides in spring-

time."

And so it happened that independently and at about the same

time the discovery of a logically consistent geometry, in which the

Fifth Postulate was denied, was made by Gauss in Germany, Bolyai

in Hungary and Lobachewsky in Russia.

29. Gauss.

At the turn of the century, during those critical years in the

evolution of geometry, the dominant figure in the mathematical

world was Carl Friedrich Gauss (1777-1855). Naturally he took no

small part in the development of the ideas which led to the discovery

of the new systems of geometry. Few of the results of his many
years of meditation and research on the problems associated with

the Fifth Postulate were published or made public during his life-

time. Some letters written to others interested in those problems,
two published reviews of certain tracts on parallels and a few notes

discovered among his papers furnish meager tyit sufficient evidence

that he was probably the first to understand clearly the possibility

of a logically sound geometry different from Euclid's. It was he who

1 Paul Stackcl: Wolfgang undJohann Bolyat y
Gtomctnscht Unttrsuchungtn, Vol.* I, p. 86

(Leipzig and Berlin, 1913).
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first called the new geometry Non-Euclidean. The correspondence
and reviews 2 referred to outline rather clearly the progress he made

in the study of parallels, and show that recognition of the new ge-

ometry did not come suddenly but only after many years of thought.
It seems clear that, even as late as the first decade of the new

century, Gauss, traveling in the footsteps of Saccheri and Lambert,

with whose books he may have been familiar, was still attempting
to prove the Fifth Postulate by the reductto ad absurdum method, but

that he fully recognized the profound character of the obstacles

encountered. It was during the second decade that he began the

formulation of the idea of a new geometry, to develop the elementary

theorems and to dispel his doubts. No words can describe the nature

of his discoveries, the significance he attached to them, his attitude

toward the current concept of space and his fear of being misunder-

stood, half so well as his own words in a letter written at Gottingen
on November 8, 1814 to F. A. Taurinus. The following is a trans-

lation of this important document. 3 "I have not read without

pleasure your kind letter of October }oth with the enclosed abstract,

all the more because until now I have been accustomed to find little

trace of real geometrical insight among the majority of people who

essay anew to investigate the so-called Theory of Parallels.

"In regard to your attempt, I have nothing (or not much) to say

except that it is incomplete. It is true that your demonstration of

the proof that the sum of the three angles of a plane triangle cannot

be greater than 180 is somewhat lacking in geometrical rigor.

But this in itself can easily be remedied, and there is no doubt that

the impossibility can be proved most rigorously. But the situation is

quite different in the second part, that the sum of the angles cannot

be less than 180; this is the critical point, the reef on which all the

wrecks occur. I imagine that this problem has not engaged you

very long. I have pondered it for over thirty years, and I do not

believe that anyone can have given more thought to this second part

than I, though I have never published anything on it. The as-

sumption that the sum of the three angles is less than 180 leads to a

2
Engcl and Stackcl have collected some of these in their sourccbook, Dte Thtorie far

Paralhlttnten von Eukltd bis auf Gauss (Leipzig, 1895).
3 For a photographic facsimile of this letter see Engcl and Stackcl, loc. cit.
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curious geometry, quite different from ours (the Euclidean), but

thoroughly consistent, which I have developed to my entire satis-

faction, so that I can solve every problem in it with the exception of

the determination of a constant, which cannot be designated a

priori. The greater one takes this constant, the nearer one comes to

Euclidean Geometry, and when it is chosen infinitely large the two

coincide. The theorems of this geometry appear to be paradoxical

and, to the uninitiated, absurd; but calm, steady reflection reveals

that they contain nothing at all impossible. For example, the three

angles of a triangle become as small as one wishes, if only the

sides are taken large enough; yet the area of the triangle can never

exceed a definite limit, regardless of how great the sides are taken,

nor indeed can it ever reach it. All my efforts to discover a contra-

diction, an inconsistency, in this Non-Euclidean Geometry have

been without success, and the one thing in it which is opposed to

our conceptions is that, if it were true, there must exist in space a

linear magnitude, determined for itself (but unknown to us). But it

seems to me that we know, despite the say-nothing word-wisdom

of the metaphysicians, too little, or too nearly nothing at all, about

the true nature of space, to consider as absolutely impossible that

which appears to us unnatural. If this Non-Euclidean Geometry
were true, and it were possible to compare that constant with such

magnitudes as we encounter in our measurements on the earth and

in the heavens, it could then be determined a posteriori. Conse-

quently in jest I have sometimes expressed the wish that the Eu-

clidean Geometry were not true, since then we would have a priori

an absolute standard of measure.
4

'I do not fear that any man who has shown that he possesses a

thoughtful mathematical mind will misunderstand what has been

said above, but in any case consider it a private communication of

which no public use or use leading in any way to publicity is to be

made. Perhaps I shall myself, if I have at some future time more

leisure than in my present circumstances, make public my investi-

gations.*'

The failure of Gauss to make public his results made it inevitable

that the world withhold a portion of the honor which might have

been entirely his. As we shall see, others who came to the same

conclusions, although probably a little later, promptly extended the
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ideas and courageously published them. To accord to these the

glory in its fullest form is only just. But one cannot fail altogether
to sympathize with Gauss in his reluctance to divulge his dis-

coveries. By his day many prominent mathematicians, dominated

by the philosophy of Kant, had come to the conclusion that the

mystery of the Fifth Postulate could never be solved. There were

still those who continued their investigations, but they were likely

to be regarded as cranks. It was probably the derision of smug and

shallow-minded geometers that Gauss feared. Nor can one safely

say that he had less courage than those who made public their re-

sults. Compared to him, they were obscure, with no reputations
to uphold and nothing much to lose. Gauss, on the other hand,

had climbed high. If he fell, he had much farther to fall.

In a letter4 to Schumacher, dated May 17, 1831, and referring to

the problem of parallels, Gauss wrote : "I have begun to write down

during the last few weeks some of my own meditations, a part of

which I have never previously put in writing, so that already I have

had to think it all through anew three or four times. But I wished

this not to perish with me."

Consequently, among his papers there is to be found a brief

account of the elementary theory of parallels for the new geometry.
We have already noted that one of the simplest substitutes for the

Fifth Postulate is the so-called Playfair Axiom. In rejecting the

Postulate Gauss, like Bolyai and Lobachewsky, chose to assume

that through a point more than one parallel (in the sense of Euclid)

can be drawn to a given line.

There is no need to sketch through the details of what little he

jotted down; it is essentially similar to the elementary theory

presented in the first few pages of the next chapter. He did not go
far in recording his meditations; his notes came to a sudden halt.

For on February 14, 1831 he received a copy of the famous Appendix

byjohann Bolyai.

30. Bolyai.

While studying at Gottingen, Gauss numbered among his friends

a Hungarian, Wolfgang Bolyai
6
(Bolyai Farkas, 1775-1856), who

4 See Engei and Stackel, loc. /., p. 130.
6 Pronounced Bol'yah-eh.
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was a student there from 1796 to 1799. It is quite certain that the

two frequently discussed problems related to the theory of parallels.

After they left the University, they continued their intercourse by

correspondence. A letter6 written by Gauss to Bolyai in 1799 shows

that both were at that time still attempting to prove the Fifth

Postulate. In 1804, Bolyai, convinced that he had succeeded in

doing this, presented his ideas in a little tract entitled Theoria

Parallelarum? which he sent to Gauss, enclosed with a letter. But

the proof was incorrect, and Gauss, in replying, pointed out the

error. Undaunted, Bolyai continued to reason along the same lines

and, four years later, sent to Gauss a supplementary paper.
8 He

apparently became discouraged when Gauss did not reply, and

turned his attention to other matters. However, during the next

two decades, despite varied interests as professor, poet, dramatist,

musician, inventor and forester, he managed to collect his ideas on

elementary mathematics and finally publish them in 1831-33 in a

two volume work which we shall call briefly the Tentamen* Wolf-

gang Bolyai was a talented and capable man, but his claim to fame

must doubtless be based upon the fact that he was the father of

Johann.
For on December 15, 1801 was born Johann Bolyai (Bolyai Janos,

i8o2.-i86o). "He is, Heaven be praised," wrote Wolfgang to Gauss

in 1803, a healthy and very beautiful child, with a good dis-

position, black hair and eyebrows, and burning deep blue eyes,

which at times sparkle like two jewels." And during those years

leading up to the publication of the Tentamen, Johann had been

growing to manhood.

His father gave him his early instruction in mathematics, so that

it does not seepi unnatural that he should have become interested in

the theory of parallels. Nor is it a matter for surprise to learn that,

by the time he had become a student in the Royal College for En-

gineers at Vienna in 1817, he had devoted much thought to the

b
EngeJ and Stackel, loc. at , p. 119.

1 See Stackel, Wolfgang und Johann Bolyat, Vol. II, p. 5, for a German translation.

The original was in Latin
8
Stackel, loc /., Vol. II, p 16.

9 The title is. Tcntamen juventutcm studtosam tn clemcnta matheteos purat, elementans ac

subltmtons, mcthodo mtuttiva, evtdwttaque hutc preprta, tntroducendt. Cum appendix

tripltcc. See Stackel, loc. ctt. t Vol. II, p. 2.5.
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problem of the proof of the Fifth Postulate, despite the fact that his

father, recalling his own unsuccessful efforts, recommended that

the ancient enigma was something to be left entirely alone. But,

by 1810, his efforts to prove the Postulate by the substitution of a

contradictory assumption began to yield results of a different

nature. His attention was gradually directed toward the possibility

of formulating a general geometry, an Absolute Science of Space, with

Euclidean Geometry as a special case.

In his attempts to prove the Fifth Postulate by denying it, Bolyai
chose to regard that assumption in the form which we have already

designated as Playfair's Axiom, and which asserts that one and only
one parallel line can be drawn through a given point to a given line.

The denial of the Postulate then implies either that no parallel to

the line can be drawn through the point or that more than one such

parallel can be drawn. But, as a consequence of Euclid 1, 2.7 and 18,

provided the straight line is regarded as infinite, the former of the

two implications must be discarded. Furthermore, if there are at

least two parallels to the line through the point, then there must be

an infinite number of parallels in the sense of Euclid. If, for example,
the two lines CD and EF (Fig. 10) through P do not cut AB, then

the same will be true for all lines through P which lie within the

vertical angles EPC and DPF. In substance Bolyai, as did Gauss

and Lobachewsky, then argued that if one starts with PQ perpendic-

ular to AB and allows PQ to rotate about P in cither direction, it will
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continue to cut AB awhile and then cease to cut it. He was thus led

to postulate the existence of two lines through P which separate
the lines which cut AB from those which do not. Since for rotation

of PQ in either direction there is no last cutting line, these postulated
lines must be the first of the non-cutting lines. It will develop that

these two lines parallel to AB have properties quite different from

the other lines through P which do not cut AB.

The results which followed as a consequence of these assumptions
aroused the greatest wonder in the young Bolyai. As the geometry

developed and no contradictions appeared, this wonder grew and he

began to feel something of the significance of what he was doing.
What seemed to impress him most were the propositions which did

not depend upon any parallel postulate at all, but which were com-

mon to all geometries regardless of what assumptions were made

about parallels. These he regarded as stating absolute facts about

space and forming the basis of an absolute geometry.
These ideas had certainly begun to take form, however vaguely,

by 1813 when Bolyai was only twenty-one years old. The following
extract from a letter

10
, written to his father on November 3, 1813,

shows how far he had gone with his discoveries and how deeply
he was affected by them.

"It is now my definite plan to publish a work on parallels as soon

as I can complete and arrange the material and an opportunity pre-

sents itself; at the moment I still do not clearly see my way through,

but the path which I have followed gives positive evidence that the

goal will be reached, if it is at all possible; I have not quite reached

it, but I have discovered such wonderful things that I was amazed

and it would be an everlasting piece of bad fortune if they were lost.

When you, my dear Father, see them, you will understand; at

present I can say nothing except this: that out of nothing I have

created a strange new universe. All that I have sent you previously is

like a house of cards in comparison with a tower. I am no less

convinced that these discoveries will bring me honor, than I would

be if they were completed."
In reply, the elder Bolyai suggested that the proposed work be

published as an appendix to his Tentamen, and urged that this be

done with as little delay as possible.
11 But th formulation of re-

10
Stackcl, /*. /., Vol. I, p. 85.

ll Sec article 18.
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suits and the expansion of ideas came slowly. In February, 1815,

however, Johann visited his father and brought along an outline of

his work. Finally in 1819 he submitted his manuscript and, despite

the fact that father and son disagreed on a few points, there was

published in 1831 the Appendix.
12

Previously, in 1831, eager to know what Gauss would have to say
about his son's discoveries, Wolfgang had sent him an abridgment
of the Appendix, but it failed to reach him. In February, 1831,

Gauss received an advance copy of the Appendix. His response,
13

written to Wolfgang on March 6, 1831, contains the following re-

marks about the work ofJohann.
"If I begin with the statement that I dare not praise such a work,

you will of course be startled for a moment: but I cannot do other-

wise; to praise it would amount to praising myself; for the entire

content of the work, the path which your son has taken, the results

to which he is led, coincide almost exactly with my own meditations

which have occupied my mind for from thirty to thirty-five years.

On this account I find myself surprised to the extreme.

"My intention was, in regard to my own work, of which very

little up to the present has been published, not to allow it to be-

come known during my lifetime. Most people have not the insight

to understand our conclusions and I have encountered only a few

who received with any particular interest what I communicated to

them. In order to understand these things, one must first have a

keen perception of What is needed, and upon this point the majority
are quite confused. On the other hand it was my plan to put all

down on paper eventually, so that at least it would not finally perish

with me.

"So I am greatly surprised to be spared this effort, and am over-

joyed that it happens to be the son of my old friend who outstrips

me in such a remarkable way."

12 The complete title is Appendix Scienttam Spatti absolute veram exhtbens: a

ventate aut jalsttate Axtomatis XI Euclidei (a pnort ha/td umquam decidenda*) independentem.

adjccta ad casum falsttattt, quadratura circuit geometnca. See the German translation by

Stackel, loc /., Vol. II, p, 183, the English translation by G B Halsted, 4th edition

(Austin, Texas, 1896), or David Eugene Smith: A Soune Book tn Mathematics, p, 375

(New York, 1919).
13

Stackel, loc ctt., Vol. I, p. 91.
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When Johann received a copy of this letter from his father he was

far from elated. Instead of the eulogies which he had anticipated,
it brought him, in his opinion, only the news that another had

made the same discoveries independently and possibly earlier. He
even went so far as to suspect that, before the Appendix was com-

pleted, his father had confided some of his ideas to Gauss, who in

turn had appropriated them for his own use. These suspicions were

eventually dispelled, but Johann never felt that Gauss had accorded

him the honor that was his due.

Johann Bolyai published nothing more, though he continued his

investigations. Notes found among his papers show that he was

interested in the further extension of his ideas into space of three

dimensions and also in the comparison of his Non-Euclidean Geom-

etry with Spherical Trigonometry. It was this latter comparison
which led him to the conviction that the Fifth Postulate could

not be proved.
14 He was never thoroughly convinced, however,

that investigations into space of three dimensions might not lead to

the discovery of inconsistencies in the new geometry.
In 1848 Bolyai learned that the honor for the discovery of Non-

Euclidean Geometry must be shared with still another. In that

year he received information of Lobachewsky's discoveries and

examined them critically. There was aroused in him the spirit of

rivalry, and in an attempt to outshine Lobachewsky he began to

labor in earnest again on what was to be his great work, the Raum-

lehre, which he had planned when he was publishing the Appendix.

But this work was never completed.

31. Lobachewsky.

Although it was not until 1848 that Bolyai learned of the work of

Nikolai Ivanovich Lobachewsky (1793-1856), the latter had dis-

covered the new geometry and had actually published his conclusions

as early as 1819, two or three years before the appearance in print of

the Appendix. But there is ample evidence that he made his dis-

coveries later than Bolyai made his.

Lobachewsky
15 took his degree at the University of Kasan in 1813.

14
Stackel, loc cit , Vol I, p. 12.1.

16
Perhaps the best account of Lobachewsky and his work is to be found in Fnedrich

Engcl. N. /. Lobatschefsktj, (Leipzig, 1898).
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He was retained as instructor and later was promoted to a professor-

ship. As a student there he had studied under Johann M. C. Bartcls,

who had been one of the first to recognize the genius of Gauss.

Although Gauss and Bartels were close friends, there is no evidence

that the latter, when he went to Kasan in 1807, carried with him
and imparted to Lobachewsky any advanced views on the problem
of parallels. Indeed, we know that Gauss himself at that early date

was still working along conventional lines. The later discoveries

of Lobachewsky seem to have been the results of his own initiative,

insight and ability.

At any rate, along with the others, he was trying to prove the

Fifth Postulate as early or as late as 1815. A copy of the

lecture notes, taken by one of his students during that year and the

two following, reveals only attempts to verify the Euclidean theory.

It was not until after 1813 that he began to change his viewpoint, by
which date, it will be recalled, Johann Bolyai had reached pretty

well organized ideas about his new geometry.
In 1813 Lobachewsky had completed the manuscript for a textbook

on elementary geometry, a text which was never published. This

manuscript is extant. In it he made the significant statement that

no rigorous proof of the Parallel Postulate had ever been discovered

and that those proofs which had been suggested were merely ex-

planations and were not mathematical proofs in the true sense.

Evidently he had begun to realize that the difficulties encountered

in the attempts to prove the Postulate arose through causes quite

different from those to which they had previously always been

ascribed.

The next three years saw the evolution of his new theory of

parallels. It is known that in 1816 he read a paper before the physics

and mathematics section of the University of Kasan and on that

occasion suggested a new geometry in which more than one straight

line can be drawn through a point parallel to a given line and the

sum of the angles of a triangle is less than two right angles. Un-

fortunately the lecture was never printed and the manuscript has not

been found.

But in 1819-30 he published a memoir on the principles of geom-

etry in the Kasan Bulletin, referring to the lecture mentioned above,

and explaining in full his doctrine of parallels. This memoir, the
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first account of Non-Euclidean Geometry to appear in print, at-

tracted little attention in his own country, and, because it was

printed in Russian, practically none at all outside.

Confident of the merit of his discoveries, Lobachewsky wrote a

number of papers, more or less extensive, on the new theory of

parallels, hoping thus to bring it to the attention of mathematicians

all over the world. Perhaps the most important of these later

publications was a little book entitled Geomctrische Untersuchungen %ur

Theorie der Parallellinien,
1 * written in German with the idea that it

might for that reason be more widely read. A year before his death,

although he had become blind, he wrote a complete account of his

researches which was published in French under the title: Pan-

geometric ou precis de geometric fondee sur une theorie generate et rigoureuse

des parallels.
17 But he did not live to see his work accorded any

wide recognition.

So slowly was information of new discoveries circulated in those

days that Gauss himself did not learn of the advances made by

Lobachewsky for a number of years, perhaps not until after the

publication of the Untersuchungen. At any rate, it appears that by

1841 he knew of Lobachewsky and his work and was deeply im-

pressed. In 1846 he wrote to Schumacher as follows: 1 *

"I have recently had occasion to look through again that little

volume by Lobatschefski (Geometrische Untersuchungen zur

Theorie der Parallellinien, Berlin 1840, bei B. Funcke, 4 Bogen stark).

It contains the elements of that geometry which must hold, and can

with strict consistency hold, if the Euclidean is not true. A certain

Schweikardt 19
calls such geometry Astral Geometry, Lobatschefsky

calls it Imaginary Geometry. You know that for fifty-four years

now (since 1792.) I have held the same conviction (with a certain

later extension, which I will not mention here). I have found in

Lobatschefsky's work nothing that is new to me, but the develop-

ment is made in a way different from that which I have followed,

and certainly by Lobatschefsky in a skillful way and in truly geo-

16 See Lobatschewsky Geometrical Researches on the Theory of Parallels, translated by
G B. Halsted (Austin, Texas, 1891).

17 See David Eugene Smith . A Source Book in Mathematics\ p. 360 (New York, 192.9).
1N

Engcl and Stackel- Die Theorie der ParallelImien von Eukltd bis auf Gauss, p. 13$.
19 Sec Section 31.
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metrical spirit. I feel that I must call your attention to the book,
which will quite certainly afford you the keenest pleasure."

By 1848 Wolfgang Bolyai had heard in some way of Lobachew-

sky's investigations. In January of that year he wrote to Gauss,

asking for the name of the book by the Russian mathematician.

Gauss recommended "that admirable little work," the Geometrische

Untersuchungen, as containing an adequate exposition of the theory
and as being easily obtainable. Thus Wolfgang and, through him,

Johann became acquainted with the geometry of Lobachewsky.
That Johann received this information about the work of the

Russian geometer philosophically enough is evinced by remarks

found in his unpublished notes entitled: Bemerkungen uber Nicolaus

Lobatchefsktf s Geometrische Untersuchungen. He wrote in part:
20

"Even if in this remarkable work different methods are followed

at times, nevertheless, the spirit and result are so much like those of

the Appendix to the Tentamen matbeseos which appeared in the year

1831 in Maros-Vasarhely, that one cannot recognize it without

wonder. If Gauss was, as he says, surprised to the extreme, first by
the Appendix and later by the striking agreement of the Hungarian
and Russian mathematicians: truly, none the less so am I.

"
The nature of real truth of course cannot but be one and the same

in Maros-Vasarhely as in Kamschatka and on the Moon, or, to be

brief, anywhere in the world; and what one finite, sensible being

discovers, can also not impossibly be discovered by another."

But, regardless of these reflections, for a time at least, Bolyai en-

tertained the suspicion that somehow Lobachewsky had learned of

his own discoveries, possibly through Gauss, and had then, after

some revision, published them. His attitude later, however, be-

came somewhat more lenient. As a matter of fact, there seems to be

no evidence that Lobachewsky ever heard of Bolyai.

32. Wachter, Schwcikart and Taurinus.

No satisfactory record, however brief, of the discovery of Non-

Euclidean Geometry will fail to include the names of Wachter,

Schweikart and Taurinus. We insert here short accounts of their

contributions, before turning our attention to further developments
due to Riemann and others.

20 Stackcl. Wolfgang und Johann Bolyai, Gtomttncbt Untcrsucbunyn, Vol. 1, p. 140

(Leipzig and Berlin, 1913).
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Fricdrich Ludwig Wachtcr (1791-1817), Professor of Mathematics

in the Gymnasium at Dantzig, studied under Gauss at Gottingen in

1809. His attempts to prove the Fifth Postulate led to the publi-

cation in 1817 of a paper
21 in which he attempted to prove that

through any four points in space, not lying in one plane, a sphere

can be constructed. This plan of investigation was obviously sug-

gested by the fact that the Postulate can be proved once it is es-

tablished that a circle can be drawn through any three non-collinear

points. Although his arguments were unsound, some of his in-

tuitive deductions in this paper, and in a letter22 written to Gauss in

1816, arc worthy of recognition. Among other things, he remarked

that, even if Euclid's Postulate is denied, spherical geometry will

become Euclidean if the radius of the sphere is allowed to become

infinite, although the limiting surface is not a plane. This was

confirmed later by both Bolyai and Lobachewsky.
Wachter lived only twenty-five years. His brief investigations

held much promise and exhibited keen insight. Had he lived a

few years longer he might have become the discoverer of Non-

Euclidean Geometry. As it was, his influence was probably con-

siderable. Just at the time when he and Gauss were discussing

what they called Anti-Euclidean Geometry, the latter began to show

signs of a change of viewpoint. In 1817, writing to H. W. M.

Olbers, his associate and a noted astronomer, Gauss was led to re-

mark, after mentioning Wachter, and commending his work despite

its imperfections,
23 "I keep coming closer to the conviction that the

necessary truth* of our geometry cannot be proved, at least by the

human intellect for the human intellect. Perhaps in another life we
shall arrive at other insights into the nature of space which at

present we cannot reach. Until then we must place geometry on an

equal basis, not with arithmetic, which has a purely a priori found-

ation, but with mechanics."

It will be recalled24 that Gauss, in a letter to Schumacher, men-

tioned
"
a certain Schweikardt." The one referred to was Ferdinand

21 For this paper and some of Wachtcr 's letters see Stackcl: Friedrich Ludwig Wack-

ter, tin Beitrag %ur Geschtcbte der Nichtcukltdischen Gcometne, Mathematische Annalcn,
Vol. 54, pp. 43-85 (1901).

St2ckel,M.,p.6i.
28

Stackcl, tbtd., p. 55.
24 Sec Section 3 1 .
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Karl Schwcikart (1780-1859), who from 1796 to 1798 was a student

of law at Marburg. As he was keenly interested in mathematics,
he took advantage of the opportunity while at the university to

listen to the lectures of J. K. F. Hauff, who was somewhat of an

authority on the theory of parallels. Schweikart's interest in this

theory developed to such an extent that in 1807 there appeared his

only published work of a mathematical nature, Die Theorie der

Parallellinien nebst dem Vorschlage ikrer Verbannung aus der Geometric.
1**

In spite of its title, this book offered nothing particularly novel

and was written along quite conventional lines. In it he mentioned

both Saccheri and Lambert. His acquaintance with the work of

these men doubtless affected the character of his later investigations.

In 1 8 ii Schweikart went to Charkow; the year 1816 found him in

Marburg again, where he remained until 1810 when he became Pro-

fessor of Jurisprudence at Konigsberg.
In 1818 he handed to his friend Gerling, student of Gauss and

Professor of Astronomy at Marburg, a brief outline of his ideas

about a new geometry in which the Parallel Postulate was denied,

and asked him to forward it to Gauss for his criticism. In this

memorandum he asserted that there are two kinds of geometry,
Euclidean and Astral^ and that in the latter the sum of the angles

of a triangle is less than two right angles; the smaller the angle-sum,
the greater the area of the triangle; that the altitude of an isosceles

right triangle increases as the sides increase, but can never become

greater 4ian a certain length called the Constant; that, when this

Constant is taken as infinite, Euclidean Geometry* results. This

outline was probably the first explicit description of a Non-Euclidean

Geometry, regarded as such. The ideas came to Schweikart before

1816, while he was still in Charkow. At that early date both

Bolyai and Lobachewsky were still carrying on their investigations

from the traditional viewpoint.
In his reply to Gerling, Gauss commended Schweikart highly.

"The memorandum of Professor Schweikardt has brought me the

greatest pleasure/' he wrote, "and in regard to it please extend to

him my sincerest compliments. It might almost have been written

by myself."
Schweikart did not publish the results of any of his investigations.

*' See Engel and Scackcl, /. >., p. 143.
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But he did encourage his sister's son, Franz Adolph Taurinus (1794-

1874), to take up the study of parallels, suggesting that he give some

thought to the Astral Geometry which Gauss had praised so highly.

Taurinus, after studying jurisprudence for a brief time, had settled

down in Koln to spend a long life of leisure, with ample time to

devote to varied intellectual interests. In 1814, when he first began
a systematic investigation of the problem of parallels, he found

himself not in accord with his uncle's ideas. That he hoped, at

this early point in his researches, to be able to prove the Fifth

Postulate is nothing out of the ordinary. The remarkable fact is

that, although as a consequence of his independent investigations

he was one of the first to obtain a view of Non-Euclidean Geometry,
nevertheless throughout his life he continued to believe that the

Euclidean Hypothesis was the only one of the three which would

lead to a valid geometry.
In 1815, soon after he had received from Gauss the complimentary

and encouraging letter which was translated in full in Section 2.9,

appeared his first book, Theoru der Parallellimen.'2* Here he attacked

the problem from the Non-Euclidean viewpoint, rejecting the

Hypothesis of the Obtuse Angle and, using the Hypothesis of the

Acute Angle, encountered the Constant of Schweikart. These

investigations led him to ideas which were not in accord with his

concept of space and he was impelled to reject the latter hypothesis

also, although he appeared to recognize the consequences as logi-

cally sound.

Shortly after the publication of his first book he learned that

Saccheri and Lambert had both preceded him along the route he

had followed. So he produced another book in 182.6, his Gtometriae

Prima Elementa*1 in which he modified his method of attack. It

was in the appendix of this work that he made his most important
contributions. Here he developed many of the basic formulas for

Non-Euclidean Trigonometry. In the familiar formulas of spherical

trigonometry he replaced the real radius of the sphere by an im-

aginary one. The modified formulas, remarkably enough, describe

the geometry which arises under the Hypothesis of the Acute Angle.
Lambert had previously investigated trigonometric functions with

26 For an excerpt, sec Engcl and Stackcl, loc. ctt , p. 155.
27

Engcl and Stackcl, loc ctt., p. 167.
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imaginary arguments, and in that connection had developed to some

extent the theory of hyperbolic functions, but there is no evidence

that he tried to use these ideas in his study of parallels. It will be

recalled that he had surmised that this geometry might be verified

on a sphere of imaginary radius. 28 Taurinus did not use hyperbolic

functions; instead he exhibited the real character of his formulas

through the medium of exponents and logarithms. Consequently

he called the geometry Logarithmisch-Spharischcn Geometric. He, as

had Lambert, recognized the correspondence between spherical

geometry and that which arises if the Hypothesis of the Obtuse

Angle is used. In addition, he noted that his Logarithmic-Spherical

Geometry became Euclidean when the radius of the sphere was

made infinite.

Although his reluctance to recognize this geometry as valid on a

plane persisted, Taurinus seemed to be fully aware of the importance

of his discoveries, from the theoretical viewpoint, in the study of

parallels. His Geometriac Prima Elemcnta received little recognition.

In his disappointment, he burned the remaining copies.

33. Riemann.

Neither Bolyai nor Lobachewsky lived to see his work accorded

the recognition which it merited. This delay can be attributed to

several factors: the slow passage of ideas from one part of the

world to another, the language barriers, the Kantian space 'philos-

ophy, the two-thousand-year dominance of Euclid, and the relative

obscurity of the discoverers of Non-Euclidean Geometry. The new

geometry attracted little attention for over thirty-five years until,

in 1867, Richard Baltzer, in the second edition of his Elcmcntc der

Matbematik, inserted a reference to it and its discoverers, and also

persuaded Houel to translate their writings into French.

But in the meantime a new figure had appeared. Born at'about

the time of the discovery of Non-Euclidean Geometry, George
Friedrich Bernhard Riemann (1816-1866) grew to young manhood

with the intention of studying theology. But when he entered

Gottingen for that purpose he discovered that mathematics was his

forte and gave up theology. He studied under Gauss and became the

outstanding student in the long teaching career of that great mathe-

matician. Later he went to Berlin to study with Dirichlet, Jacobi,

28 Sec Section 13.
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Stcincr and others, but returned to Gottingen in 1850 to study

physics and take his degree there the following year.

We have already quoted
29 from the remarkable probationary lec-

ture, Uber die Hypothesen welche der Geometric %u Grunde liegen, which he

delivered in 1854 before the Philosophical Faculty at Gottingen,
and in which he pointed out that space need not be infinite, though

regarded as unbounded. Thus he suggested indirectly a geometry in

which no two lines are parallel and the sum of the angles of a

triangle is greater than two right angles. It will be recalled that, in

the rejectioiTof the Hypothesis oFtEe"Obtuse Angle by earlier in-

vestigators, the infinitude of the line had been assumed.

But Riemann, in this memorable dissertation, did more than that;

he called attention to the true nature and significance of geometry
and did much to free mathematics of the handicaps of tradition.

Among other things, he said,
30 "I have in the first place .... set

myself the task of constructing the notion of a multiply extended

magnitude out of general notions of magnitude. It will follow from

this that a multiply extended magnitude is capable of different

measure-relations, and consequently that space is only a particular

case of a triply extended magnitude. But hence flows as a necessary

consequence that the propositions of geometry cannot be derived

from general notions of magnitude, but that the properties which

distinguish space from other triply extended magnitudes are only

to be deduced from experience. Thus arises the problem, to discover

the simplest matters of fact from which the measure-relations of

space may be determined; a problem which from the nature of the

case is not completely determinate, since there may be several

systems of matters of fact which suffice to determine the measure-

relations of space the most important system for our present

purpose being that which Euclid has laid down as a foundation.

These matters of fact are like all matters of fact not necessary^
but only of empirical certainty; they are hypotheses. We may
therefore investigate their probability, which within the limits of

observation is of course very great, and inquire about the justice of

their extension beyond the limits of observation, on the side both

of the infinitely great and of the infinitely small."

2U Sec Section 6.

3(1 Clifford's translation, Nature, Vol. VIII, 1873. S" also D vid Eugene Smith,

A Source Book tn Mathematics
, pp. 411-415 (New York, 192.9)
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Stressing the importance of the study of the properties of things

from the infinitesimal standpoint, he continued, "The questions

about the infinitely great are for the interpretation of nature useless

questions. But this is not the case with the questions about the

infinitely small. It is upon the exactness with which we follow

phenomena into the infinitely small that our knowledge of their

causal relations essentially depends. The progress of recent centuries

in the knowledge of mechanics depends almost entirely on the

exactness of the construction which has become possible through
the invention of the infinitesimal calculus, and through the simple

principles discovered by Archimedes, Galileo and Newton, and used

by modern physics. But in the natural sciences which are still in

want of simple principles for such constructions, we seek to dis-

cover the causal relations by following the phenomena into great

minuteness, so far as the microscope permits. Questions about the

measure-relations of space in the infinitely small are not therefore

superfluous questions."

Thus began a second period in the development of Non-Euclidean

Geometry, a period characterized by investigations from the view-

point of differential geometry in contrast with the synthetic methods

previously used. Riemann's memoir dealt almost altogether with

generalities and was suggestive in nature. The detailed investiga-

tions along these lines were carried out by others, notably Helm-

holtz, Lie and Beltrami. The contributions of the physicist,

Helmholtz, remarkable as they were, required for rigor the finish-

ing touches of a mathematician. These thorough investigations were

made by Lie, using the idea of groups of transformations. To
Beltrami goes the credit of offering the first proof of the consistency

of Non-Euclidean Geometry. Although Bolyai and Lobachewsky
had encountered no contradiction in their geometry as far as their

investigations had gone, there still remained the possibility that

some such inconsistency might arise as the research continued.

Beltrami showed how this geometry can be represented, with restric-

tions, on a Euclidean surface of constant curvature, and thus how any

inconsistency discovered in the geometry of Bolyai and Lobachewsky
will lead to a corresponding one in Euclidean Geometry.
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34. Further Developments.

The work of this second period was excellent and the results were

far reaching and significant, but it remained for a third period
one with which arc associated the names of Caylcy, Klein and

Clifford to supply what was still needed in the way of the uni-

fication and interpretation of the Non-Euclidean Geometries. The

beautiful classification of these geometries from the projective-

metric viewpoint and the recognition of the roles which they play
in the rounding out of a logical category led to their complete

justification and thus brought to a triumphant close the long

struggle with the Fifth Postulate.

In his notable Sixth Memoir ufon Quantics*
1

Cayley, in 1859,

showed how the notion of distance can be established upon purely

descriptive principles. These ideas were developed and interpreted

from the standpoint of Non-Euclidean Geometry by Felix Klein in

two monographs
32

appearing in 1871 and 1873. ^ was ^c w^

suggested calling the geometries of Bolyai and Lobachewsky, Ric-

mann, and Euclid, respectively, Hgferboltc, Elliptic and Parabolic, a

terminology almost universally accepted and which we shall use

from this point on. The names were suggested by the fact that a

straight line contains two infinitely distant points under the Hypo-
thesis of the Acute Angle, none under the Hypothesis of the Obtuse

Angle, and only one under the Hypothesis of the Right Angle.
More recently investigators have confined their attentions largely

to careful scrutiny of the foundations of geometry and to the pre-

cise formulation of the sets of axioms. Following the lead of Pasch,

such men as Hilbert, Peano, Pieri, Russell, Whitehead and Veblen

have gone far in placing geometry, both Euclidean and Non-Euclid-

ean, as well as mathematics in general, on a firm logical basis.

35. Conclusion.

In the following pages we shall take up first a study of Synthetic

Hyperbolic Geometry. This will be followed by an investigation of

the trigonometry of the Hyperbolic Plane and that, in turn, by a

81 Sec Caylcy's Collected Mathematical Papers, Vol. II, pp. 561-591 (Cambridge, 1889).
* See his Gesamtnelte Mathtmattscbe Abban4lun&n, Vol.*I, pp. 154-305 and pp. 311-

343 (Berlin, 1911).
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brief treatment from the viewpoint of analytic geometry and cal-

culus.

Our examination of Elliptic Geometry will be less extensive. Its

development, like that of most of the later work in Non-Euclidean

Geometry, depends upon the use of concepts more advanced than

those which we wish to draw upon here.

In passing, we remark that there are two types of Elliptic Geom-

etry. The one suggested in Section 6 is probably the one which

Reimann had in mind. Geometry on this Elliptic Plane has an

exact analogue in the geometry on a sphere, the great circles being

regarded as straight lines. The other type, in many respects the

more interesting and important, was suggested later by Klein.

In this geometry, two points always determine a straight line, and

in other respects it more nearly resembles Euclidean Geometry.



IV
HYPERBOLIC PLANE GEOMETRY

"
It is quite simple, .

, but the way things come out of one another is

quite lovely." CLIFFORD

36. Introduction.

There is much to be said in favor of carefully formulating, at this

point, a set of explicitly stated assumptions as a foundation for the

study of the geometry of the Hyperbolic Plane. 1 For very mature

students and for those who have been over the ground before, this is

doubtless the best procedure. But for others, such a precise, rigor-

ously logical treatment would only prove confusing. For this

reason, keeping in mind our objectives, we propose to follow the

path of the pioneers, to avail ourselves of the familiar foundations

of Euclidean Geometry, replacing the Fifth Postulate by a contra-

dictory one, and making such other changes as may consequently be

forced upon us. Thus all of the Euclidean propositions which do not

depend upon the Fifth Postulate, in particular the first twenty-

eight, are immediately available. Nor are simplicity and economy
the only advantages of such an approach. This presentation of the

material, in the way it was acquired, has, we believe, the sanction

of sound pedagogical and psychological principles. Refinement and

extreme rigor may very well come later.

1 The student who wishes to examine Hyperbolic Geometry from this more critical

viewpoint is referred to Hilbert, Grundlagen dcr Geometne^ yth edition, p 159 (Leipzig
and Berlin, 1930).

65
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37. The Characteristic Postulate of Hyperbolic Geometry and Its

Immediate Consequences.

In Euclidean Plane Geometry, the Fifth Postulate is essentially

equivalent to the statement that through a given point, not on a

given line, one and only one line can be drawn which does not

intersect the given line. In its place we introduce the following as

the Characteristic Postulate of Hyperbolic Plane Geometry.

POSTULATE. Through a given point, not on a given line, more than one

line can he drawn not intersecting the given line.

We have already observed that, if there is more than one line

through the given point not intersecting the given line, there is an

infinite number of them. If P (Fig. n) is the given point, / the

given line and AB and CD two lines through P which do not inter-

sect /, then no line, such as EF, lying within the vertical angles

APC and DPB, which do not contain the perpendicular PQ from

P to /, will cut /. For if F, produced for example to the right,

were to cut /, then, since PF and the perpendicular PQ would both

intersect /, PB would also have to intersect / by the Axiom of

Pasch.

If one starts with the perpendicular ? from P to / and allows PQf

to rotate about P in either direction, say counterclockwise, it will

continue to intersect / awhile and then cease to intersect it. Thus a

situation is reached in which the lines through P are divided into

two sets, those which cut / and those which do not, each line of the
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first set preceding each line of the second. Under these circum-

stances, the Postulate of Dedekind asserts that there exists a line

through P which brings about this division of the lines into the two
sets. Since this line itself either cuts / or does not cut it, it must

either be the last of the lines which intersect / or the first of those

which do not. But there is no last cutting line. For, if one assumes

that PC is the last of the cutting lines, and measures off any dis-

tance GH on the side of G opposite Q, then PH is a cutting line and a

contradiction has been reached. Hence the dividing line is the first

of those which do not intersect /. A similar situation is encountered

if PQ is rotated clockwise. Thus there are two lines PR and PS,

through P, which do not cut /, and which are such that every line

through P, lying within the angle RPS, does cut /.

Furthermore, the angles RPQ and SPQ are equal. If they are not,

one of them is the greater, say RPQ. Measure angle IPQ equal to

angle SPQ. Then PI will cut / in a point /. Measure off on /, on

the side ofQ opposite /, QK equal toQJ'. Draw PK. It follows from

congruent right triangles that angle (gPK equals angle QPJ and

hence angle QPS. But PS does not intersect / and a contradiction

has been reached. One concludes that angles RPQ and SPQ arc

equal.

It can easily be shown that these two angles are acute. If they
were right angles, PR and PS would lie on the same straight line

and this line would be the line through P perpendicular to PQ.
But that perpendicular does not intersect / (Euclid I, 18), and

furthermore it is not the only line through P which does not inter-

sect /. Consequently there will be lines through P within the angle

RPS which do not cut / under these circumstances and again a con-

tradiction is encountered.

These results can be summarized in the following theorem:

Theorem. If / is any line and P is any point not on /, then there

are always two lines through P which do not intersect /, which

make equal acute angles with the perpendicular from P to /, and

which are such that every line through P lying within the angle

containing that perpendicular intersects I, while every other line

through P does not.
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All of the lines through P which do not meet / arc parallel to /

from the viewpoint of Euclid. Here, however, we wish to recognize
the peculiar character of the two described in the theorem above.

These two lines we call the two parallels to / through P, and desig-

nate the others as non-intersecting with reference to /. We shall dis-

cover shortly that the size of the angle which each of the two

parallels makes with the perpendicular from P to I depends upon
the length h of this perpendicular. The angle is called the angle of

parallelism for the distance h and will be denoted by !!(/&) in order

to emphasize the functional relationship between the angle and the

distance. On occasion it will be found possible and convenient to

distinguish between the two parallels by describing one as the

right-hand, the other as the left-hand, parallel.

EXERCISE

If two lines BA and BC are both parallel to line /, show that the bisector of angle
ABC is perpendicular to /

38. Elementary Properties of Parallels.

Certain properties of Euclidean parallels hold also for parallels in

Hyperbolic Geometry. Three of these are described in the following
theorems :

Theorem 1. If a straight line is the parallel through a given point

in d given sense to a given line, it is, at each of its points, the par-

allel in the given sense to the given line.
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If AB (Fig. LI) is one of the two parallels, say the right-hand

parallel, to line /, through P, we wish to prove that it is the right-

hand parallel to / through any of its points. There are two cases

to be considered.

CASE I. Let R be any point on AB on the side of P in the direction

of parallelism. Draw Pig and R^ perpendicular to /. We have to

show that every line through R passing within the angle SRB inter-

sects /. Let RT be any such line and select on it any point U. Draw
PU and RQ. PU must cut / in a point M and, by Pasch's axiom, must

cut jgR in a point N. Again resorting to the Axiom of Pasch, we
find that RU intersects QM, since it intersects segment NM, but not

segment QN.

CASE II. Let R be any point on AB on' the side of P in the direc-

tion opposite that of parallelism. In this case, all that is needed

is to choose U as any point on TR produced through R, use the same

lettering, and follow the same plan. The details are left to the

reader.

Theorem 2. If one line is parallel to a second, then the second is

parallel to the first.

Let AB (Fig. 2.3) be the right-hand parallel to CD through P,

draw Pjg perpendicular to CD and QR perpendicular to AB. The

point R will fall to the right of P (Euclid I, 16). Then, in order to

prove that CD, which does not cut AB, is parallel to AB, we have

to show that every line through Q and lying within the angle RQD
intersects RB.

B

Fisure 23
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Let QE be any such line and construct PF perpendicular to QE.
F will lie on the side of Q on which E lies. On, PQ measure PC

equal to PF. The point G will lie between P and Q since PF is

shorter than PQ. Draw GH perpendicular to PQ at G. Next con-

struct angle GPI equal to angle FPB and produce PI until it inter-

sects CD at /. Since GH cuts side PQ of triangle PQJ, but not side

QJ, it cuts PJ at some point X. On PB measure PL equal to PK
and join F and L. Since triangles PGK and PFL are congruent,

angle PFL is a right angle. But PFE is a right angle. Hence QE
intersects RB at L.

Theorem 3. If two lines are both parallel to a third line in the

same direction, then they are parallel to one another.

First consider the case in which the third line lies between 2 the

other two. Let AB and CD (Fig. 14) both be parallel to EF in the

same direction and let AC cut EF at G. Draw any line AH through
A and passing within the angle CAB. This line will cut EF in a

Fisurc 24

point /. Draw CI. Since EF is parallel to CD, Al produced will

intersect CD. Since AB does not cut CD, but every line through A

lying within angle CAB does, it follows that AB and CD are parallel.

Next consider the case in which the two lines are on the same side

of the third. Let AB and CD (Fig. 15) both be parallel to EF in the

same direction. Assume that AB is not parallel to CD in the desig-

nated direction. Then through any point G of AB draw the parallel

GH to CD in that direction. It follows from the first case that GH
* Sec Section 9.
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is parallel to EF. But only one parallel in that direction can be

drawn to EF through G. Therefore GH must coincide with AB,
and AB is parallel to CD.

Fi'sure 25

39. Ideal Points.

We wish to introduce at this point an important concept in con-

nection with parallel lines. Two intersecting lines have a point in

common, but two parallel lines do not, since they do not intersect.

However, two parallel lines do have something in common. It is

convenient to recognize this relationship by saying that two parallel

lines have in common, or intersect in, an ideal point* Thus all of the

lines parallel in the same sense to any line, and consequently parallel

to one another, will be thought of as being concurrent in an ideal

point and constituting a sheaf of lines with an ideal vertex. Every
line contains thus, in addition to its ordinary or actual points, two

ideal points through which pass all of the lines parallel to it in the

two directions.

While ideal points are concepts, so also, for that matter, are

ordinary points. The introduction of these ideal elements is pri-

marily a matter of convenient terminology. To say that two lines

intersect in an ideal point is merely another way of saying that

they are parallel; to refer to the line joining an ordinary point to

one of the ideal points of a certain line amounts to referring to the

line through the ordinary point parallel to that line in the sense

designated. But we shall not be surprised to find these new entities

8 Also called, more frequently than not, a potnt at infinity or infinitely distant point.
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assuming more and more significance as we go on. In the history
of mathematics can be found more than one example of an idea

introduced for convenience developing into a fundamental concept.
As a matter of fact, the use of such ideal elements has been an im-

portant factor in the development of geometry and in the interpre-

tation of space. We shall return to this later.

It will gradually be recognized that, in so far as we are concerned

with purely descriptive properties, we need not discriminate

between ordinary and ideal points. Two distinct points, for ex-

ample, determine a line, regardless of whether both points are

ordinary, both ideal, or one ordinary and the other ideal. In no case

is this more strikingly illustrated than in that of the triangle with

two vertices ordinary points and the third ideal. We study this

figure next.

40. Some Properties of an Important Figure.

The figure formed by two parallel lines and the segment joining a

point of one to a point of the other plays an important role in what

is to follow. Let ASl and Bil (Fig. 16) be any two parallel lines.

Here we follow the convention of using the large Greek letters

(generally 12) to designate ideal points. Let A, any point of the

first, and B, any point of the second, be joined. The resulting figure

is in the nature of a triangle with one of its vertices an ideal point;

it has many properties in common with ordinary triangles. We

prove first that Pasch's Axiom holds for such a triangular figure.

Theorem 1. If a line passes within the figure AB$l through one

of the vertices, it will intersect the opposite side.

B

Figure 26
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Let P (Fig. 16) be any point within the figure. Then AP and BP
will intersect Bil and Aft, respectively, as a consequence of the

parallelism of Ail and Bil. Let AP cut Bil in point Q. Draw TO.

This line, if produced, will intersect segment AB by Pasch's Axiom.

Theorem 2. If a straight line Intersects one of the sides of ABil,

but does not pass through a vertex, it will intersect one and only

one of the other two sides.

If the line intersects Ail or Bil, the theorem is easily proved. If it

intersects AB in a point R, one has but to draw Ril and make use of

Theorem i. The details are left to the reader.

The familiar exterior angle theorem also holds for these figures.

Theorem 3. The exterior angles of ABil at A and 8, made by

producing AB, are greater than their respective opposite interior

angles.

Let AB (Fig. 2.7) be produced through B to C. It is to be proved
that angle CBil is greater than angle BAH. Through B draw BD,

making angle CBD equal to angle BAH. BD cannot cut Ail, for in

this case there would be formed a triangle with an exterior angle

equal to one of the opposite interior angles. Furthermore, it cannot

Fisure 27

coincide with Bil and thus be parallel to Ail. To show this, draw

AfN from M, the midpoint of AB, perpendicular to Bil. Measure

off on Ail, on the side of AB opposite N, a segment AL equal to BN.

Draw ML. It is easy to show that MN and ML lie in the same
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straight line since triangles MNB and MLA are congruent if BD
coincides with Bi2. In this case it follows that LN is perpendicular

to both Ail and B12 and that the angle of parallelism for the distance

LN is a right angle. But this is absurd. Therefore BD will lie

within the angle CB& and this angle is greater than angle CBD.

Hence angle CB12 is greater than angle BASl.

Next we describe the conditions under which two such figures,

AB& and A'BW, are congruent.

Theorem 4. If AB and A'B' are equal; and angle BAft is equal

to angle B'A'tf, then angle ABQ is equal to angle A'B'tf and the

figures are congruent.

If angles ABl and A'BW (Fig. 18) are unequal under the given

conditions, one of them is the greater, say ABto. Construct angle

ABC equal to angle /4'B'12'. Let BC cut Aft in point D. Measure

A'D' on AW equal to AD and draw B'D'. Then triangles ABD and

A'B'D' are congruent. Thus angle A'B'D' is equal to angle ABD
and hence to angle A'B'Sl' . The resulting contradiction leads us to

the conclusion that angles ABtt and A'B'tf are equal.

It is perhaps superfluous to remark that this theorem still holds

if one of the figures is reversed, either by drawing the parallels in the

opposite direction or by interchanging the two angles.

Theorem 5. IF angles BA& and B'A'tf are equal and also angles

AB$l and A'B'tf, then segments AB and AB' are equal and the

figures are congruent.
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* B'

Fisure 29

If, under the given conditions, AB and A'B' (Fig. 19) are not

equal, one of them, say AB, is the greater. Measure off on AB the

segment AC equal to A'B'. Draw CQ. Then ACQ and A'B'tt arc

congruent and angles ACQ and A'B'ti' are equal. It follows that

angle ACto is equal to angle ABQ. But this contradicts Theorem 3.

Therefore AB and A'B' are equal.

Theorem 6. If segments AB and A'B', angles /4fil2 and BAto,

and angles /4'fi'ft' and B'A'Sl', are equal, then all four angles are

equal to one another and the figures are congruent.

Assume that the four angles are not equal to one another. Then

one pair of equal angles, say ABQ and BAto, will be greater than the

other pair. Construct angles ABC and BAD (Fig. 30) equal to angle

B'A'Sl'. BC and AD will intersect in a point E. Measure off on

AW segment A'E' equal to AE and draw B'E'. Then triangles ABE
and A'B'E' are congruent. A contradiction is reached when we

conclude that angles A'B'E and A'BW are equal. Thus all four

angles must be equal.
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EXERCISES

i. In the figure ABU, the sum of angles ABU and BAH is always less than two right

angles.

i. If a transversal meets two lines, making the sum of the interior angles on the

same side equal to two right angles, then the two lines cannot meet and are not

parallel, they are non-intersecting lines

3. Given two parallel lines, Ail and Bi2, and two other lines, A'C and B'D', prove
that if segments AB and A'B'

y angles BAU and B'A'C, and angles ABU and A'B'D', are

equal, then A'C and B'D' are parallel.

4. If angles ABU and BAU are equal, the figure is in the nature of an isosceles triangle

with vertex an ideal point Prove that, ifM is the midpoint of AB, Mil is perpendicular
to AB. Show also that the perpendicular to AB at M is parallel to Ail and Bil and that

all points on it are equally distant from those two lines

5. Prove that if, in figure ABU, the perpendicular to AB at its midpoint is parallel

to Ail and BS2, then the angles at A and B are equal.

6. If, for two figures ABil and A'B'il', angles ABU and A'B'il' arc equal but segment
AB is greater than segment A'B', then angle BAil is smaller than angle B'A'il'.

41. The Angle of Parallelism.

From Theorem 4 of the preceding section, it is evident that the

angle of parallelism !!(/>) for any given distance h is constant.

Furthermore, as a consequence of Theorem 3, it follows that

h\ < hz

implies that

IIG&,) $ Hfo).
We know, from the theorem of Section 37, that every distance has a

corresponding angle of parallelism. It has just been pointed out

that this angle is always the same for any given distance, that the

angle increases as the distance decreases and decreases as the dis-

tance increases. Presently it will be shown that to every acute

angle there corresponds a distance for which the angle is the angle of

parallelism. In this case equal angles must, of course, have equal

corresponding distances. Putting these results together, we con-

clude that

lim [nO + )
- n(] = o,

6 > o

and consequently that nO&) varies continuously if h does.

It should perhaps be noted here that, so far, no particular unit

has been specified for measuring either distances or angles. The

functional relationship implied has been purely geometric. Later,

when definite units have been adopted, the analytic form of
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will be obtained. However, as h approaches zero, II(^) approaches

a right angle, and we may write

where TT is, for the present, used merely as a symbol to denote a

straight angle. As h becomes infinite, n(A) approaches zero, or,

in the conventional notation,

n(o>) o.

Moreover, there is no reason why we should not attach a meaning
to II(A) for h negative. There is nothing which compels us to do

this; we do it solely because it will prove convenient. Such a

generalization will enable us to avoid certain exceptions later on.

The definition of !!(/>), when h is negative, is a matter of choice, but

we shall choose methodically.

As h
t being positive, decreases, H(/>) increases; when h is zero,

n() is a right angle. If we think of h as continuing to decrease, be-

coming negative, we naturally choose to regard n(A) as continuing
to increase and becoming obtuse. Briefly, n( A) is defined by the

relation

II(-) TT.

42. The Saccheri Quadrilateral.

It will be recalled that, as a basis for his investigations, Saccheri

made systematic use of a quadrilateral formed by drawing equal per-

pendiculars at the ends of a line segment on the same side of it and

connecting their extremities. This birectangular, isosceles quadri-

lateral is commonly called a Saccheri Quadrilateral. We shall study
some of its properties. The side adjacent to the two right angles is

known as the base, the opposite side as the summit and the angles

adjacent to the summit as the summit angles.

Theorem. The line joining the midpoints of the base and summit

of a Saccheri Quadrilateral is perpendicular to both of them; the

summit angles are equal and acute.
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Let AB (Fig. 31) be the base of the Sacchcri Quadrilateral ABCD.

Join M and H, the midpoints of base and summit, respectively, and

construct CM and DM. It is not difficult to prove the congruence of

H

\

Figure 31

the triangles DAM and CBM 9 and then, in turn, of triangles DHA1
and CHM. The equality of the summit angles follows as well as that

of the angles made by MH with DC and with AB.

Corollary. The base and summit of a Saccheri Quadrilateral are

non-intersecting lines.

That the summit angles are acute, and consequently that Hyper-
bolic Geometry is the geometry of Saccheri 's Hypothesis of the

Acute Angle, is proved as follows:

FiSure 32

Let D12 and C$2 be parallels to AB, in the same sense, through D
and C, the extremities of the summit of the Sacchcri Quadrilateral

ABCD (Fig. 31). Let E be any point on DC produced through C.
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Then the parallels DO and C$1 will lie within the angles ADC and

BCE, respectively, since DC is non-intersecting with regard to AB.

Angles ADtt and BC12 are equal, being angles of parallelism for equal

distances. Furthermore, in the figure CDQ, the exterior angle CQ
is greater than the opposite interior angle CD12. Thus angle BCE
is greater than angle ADC and hence greater than angle DCB. Con-

scquently the equal summit angles are acute.

43. The Lambert Quadrilateral.

The reader will recollect that Lambert used, as a fundamental

figure in his researches, a quadrilateral with three of its angles right

angles. This trirectangular quadrilateral, which we shall call a

Lambert Quadrilateral , has an important part to play in later de-

velopments.

Theorem 1. In a trirectangular quadrilateral the fourth angle is

acute.

Let ABCD (Fig. 33) be a Lambert Quadrilateral with the angles

at A, B and D right angles. We wish to prove that the angle at C

is acute.

\

A

Fisure 33

B

Produce BA through A to so that AE is equal to BA. At E
draw EF perpendicular to BE and equal to BC. Join F to A and D,

and draw AC. From the congruence of right triangles FEA and CBA
follows the congruence of triangles FAD and CAD. Then angle

FDA is a right angle, the points F, D and C are collinear, and

EBCF is a Saccheri Quadrilateral. Thus the angle at C is acute.
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A useful theorem in regard to a more general quadrilateral, with

only two right angles, may very well be inserted here. From it come

immediately some important properties of the Saccheri and Lambert

Quadrilaterals.

Theorem 2. If, in the quadrilateral ABCD (Fig. 34), the angles

at two consecutive vertices A and 6 are right angles, then the angle

at C is larger than or smaller than the angle at D according as AD is

larger than or smaller than BC, and conversely.

If AD is larger than BC, measure off on AD the segment AE equal

to BC and draw EC. Then ABCE is a Saccheri Quadrilateral with

angles AEC and BCE equal. Since

ZCD> Z.BCE

and

LAEO /.ADC,

then

Z.ECD> Z.ADC.

In the same way, if AD is smaller than BC, angle BCD can be shown

to be smaller than angle ADC.

The proof of the converse by reductio ad absurdum is left as an exer-

cise for the reader.

EXERCISES

i. If the angles at A and B (Fig. 34) arc right angles and the angles at C and D arc

equal, prove that the figure is a Saccheri Quadrilateral.

D

E

B

Figure 34

i. Prove that, in a Lambert Quadrilateral, the sides adjacent to the acute angle arc

greater than their respective opposite sides.
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3. Which is the greater, the base or the summit of a Saccheri Quadrilateral?

4. Prove that, if perpendiculars are drawn from the extremities of one side of a

triangle to the line passing through the midpoints of the other two sides, a Saccheri

Quadrilateral is formed. As a consequence, prove that the perpendicular bisector of

any side of a triangle is perpendicular to the line joining the midpoints of the other

two sides.

5. Prove that the segment joining the midpoints of two sides of a triangle is less

than one-half the third side.
4

6. Show that a line through the midpoint of one side of a triangle perpendicular to

the line which bisects a second side at right angles bisects the third side.

7. Prove that the line joining the midpoints of the equal sides of a Saccheri Quadri-
lateral is perpendicular to the line joining the midpoints of the base and summit and

that it bisects the diagonals.

44. The Sum of the Angles of a Triangle.

Theorem 1. The sum of the angles of every right triangle is less

than two right angles.

Let ABC (Fig. 35) be any right triangle with the right angle at C.

Figure 35

We know that each of the other angles is acute since the sum of two

angles of a triangle is always less than two right angles. At A
construct angle BAD equal to angle ABC. From the midpoint M
of AB draw MP perpendicular to CB. P will lie between B and C.

On AD cut off AQ equal to PB and draw Mjg. Then triangles MBP

4 W. H. Young has assumed this and used it as the characteristic postulate in

a development of Hyperbolic Geometry. On the assumptions that the segment

is equal to or greater than the third side follow Parabolic and Elliptic Geometries,

respectively. See the Quarterly Journal of Pure and Applied Mathematics, Vol.

XLI, 1910, pp. 353-363, and the American Journal of Mathematics, Vol. 33, 1911,

pp. 149-186.
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and AL4<g are congruent and it follows that angle AQM is a right

angle, that points Q, M and P are collinear, and consequently that

ACPQ is a Lambert Quadrilateral with acute angle at A. Thus the

sum of the acute angles of the right triangle ABC is less than one

right angle and the sum of all three angles is less than two right

angles.

Theorem 2. The sum of the angles of every triangle is less than

two right angles.

The theorem has already been proved for right triangles, so we
assume that triangle ABC (Fig. 36) has none of its angles a right

angle. Since at least two of the angles of every triangle are acute,

we may assume that the angles at B and C are acute and draw the

altitude AD from A to BC, D falling between B and C.

A,

Figure 36

Thus triangle ABC is divided into two right triangles ADB and

ADC. Since the sum of angles ABD and BAD is less than one right

angle, as is also the sum of angles ACD and CAD, the sum of the

angles of triangle ABC is less than two right angles.

The difference between two right angles and the angle-sum of a

triangk is called the defect of the triangle.

Corollary. The sum of the angles of every quadrilateral is less

than four right angles.
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Theorem 3. If the three angles of one triangle are equal; re-

spectively, to the three angles of a second, then the two triangles

are congruent.

i
Figure 37

Let angles A, B, C of triangle ABC (Fig. 37) be equal, respectively,

to angles A', B', C
f

of triangle A'B'C. If any pair of corresponding

sides, say AB and A'B', are equal, the triangles are of course con-

gruent. Assume that AB and A'B' are unequal; then one of them,

say AB, is the larger. Cut off on AB the segment AD equal to A'B'

and on AC segment AE equal to A'C'. That AE is shorter than AC
will be verified presently.

Since triangles ADE and A'B'C' are congruent, it is evident that

BCED is a quadrilateral with the sum of its angles equal to four

right angles. But this is impossible and consequently AB and A'B'

must be equal and the triangles congruent.
If AE were equal to AC, angles BCA and DCA would have to be

equal. But this is impossible if AD is less than AB. If AE were

greater than AC, a situation would be encountered in which an

exterior angle of a triangle would be equal to one of the opposite
interior angles, but this again is absurd.

Thus we reach the remarkable conclusion that in Hyperbolic
N

Geometry similar triangles, or indeed similar polygons, of different

sizes do not exist.

We shall show in Section 54 how to construct a triangle, given the

three angles.
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EXERCISES

i. Using Theorem i, modify the proof of Lemma i, Section 13, to show that, if a

line through a given point and cutting a given line revolves about the given point and

approaches parallelism to the given line, then the angle which it forms with the given

line approaches zero. In other words, show how two parallel lines may be thought of

as intersecting at a zero angle.

i. Prove that two Saccheri Quadrilaterals with equal summits and equal summit

angles, or with equal bases and equal summit angles, are congruent.
*

3. A segment joining a vertex of a triangle to a point on the opposite side is called

a transversal.
6 A transversal divides a triangle into two subtriangles, and one or both

of these can be subdivided by transversals, and so on. Prove that, if a triangle is

subdivided by arbitrary transversals into a finite number of triangles, the defect of the

triangle is equal to the sum of the defects of the triangles in the partition. What does

this suggest about the defect of a triangle as compared to its size?

4. Prove that the angle-sum of a polygon of n sides is Jess than (
- i) times two

right angles.

45. The Common Perpendicular of Two Non-Intersecting Lines.

We next turn our attention to non-intersecting lines. If two lines

are perpendicular to the same line, they are non-intersecting. The

converse statement is also true and describes one of the most striking

properties of non-intersecting lines,

Theorem. Two non-intersecting lines have one and only one

common perpendicular.

H
Figure 38

Let / and m (Fig. 38) be any pair of non-intersecting lines. Select

any two points A and B on / and draw the perpendiculars AC and BD
6 See Hilbert, Tbt foundations of Geometry^ translated by E. J. Townscnd, p. 63

(Chicago, 1901) or Grundla&tn der Geometric, 5th edition, p. 58 (Leipzig and Berlin,

1911).
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to m. If AC and BD are equal, ABDC is a Sacchcri Quadrilateral,

from which it follows at once that / and m have a common per-

pendicular. If AC and BD are not equal, let us assume that AC is the

longer and on it measure off CE equal to BD. At E draw EF on the

side of AC on which B and D lie, making angle CEF equal to angle

DBG, where G is any point on / on the side of B opposite A.

We propose to show that EF will cut /, if sufficiently produced.

To do this, draw6 Cft and Dfi parallel to / in the sense AB. These

lines must lie within the angles ACH and BDHy respectively, where

H is any point on m on the side of D opposite C. Since angle HDD
is greater than HC12, a line CJ drawn through C, making with CH
the same angle which Dft makes with it, will cut / in a point /.

A comparison of figures FECJ and GBDSl convinces us that EF is

parallel to CJ and consequently must intersect side AJ of triangle

AC] in a point K.

Draw XL perpendicular to m. On / and m, respectively, on the

side of BD opposite AC, cut off BM equal to EK and DN equal to CL
and draw MN. By means of congruent triangles, it is easy to show
that quadrilaterals EKLC and BMND are congruent. As conse-

quences, MN is perpendicular to m, and MN and KL are equal.

The line joining the midpoints of summit and base of the Saccheri

Quadrilateral KMNL is a common perpendicular to / and m.

There cannot be more than one such common perpendicular, for if

there were two, there would exist a quadrilateral with an angle-sum
of four right angles. But this is absurd.

We call attention to the fact that the argument
7 above not only

proves the existence of a unique common perpendicular to two non-

intersecting lines, but, assuming that we can construct the parallels

to a line through a given point, supplies a method of constructing

this perpendicular when two such lines are given.

46. Ultra-Ideal Points.

In Hyperbolic Plane Geometry, two lines intersect, are parallel

or are non-intersecting. Already we have adopted
8 a convenient

tt We arc merely employing here the phraseology customarily used in describing a

drawing We have not yet shown how to construct a parallel to a line through a point,
but the proof docs not depend upon our ability to do so.

7 Due to Hilbcrt, loc at , p. 164.
8 Sec Section 39
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terminology with reference to parallels, one which allows us on

occasion to regard them as intersecting. The time has come to ex-

tend these concepts to include non-intersecting lines.

As the name implies, two non-intersecting lines do not have a

point in common. But they do have something in common; they
have a common perpendicular. Arguing in much the same fashion

as that followed in introducing ideal points, we choose to recognize

this relationship by saying that two non-intersecting lines have in

common, or intersect in, an ultra-ideal point. Thus all of the lines

perpendicular to a given line will be regarded as being concurrent in

an ultra-ideal point and constituting a sheaf of lines with an ultra-

ideal vertex. Two given non-intersecting lines then determine an

ultra-ideal point, and the sheaf of lines having this point for vertex

consists of all of the lines cutting at right angles the common

perpendicular to the two given lines. Corresponding to every

ultra-ideal point is a line, its representative line, such that every line

perpendicular to it passes through the point; corresponding to

every line is an ultra-ideal point through which pass all of the

perpendiculars to the line. We shall follow the convention of

designating ultra-ideal points by large Greek letters (generally F)

with subscripts designating the representative lines. Thus F/ de-

notes the ultra-ideal point through which pass all of the lines

perpendicular to the line /.

The nature and significance of this new viewpoint, under which

non-intersecting lines are regarded as intersecting, should be reason-

ably clear to the reader by this time. Many of the general remarks

made in the introduction of ideal points hold also for ultra-ideal

points.

EXERCISE

Prove that every line contains an infinite number of ultra-ideal points.

47. The Variation in the Distance between Two Lines

We wish now to determine the effect which a change in the posi-

tion of a point on a line will have upon the length of the perpendic-
ular from the point to another line. There are three cases to be

considered inasmuch as two lines may be intersecting, parallel or

non-intersecting.
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Theorem 1. Two intersecting lines diverge continuously from

their point of intersection, the perpendicular distance from a point

on one of them to the other increasing without limit as the point

moves away from the point of intersection, and becoming smaller

than any assigned distance, however small, as it moves toward it.

Let / and m (Fig. 39) be any two non-perpendicular lines inter-

secting at 0, and let P\ and P2 be any two points on /, on the same

side of 0, and so situated that OP2 is greater that OP\. Draw P\Qi
and PtQ* perpendicular to m. Then, in the birectangular quadri-

lateral PiPzQtQi, angle PzPiQi is obtuse and angle PiPiQ* is acute;

therefore Pufiz is greater than Pijgj. Thus we have proved that the

perpendicular from a point on one of two intersecting lines to the

other increases as the point moves away from the intersection and

rn

RX

Q, Q2 Q

Fisure 39

decreases as it moves toward it. To complete the proof we need to

show that the point can be so chosen that the distance will be equal

to, and hence greater than or less than, any assigned length. This

amounts to proving that, given one acute angle of a right triangle

and the length of the opposite side, no matter how large or small,

the triangle can be constructed. We shall prove this shortly and

may assume it here. The reader should observe that this con-

struction cannot be made in Hyperbolic Geometry as simply as in

Euclidean.
f

It will, however, be instructive to show without delay, and in a

different way, that the distance becomes greater than any assigned
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segment as the point moves away from 0. In order to do this, we
recall that to every acute angle, regarded as an angle of parallelism,

there is a corresponding distance. A little later we shall devise a

construction for the distance when the angle is given. Regarding

angle PiOQi (Fig. 39) as an angle of parallelism, measure OM on m

equal to the corresponding distance and draw MN perpendicular to

m a,t M. Then MN is parallel to /. To show that the perpendicular

distance to m from a point on / becomes longer than any assigned

segment, however Jong, cut off MR on MN equal to the given seg-

ment, and draw the perpendicular to MN at R. It is easy to see

that this perpendicular will cut / in a point P, and that the per-

pendicular PjQfrom P to m is greater than RM and hence longer than

the given segment. One should notice that, while a perpendicular

can be drawn to m from every point of /, if a perpendicular is drawn

to m a.t any point jg, this perpendicular will cut / only so long as OQ
is less than OM, will be parallel to it when Q coincides with M,
and cease to cut it at all when Ojg is greater than OM.

Theorem 2. Two parallel lines converge continuously m the

direction of parallelism and diverge continuously in the opposite

direction, the perpendicular distance from a point on one of them

to the other becoming smaller than any assigned distance, however

small, as the point moves in the direction of parallelism, and larger

than any assigned distance, however large, as it moves in the oppo-

site direction.

Q,
Figure 40

Let / and m (Fig. 40) be any two parallel lines and let PI and P2

be any two points on /, ?2 lying on the side of P\ in the direction of
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parallelism. Since, in the birectangular quadrilateral PiPtQiQi, the

angle at P\ is smaller than the angle at ?2 , PzQ* is shorter than PiQi.

All that is needed now is to show that a point can always be found

on / having any given perpendicular distance to /, however large or

small. To do this, draw from any point P (Fig. 41) on / the per-

pendicular PQ to m. If PQ is equal to the given distance, the

required point has been found. Otherwise lay off on QP, orQP pro-

duced, the segment QR equal to the given distance. Through R
draw the parallel to m in the sense opposite that in which / is drawn.

It is readily shown that this parallel, produced in the direction

opposite that of parallelism if necessary, is cur by / in a point S.

* a i
S M

N m N

Fisure 41

Draw ST perpendicular to m. On / and m measure off SM and TN

equal to SR and TQ, respectively, on the side of ST opposite PQ.

Join M and N. There will now be no difficulty in proving that MN
is perpendicular to m and equal to the given distance.

Thus it is clear that parallel lines are not equidistant as in Eu-

clidean geometry. Since the distance from a point on one of two

parallel lines to the other approaches zero as the point moves in the

direction of parallelism, and the lines do not intersect in the strict

sense, they are asymptotic. The reader is also in a position now to

recognize one of the most striking of the peculiar features of Hyper-
bolic Geometry : two fairs of parallel lines are always congruent.

Theorem 3. Two non-intersecting lines continuously diverge on

each side of their common perpendicular, the perpendicular dis-

tance from d point on one to the other being shortest when measured

along that perpendicular and increasing as the point moves away
from the perpendicular m either direction, becoming larger than any

assigned distance, however large.
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Let / and m (Fig. 41) be any two non-intersecting lines and MN
their common perpendicular. Let Pi and P2 be any two points on /

J M P,

Figure 42

on the same side of M, MP2 being greater that MPi. Draw PiQ\ and

P*Q* perpendicular to m. Examination of the Lambert Quadri-

laterals MPijgiN and MP2 <22N shows that both Pigi and P2jg2 are

larger than MN and that angles MPiQi and MP2 <22 are acute. Then

in the bircctangular quadrilateral PiPtQtQi the angle at Pi is larger

than that at P2 and consequently P2jQ2 is larger than PiQi. Thus as a

point moves along /, away from M, the perpendicular distance to m
increases.

That this distance increases continuously and becomes larger

than any assigned distance, however large, will follow presently

when we prove that a unique Lambert Quadrilateral, such as

MPij^iN, can always be constructed when MN and PiQi are given,

regardless of how long Pijgi is, provided, of course, that it is longer

than MN. But we need not wait for this to show that the distance

becomes larger without limit. Let P (Fig. 41) be any point on /

and draw Pig perpendicular to m. Through N draw the parallel to /

on the side of MN on which P lies. By joining P to N, it can be

seen that this parallel cuts Pjg in a point , so that Pig is greater

than RQ. But Rjg is the perpendicular distance from a point on one

of two intersecting lines to the other. As P moves away from M,
R moves away from N, RQ becomes large without limit and hence

so also does PQ.

48. The Perpendicular Bisectors of the Sides of a Triangle.

In Hyperbolic Geometry, as is the case in Euclidean, the perpen-

dicular bisectors of the sides of a triangle are concurrent and so also
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are the bisectors of the angles, the altitudes and the medians. Here,

however, the lines must at times be regarded as intersecting in ideal

or ultra-ideal points. The proofs for these concurrence theorems

are, on the whole, not so easily obtained as in Euclidean Geometry.
Some of the difficulty encountered is rather fundamental in charac-

ter. We shall treat here only one of these theorems, one which we
shall utilize very soon.

Theorem. The perpendicular bisectors of the sides of a triangle

are concurrent.

There are three cases to be considered.

CASE I. If the perpendicular bisectors of two of the sides of a

triangle intersect in an ordinary point, then it can be proved by

congruence theorems, just as in Euclidean Geometry, that the

perpendicular bisector of the third side passes through this point.

CASE II. If the perpendicular bisectors of two of the sides of a

triangle are non-intersecting, then they will have a common per-

pendicular and intersect in an ultra-ideal point. We shall prove that

the perpendicular bisector of the third side is perpendicular to this

common perpendicular also, that is, that it passes through the same

ultra-ideal point.

H K

Let ABC (Fig. 43) be the triangle, with A', B', C the midpoints of

the sides opposite A, B, C, respectively. Let the perpendiculars to

sides AB and BC at C and A' be non-intersect*ig. They then have a

common perpendicular MN. We are to prove that the perpendicular

to AC sit B f

is also perpendicular to MN.
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Construct AH, BJ, CK and B'L perpendicular to MN. Then, if

lines AN, BN, BM and CM are drawn, it is easy to prove that AH
and CK are each equal to BJ and hence equal to one another. Thus

AHKC is a Saccheri Quadrilateral and the line B'L through B',

the midpoint of the summit, perpendicular to the base, is per-

pendicular to the summit also. This proves that the perpendicular

bisectors of the three sides of the triangle have in this case an ultra-

ideal point in common.

CASE III. Finally, if the perpendicular bisectors of two of the

sides of a triangle are parallel, then the perpendicular bisector of the

third side must be parallel to each of them. For if it intersects

cither, or is non-intersecting with respect to either, a contradiction

is encountered owing to what has been proved above. The only

thing which is left to be determined is whether or not the two

parallel bisectors are parallel to the third in the same sense or in

opposite senses. We shall show that the latter is impossible.

If the two perpendicular bisectors which are parallel to one

another are parallel to the third in opposite senses, they will form,

we may say, a triangle 12ifi2123 (Fig. 44) with its vertices ideal points.

Figure 44

Now no straight line can cut all three sides of such a triangle in ordi-

nary points. If ST, for example, cuts 12A in S and 82^3 in r ic wil1

be made apparent by Drawing T12i and producing it in the opposite

sense to any point R, that ST will lie within the vertical angles

and RTQ3 and consequently be non-intersecting with regard to
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i2$3 . But there is always one line, at least, which intersects all

three perpendicular bisectors of the sides of every triangle, as we
shall show.

K
JA*

L

45

6

Assume that the triangle ABC (Fig. 45) has no two of its angles

equal and let the angle at A be the greatest. Construct angle BAK

equal to the angle at B and angle CAL equal to the angle at C.

Then it follows readily that the perpendicular bisectors of all three

sides of the triangle intersect side BC. The proof can be modified

for the cases where two or all three of the angles are equal.

Thus we conclude that, if the perpendicular bisectors of two sides

of a triangle intersect in an ideal point, the perpendicular bisector of

the third side must pass through this ideal point.

EXERCISES

i Prove that the internal bisectors of the angles of a triangle arc concurrent.

2. Show that the perpendicular bisectors of the sides of a triangle arc the altitudes

of the triangle having for vertices the midpoints of the sides of that triangle Then

prove that the altitudes of a triangle are concurrent, provided the perpendiculars to

two of the altitudes, at the vertices from which they are drawn, intersect in an or-

dinary point.

49. The Construction of the Parallels to a Line through a Point.

As a consequence of the characteristic postulate of Hyperbolic

Geometry, we know that through a given point P two parallels

can be drawn to a given line /. Thus far we have made no attempt
to show how these parallels can actually be constructed. In order

to do this we shall need a lemma.
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Lemma.9 The midpoints of the segments joining pairs of cor-

responding points of two congruent point rows lie on a straight

line, unless these segments have a common midpoint.

Let ABC .... and A'B'C .... (Fig. 46) be two congruent

point rows such that AB = A'B' 9 BC = B'C, etc., and let M, N, ?
be the midpoints of AA', BB\ CC

', respectively. It is easy to sec

that ifM coincides with N then P does also, and all of the segments

B.

Fisure 46

have the same midpoint. Consequently assume M, N and P distinct.

Draw BM and produce to B" so that MB" is equal to BM. Then B 11

and B' are distinct points. When B" is joined to B' and also to A',

it is clear that the perpendicular bisector of the base B"B f

of the

isosceles triangle B"A'B f

is also the perpendicular bisector of the

base of the triangle B"BB', and hence is perpendicular to MN
(Exercise 4, Section 43). Next, produce A'B" to C" so that B"C"

is equal to BC and draw C"C', C"Af and MC. By the use of con-

gruent triangles one can easily show that Cn',
M and C are collinear

and that M is the midpoint of CC" . Then the perpendicular bi-

sector of the base C"C of the isosceles triangle C'A'C is also the

perpendicular bisector of the base of triangle C'CC and hence is

perpendicular to MP. But the perpendicular bisectors of the bases

of the isosceles triangles B"A'B f

and C'A'C are the same line.

Consequently MN and MP are perpendicular to the same line and

M, N and P must be collinear.

9
J. Hjclmslcv, Neuc Beyundung dcr tfene Geometrte, Mathemattscht Annalen, Vol. 64,

J97. P- 449-
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Corollary. If the lines supporting the congruent point-rows are

parallel, the locus of the midpoints is parallel to them in the same

sense.

With the lemma proved, we arc ready to return to the funda-

mental construction problem.

If / (Fig. 47) is any given line and P is any given point not on

that line, we wish to construct the two parallels through P to /.

Let us confine our attention to one of them, say the right-hand

parallel PQ, and, since we know it exists, assume that it has been

drawn. First construct the perpendicular PQ from P to /. Then

select any point R on / on the side ofQ in the direction of parallelism,

cut off PS on PQ equal to QR and draw SR. Connect ATand N, the

midpoints of PQ and RS, respectively. As a consequence of the

lemma and its corollary, we know that MN is parallel to / and PS.

Draw the line Q'PQ" through P, perpendicular to Pjg. If NM is

produced through M it is obvious that it is parallel to PQ'. Con-

struct through Q the right-hand parallel to PQ"; it must intersect

PQ in a point T. Measure offQU on jgQ" equal to QR and PS, and

draw SU and RU. Since triangles PTQ and STU are both isosceles,

AfTis perpendicular to SU at its midpoint and is also perpendicular

to line QKQ" to which TQ and TQ" are the two parallels through T.

Furthermore, since triangle UQR is isosceles, the perpendicular

bisector of UR bisects angle Q"jgQ and consequently also is per-

pendicular to QKQ". It follows from the results of the preceding

section that the line perpendicular to side SR of triangle SUR at its

midpoint is perpendicular to QKQ". This perpendicular to SR at N
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then bisects the angle formed by M2 and the line M2" drawn

through N parallel to Pfl". Hence SR bisects angle ft'Nfi", inter-

sects 12'jP12" at a point L and is perpendicular to it at that point.

These results may be summarized as follows:

Construction.
10 To construct the lines parallel to a given line /

through a given point P not on the line, draw the perpendicular

PO from P to / and measure off on / in either direction any dis-

tance OR. At P draw the line PL perpendicular to PO and con-

struct the perpendicular RL from R to PL With P as a center and

radius equal to OR, draw an arc of a circle cutting LR at S. PS is

one of the parallels to / through P. The other is obtained by con-

structing R on the opposite side of O.

That the arc thus described will actually intersect segment LR
in one and only one point follows from the fact that a unique

parallel exists in each direction and that we have proved PS equal

toQR.
Before turning to other matters, we wish to point out another

property of Figure 47 for which we shall have use presently. If

RH is drawn through R making angle SRH, equal to angle RSto, it

is easy to show that RH and SV will meet in a point / through which

will pass the perpendicular bisector of SR. But, since the latter is

perpendicular to QK12" and bisects angle SJR, RJ must be the other

parallel to 12X12" through / and thus be parallel to PQ"'. Therefore

LR is the distance corresponding to angle LSP regarded as an angle

of parallelism.

EXERCISE

Use the lemma to prove that the line joining the midpoints of the base and summit

of a Saccheri Quadrilateral, the line joining the midpoints of the other two sides and

the line joining the midpoints of the diagonals are concurrent (Compare with Exer-

cise 7, Section 43.)

10 This construction is the one given by Bolyai in paragraph 34 of the famous

Appendix. The proof, however, is due to Liebmann, Ntchtcukltdtsche Geometric, pp.

35-37, ind edition (Berlin and Leipzig,
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50. The Construction of a Common Parallel to Two Intersecting

Lines.

It is probably not necessary to remark that, by the construction

described in the last section, one is able to construct the angle of

parallelism corresponding to any given distance; in other terms, if a

segment d is given, n(/) can be constructed. This directs our at-

tention to the reverse construction: given H(dT) to construct d
y or,

what is the same thing, to construct a line perpendicular to one of

two intersecting lines and parallel to the other. We shall find it

convenient to discover first how to draw a common parallel to two

intersecting lines.

Let / and m (Fig. 48) be any two intersecting lines, their point

X

of intersection and 12012' any one of the four angles which they form.

Select points A and B on 012 and 012', respectively, so that OA and OB
are equal, then draw AB and the parallels ASl' and B12. The latter

two lines will intersect in a point C. Construct next the bisectors

AD and BE of angles 12/412' and 12512', which will cut B12 and /412',

respectively, in points F and G. From a comparison of figures

-4012' and 5012, it follows that angles OAC and OBC are equal, and

consequently so also are angles HAC and C512'. We are now pre-

pared to show that AD and BE are non-intersecting.
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First let us assume that AD and BE intersect in a point H. It is

easy then to show that angles BAH and ABH are equal and there-

fore also the segments AH and BH. Combining this result with the

fact that angles HASl' and HJ312' are equal, we conclude that, if

Hfi' is drawn, angles AHSl' and BH12' will be equal. But this is

impossible, and accordingly AD and BE do not intersect. That

they do not intersect if produced through A and B follows from the

fact that the sum of angles BFD and FBE is less than two right

angles.

Next we assume that AD and BE are parallel. In this case, by

comparing the figure formed by the two parallels Aft and H2 and the

transversal AF with that formed by the two parallels FD and BE
and the transversal FB, we easily prove that AF and FB arc equal,

since angles SlAF and FBE are equal as well as angles AFQ and BFD.
Then angle BAF is equal to angle ABF. But this is absurd, and

therefore AD and BE arc not parallel, at least in the direction con-

sidered. But if they are parallel at all, it must be in that direction.

Since AD and BE are neither intersecting nor parallel, they must

have a unique common perpendicular. Let it be the line MN. We
shall prove that MN is parallel to 012 and (XI'.

Inspection of the quadrilateral AMNB reveals that segments AM
and BN arc equal. IfMN is not parallel to 08', draw Mil' and NQ'.

Comparing figures MASl' and NB12', we see that under these circum-

stances angles AMSl' and J3M2' arc equal. But as a consequenceVc
arc led to the absurd conclusion that figure MNft' has an exterior

angle equal to the opposite interior angle. Then MN is parallel to

both / and m, and it is clearly unique for the directions indicated on

the lines, regardless of the length of OA and OB. This method not

only proves the existence of a common parallel but supplies a mode

of effecting its construction. As a matter of fact, two intersecting

lines always have four common parallels.

But two lines do not need to be intersecting in order to have a

common parallel. A common parallel can be constructed for any
two lines. If they do not intersect, one has only to draw through

any point of the first a parallel to the second and then construct a

common parallel to the pair of intersecting lines. Obviously two

parallel lines have only one common parallel which is parallel to

them in opposite directions.
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Finally, interpreted otherwise, this construction of a line parallel

to two lines in given senses enables us to effect the construction of

the line joining any two given ideal points.

51 . The Construction of a Line Perpendicular to One of Two Inter-

secting Lines and Parallel to the Other.

We return now to the problem of constructing a line perpendicular

to one of two intersecting lines and parallel to the other, or, other-

wise, of constructing the distance corresponding to any acute angle

regarded as an angle of parallelism. This construction is readily

accomplished by the use of the results of the last section.

B

Figure 49

Given the acute angle ABC (Fig. 49), we wish to construct a line

perpendicular to BA and parallel to BC. All that is needed is to

construct the angle ABD equal to angle ABC. Then the common

parallel to BC and BD will be perpendicular to BA and parallel to

BC. This construction can always be made, whatever the size of the

given acute angle, no matter how small or how near a right angle .

Here again attention is called to the generality of the construction.

A line can be constructed perpendicular to one of two lines and

parallel to the other even when they do not intersect, whether they
be parallel or non-intersecting. The modification of the construc-

tion for these cases has already been suggested.

EXERCISE

How many lines can be constructed which are perpendicular to one of two given
lines and parallel to the other, if the given lines (<*) intersect at an acute angle? () arc

perpendicular? (c) are parallel''' GO arc non-intersecting'-*
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52. Units of Length and Angle.

We speak of the units which we use for measuring angles as

being absolute because these units are conveniently chosen parts of a

straight angle or right angle. The latter angles are fundamental

figures, they can be constructed at will and do not vary in size.

There is no need of preserving in any bureau of standards a right

angle. Anybody can construct one, whenever he wishes, with

great precision.

The measurement of angles does not depend upon the theory of

parallels. What we have said holds for angles in all three geom-
etries. The student has been accustomed to use as the unit of angle
the one obtained by dividing a straight angle by TT. We shall find

it convenient to adopt this unit in what follows. It should be

clearly understood that w is here merely the familiar abstract number

which is perhaps most easily described as four times the limit of the

sum of the series 1-1/34- 1/5
- 1/7 4- 1/9 , and has for

an approximate value 3.1416. It is to be regarded in no other light.

Emphatically it is not the ratio of the length of the circumference

of a circle to its diameter. That constant ratio occurs in Euclidean

Geometry as a consequence of the parallel postulate. In Hyperbolic

Geometry this ratio is, as we shall discover, variable. As a matter

of fact, the unit angle just designated does not have here the simple

geometric interpretation of Euclidean Geometry.
On the other hand, we speak of the units of length used in Eu-

clidean Geometry as relative. They are arbitrary and conventional.

There is no fundamental length which can be constructed, ex-

punged, and then reconstructed, to be used in whole or in part as a

unit^ without the necessity of reference to some preserved standard.

The units, if they are not to vary as the decades go by, must be

guarded by a bureau of standards or some other agency.

Now, however, we are prepared to understand why, on the con-

trary, units of length are absolute in Hyperbolic Geometry. Corre-

sponding to every segment of line, however large or small, there is a

unique acute angle, its angle of parallelism, and conversely. The

one-to-one correspondence between line segments and acute angles

enables us to designate any segment by referring to its associated

angle. Thus we could, if we wished, choose as our unit of length

the distance corresponding to the angle ir/4 as angle of parallelism.
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The angle can easily be constructed and thus, theoretically at least,

the unit of line.

The angle cannot, it goes without saying, be used directly as a

measure of the segment, for it does not vary in proportion to it.

Indeed, as the segment increases the angle decreases. In the next

chapter we shall actually succeed in expressing the distance as a

function of the angle. Our unit of distance will then correspond to

the angle which makes the function equal to unity.

53. Associated Risht Triangles.

We are now in a position to obtain a very important result in the

theory of right triangles. But first, in order to avoid confusion, let

us adopt a standard notation.

Let ABC (Fig. 50) be any right triangle with C as the vertex of the

right angle. Designate by X and /* the measures of the angles at

A and B and by a, b, c, the measures of the sides opposite the vertices

A, B, C, respectively. We shall represent angles II(V), H(A) and

n(c), respectively, by a, , and 7. The distances corresponding to

the angles X and /*, regarded as angles of parallelism, will be denoted

by / and m, so that X is n(/) and p, is ll(m). The complements of

angles a, 0, 7, X, M are conveniently symbolized by a
', /3',-y', X', /z',

and, as they are acute angles, they have corresponding distances

which we designate by a', b' , c'
t /', /', so that, for example, the

sum of n(V) and II(V) is a right angle.

A right triangle can be uniquely constructed in Hyperbolic Geom-

etry when angle /i and hypotenuse c are given. The construction,

which involves merely the drawing of the perpendicular from a point
to a line, is simple and, as a matter of fact, is the one used in Euclid-
ean Geometry. There .are no restrictions as to sizes or relative

sizes of /i and c, except that the angle must be acute.
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Starting with any right triangle ABC (Fig. 50), let us construct a

Lambert Quadrilateral KLMN (Fig. 51), acute angle at X, with KL

equal to c and LM equal to m' . This can always be done uniquely

by drawing first a right angle XLA1, measuring LK equal to r,

LM equal to m'
y constructing the perpendicular MN to LM at M

and then drawing the perpendicular KN from X to MN. With M
as center and radius equal to c strike an arc of a circle cutting XN at

P. We know that this arc will cut segment XN owing to what was

proved in Section 49. Indeed, MP is parallel to LK and angle PML
is equal to /z', that is, it is the angle of parallelism for the distance m'.

Then angle PMN is equal to /x since angle LMN is a right angle.

In other words, right triangles PMN and ABC are congruent, NM
and PN are equal to a and b

y respectively, and angle NPM is equal

to X. Furthermore, from the remarks made at the close of Section

49, we infer that XN is equal to /. Finally, if NX is produced

through X to jg, so that KQ is equal to b, the perpendicular drawn to

KQ at Q will be parallel to MP, since PQ is equal to /. It follows

that ngle NXL is /3, the angle of parallelism for the distance b.

We summarize the results obtained so far as follows: Given a

right triangle with parts a, b, c, X, /x (Fig. 50), there can always be

constructed uniquely a Lambert Quadrilateral KLMN (Fig. 51) with

parts a, 0, c, /, m t

',
and conversely. In other words, the existence of,

or possibility of constructing, one implies the existence of, or

possibility of constructing, the other.

The reader should observe carefully how to letter the corre-
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spending Lambert Quadrilateral when the triangle is given, and

conversely. Once he has learned to do this he will be ready to

follow through the sequence of right triangles and Lambert Quad-
rilaterals now to be described.

As already explained, the existence of the right triangle

a, b, c
9 X, /u (i)

implies the existence of the Lambert Quadrilateral with parts a,

ft, c, /, m'. One can then construct a quadrilateral like this one but

with the sides which include the acute angle interchanged and also

those including the right angle which is opposite the acute angle.

This Lambert Quadrilateral, with parts m'
', /3, /, c, a, implies the

existence of a second right triangle

',*,/, 7, \ (0
If one reverses the order of the parts of this right triangle, it follows

that there exists a quadrilateral with parts i, M' /, *', c
f

. Reversal

of the sides of this quadrilateral leads to a right triangle with parts

f ', m', a', X, ft'. (3)

In a similar way is proved the existence of a fourth right triangle

/', c'
t b>, a', M, (4)

and a fifth,

*,/',,0',7. (5)

If the process is continued, the original triangle is obtained next and

the cycle is closed. Thus the existence of one right triangle implies

the existence of four right triangles associated with it.

It will later prove a great convenience for the reader to be able to

write down this series of five associated right triangles as an aid to

effecting certain constructions and in modifying certain formulas.

This can be done without the necessity of memorizing the parts, or

going through the chain of reasoning described above, by the use of

the following device.

Place the letters a
f

, b
1

', c, /, m on the sides of a pentagon on the

outside as indicated in Figure 51. Then write the same letters in the

same cyclic order on the inside, but with each one rotated counter-

clockwise one place. Starting with right triangle *, 4, c, X, /z, we
can pass to a second of the associated right triangles by finding on the

outside the letter corresponding to each letter representing a part of

the first triangle and replacing it by the one suggested by the corre-

sponding letter on the inside. Thus a is replaced by b % since a'
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corresponds to b'\ b is replaced by m f

, since V corresponds to m\

c is replaced by /, since c corresponds to /, A is replaced by a', since /

corresponds to a'\ and finally ju is replaced by 7, since m corresponds

to c. Thus we obtain the triangle with parts b, m', /, a'
y y. By using

c

Figure 52

the same drawing we can pass to the third triangle by associating

the letters of the second with those on the outside and noting the

corresponding letters on the inside, and so on until the cycle is

completed. Another way is to move each letter on the inside

counterclockwise one position and then pass from the first triangle

to the third, and continuing, from the first to the fourth and fifth.

An alternative procedure, which amounts to the same thing, may
be preferred. With the letters arranged upon the sides, or parts, of

the pentagon as on the outside in Figure 51, choose any one of the

five parts as middle part. Call the sides adjacent to it the adjacent

parts and the remaining two sides the opposite parts. Then to obtain

one of the series of associated right triangles, select any one of the

five sides as middle part and regard the segment indicated by its

letter as hypotenuse. Regard the complementary segments of the

segments indicated by the letters on the opposite parts as legs, and

the angles of parallelism for the segments indicated by the letters on

the adjacent parts as their respective opposite angles. If each part

is selected in turn as middle part, all five triangles will be obtained.

As an example of the use that can be made of the right triangles

associated with a given right triangle, let us show how to find a

point on one of two intersecting lines at a given distance from the
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other. This problem, suggested previously,
11

is equivalent to that

of the construction of a right triangle for which one acute angle and

the opposite side are given.

Let a, b, c, A, M represent the parts of the right triangle to be con-

structed with b and /* given. Then we know that there exists a right

triangle with parts m' y b, /, 7, a. Since M is given, /i' and conse-

quently m
f

can be constructed. Then the construction of the second

triangle presents no difficulties, for the lengths of the legs are known.

Since one of its acute angles is a', it is a simple matter to draw a and

then a. Then with the two legs of the required triangle known, its

construction is easily accomplished. There is, by the way, no re-

striction on the sizes of the given parts in this problem, except that

the angle must be acute.

EXERCISES

i. Construct a right triangle, given A and p, the two acute angles Note how the

restriction that the sum of X and// must be less than a right angle is taken into account.

i. Construct a Lambert Quadrilateral, given the two sides including the acute

angle. Can this always be done regardless of the lengths of the given sides?

3. Construct a Saccheri Quadrilateral, given the base and the equal summit angles.

Do the same, given the summit and summit angles

4 Given two non-intersecting lines, find a point on one of them at a given per-

pendicular distance from the other 12 Note that this given distance must be greater

than the distance between the lines measured along their common perpendicular.

5. Construct a pseudo-square, i c., a quadrilateral with equal angles and equal sides.

54. The Construction of a Triangle when Its Angles are Given.

We now have all that is needed for the construction of a triangle

when its three angles are given. This construction 13 can always be

made, provided, of course, that the sum of the angles is less than two

right angles.

If two of the given angles, or all three of them, are equal, the con-

struction is easy. The problem then resolves itself into the con-

struction of a right triangle given the acute angles.

Assume then that the given angles are unequal. Suppose for the

purpose of analysis that the required triangle has been drawn. We

11 Sec Section 47.
12

Suggested in Section 47.
13 Due to Licbmann. See his Ntchteukltdtscbt Geometrte, ind edition, p. 41 (Berlin

and Leipzig, 1911).
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know that at least two of the angles are acute. It will be con-

venient to designate them by /x and MI (Fig- 53). If the altitude b is

drawn from the third vertex it will divide the third angle into two

acute angles X and \\ and the opposite side into two segments a and

a\. Let the sides of the third angle be c and c\. The required tri-

angle is thus divided into two right triangles with parts a, b, c, X, /i,

and a\, b, c iy Xi, MI- From the results of the last section the existence

of these triangles implies the existence of right triangles with parts

*', ', a', X, 0', and */, i', */, \ lt ft'. These triangles PQR and

PQiRi can be constructed (Fig. 54) and adjoined, the angles X and Xi

adjacent to one another and hypotenuse lying on hypotenuse. Then

if QR and jgiRi, one or both produced if necessary, intersect in a

point S, triangle RSRi is an isosceles triangle and the bisector ST of

angle RSRi is perpendicular to PRi.

This analysis leads to the following construction. Given the

three angles of a triangle /*, MI and X + Xi, the first two acute, con-
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struct angle QPQi equal to X + Xi and measure off on its sides PQ
equal to m* and Pjgi equal to m\. Draw perpendiculars to PQ and

PQi at Q and jgi, respectively. If these perpendiculars intersect in a

point S, draw that bisector of the angles at J'such that the perpendic-

ular to it from P lies within the angle QPQi. This perpendicular will

make with QS an angle of the same size as the one it makes with

QiS. Call this angle 0' and the two angles into which QPQi is

divided by the perpendicular X and Xi. Once the segment b is con-

structed, it is mere routine to construct the required triangle.

The construction outlined apparently depends upon the condition

that QR and QiRi intersect. But so far as our investigation has gone,

we are not sure that they may not on occasion be parallel or non-

intersecting. However, we need not concern ourselves about this,

for in any case the perpendicular bisector of RRi is the line of

symmetry for QR and jgiRi. The construction for this line, to be

described in Section 57, is perfectly general and may be used to ob-

tain it in any one of the three cases.

55. The Absolute.

Before we turn our attention to other matters, it will be appropri-

ate to add a few remarks regarding ideal and ultra-ideal points. We
have already recognized that, when these concepts are taken into

account, the statement that two lines determine a point is always

true. But it is not always true that two points determine a line and

it will be of interest to note the exceptions.

Two ordinary points always determine a line and it is assumed

that the line can be drawn. An ordinary point together with an

ideal or ultra-ideal point determines a line and the line in each case

can be constructed, the construction amounting to drawing a line

through a point parallel to a given line in a given sense in one case

and perpendicular to a line in the other. We have learned that one

and only one line can be drawn parallel to each of two given lines

in a specific sense, provided the two lines are not parallel to one

another in these senses. Accordingly, two ideal points always

determine a line.

But an ideal and an ultra-ideal point do not always determine a

line, nor do two ultra-ideal points. In the first case the construction

amounts to drawing a line perpendicular to one line and parallel to

another. The exception occurs when the given ideal point lies on
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the line representing the ultra-ideal point. In the second case the

construction amounts to drawing a line perpendicular to each of the

representative lines of the ultra-ideal points. This can be done only
when these lines are non-intersecting. Thus two ultra-ideal points
do not determine a line if their representative lines intersect or are

parallel.

Our ideas along these lines can be regimented in a remarkable way
by means of the accompanying drawing (Fig. 55). The tyro is to

Ultra- Ideal
?oinfs

Figure 55

regard it merely as a diagram conveniently exhibiting the-. relation-

ship between ordinary and extraordinary points.

If any line is allowed to rotate continuously about any one of its

points, every point of the line, including each ideal point, will trace

out a continuous path. The rotating line will at some time during

the complete revolution be parallel in either sense to every line of

the plane in each sense. Then each ideal point of the rotating line

will eventually coincide with every ideal point in the plane. The

path traced out by the ideal points of the rotating line is the locus

of all of the ideal points of the plane and this locus we describe as a

conic because it has the property that every line of the plane inter-

sects it in two points. It was Cayley
14 who called this locus of the

ideal points the absolute.

14 See Section 34.
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Let the conic in the diagram (Fig. 55) represent the absolute. All

points on the conic are then regarded as ideal. All points inide the

absolute, that is, all points from which no real tangent lines can be

drawn to the conic, represent ordinary points. The points outside

are regarded as ultra-ideal. Since every line in Hyperbolic Geometry
contains two ideal points, only lines which cut the absolute in two

real points are regarded as representing the lines of our geometry.

By way of examples, lines 12i% and 12il22 represent parallel lines;

lines 12il23 and 122^4 are intersecting. The point of intersection T
t

of the tangent lines to the conic at fii and 122 , where the line / cuts

it, is chosen to represent the ultra-ideal point which has / as repre-

sentative line. All lines through T
t
are looked upon as perpen'dic-

ular to / and are non-intersecting. The drawing displays in striking

fashion the exceptional cases in which two points do not determine

a line.

From our point of view, the absolute is of course inaccessible.

We reiterate that the beginner in geometry is to regard the diagram

merely as an aid in coordinating ideas and is not to try to make too

much out of it. On the other hand, the advanced student, one who
understands the viewpoint of projective geometry , will quickly grasp
its deep significance and readily derive its implications. He will

recognize at once how the character of a geometry depends upon the

nature of the absolute. 16

56. Circles.

We have carried over into the geometry which we are studying,

along with other definitions, that of the circle: the locus of points

at a constant distance, called the radius, from a fixed point, called

the center. But it is probably not necessary to remark that much of

the Euclidean theory of the circle must be abandoned or greatly

modified here. The careful student will have little difficulty in dis-

tinguishing between those Euclidean propositions on the circle

which do not remain valid and those which do. For example, the

inscribed angle theorems depending on the properties of Euclidean

parallels no longer hold; an angle inscribed in a semicircle is no
16 In regard to the character of the absolute in Euclidean Geometry and if we arc

allowed to anticipate in Elliptic Geometry, see Caylcy's Stxth Memotr, referred to

in Section 34, or consult Vcblcn and Young- Projective Geometry, Vol. II, Ch. VIII

(Boston, 1918). See also Coxeter: Non-Eucltdean Geometry (Toronto, 1941).
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longer a right angle or even constant. On the other hand, a line

from the center of a circle perpendicular to a chord still bisects the

chord; a line perpendicular to a radius at its extremity is still a

tangent line.

We do not propose to present here a detailed account of the

properties of circles. The reader who is interested may carry out his

own investigations. In our limited space we must restrict ourselves

to discussion of the broader and more fundamental differences which

have been brought about by a change in the postulate of parallels.

A case in point arises when we consider the limiting form of a

circle as its radius becomes infinite. In Euclidean Geometry it is a

straight line; in Hyperbolic Geometry it is not a line but a curve of

peculiar character. We shall find that by skillfully modifying our

definition of circle we can, by a simple and natural change of view-

point, study this curve and its properties without the neccessity of

drawing upon the fact that it is the limiting form of a circle. To do

this, we introduce in the next section the theory of corresponding

points.

EXERCISES

i. Prove that if a quadrilateral is inscribed in a circle the sum of one pair of op-

posite angles is equal to the sum of the other pair.

i. Construct the tangent lines to a given circle from a given point outside the

circle.

3. Construct the tangent lines to a given circle parallel to a given line; perpendic-
ular to a given line.

4. Show that an angle inscribed in a semicircle cannot be a right angle, that, as a

matter of fact, it must be acute. Prove that if the angle inscribed in a semicircle could

be proved constant, it would' have to be a right angle and the geometry Euclidean.

57. Corresponding Points.

If two points P and jg, one on each of two straight lines, are

so situated that the two lines make equal angles with segment PQ
on the same side, then P and Q are called corresponding points on the

two lines, each one corresponding to the other.

In undertaking the task of discussing the elementary properties of

corresponding points, we must recognize three cases, since the lines
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on which the points lie may be parallel, intersecting or non-inter-

secting.

Corresponding Points on Parallel Ltnes.

Theorem 1. Given any point on one of two parallel lines, there

is always one and only one point on the other which corresponds

to it.

B

Let AH and Bit (Fig. 56) be any two parallel lines with A any point

on the first and B any point on the second. Join A and B. If the

bisectors of angles ABtt and BAH are constructed they will intersect

in a point C. It is easy then to prove that the perpendiculars CD and

CE, drawn from C to Ail and Bft, respectively, are equal. It follows

that G2, the common parallel to Ail and Bil through C, bisects angle

DCE, since the angles of parallelism for equal distances are equal.

Select any point F on Q2, or on Cil produced through C, and con-

struct the perpendiculars FG and FH to Ail and Bil. Then by means

of congruent triangles it can be shown that FG and FH are equal

and make equal angles with Fil. We point out a fact which will be

useful later, namely, that DG and EH are also equal.

Having constructed Q2; draw the perpendicular PK from any

point P on Ail to Cil. From K draw the equal perpendiculars KM
and KN to Ail and Bit. It is obvious that the point M will lie on the

side of P in the direction of parallelism. Then on Bil measure off

from N, in the direction opposite that of parallelism, the segment

Nig equal to MP. Join K and Q. It will not be difficult to show now
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that points P, K and Q are collinear and that angles PQSl and QP&
arc equal. Incidentally it appears that CQ is an axis of symmetry
for the parallel lines AQ, and Bti. Thus we are always able to con-

struct a point Q on one of two parallel lines which corresponds to

any point P on the other.

It is left to the reader to prove that there cannot be more than one

point on Btt which corresponds to a given point on Ail.

EXERCISE

Show that the line Cil constructed above is unique for any two given parallel lines

Ail and Bil, and that it is the locus of all points equally distant from those lines. Thus,
if ABU is regarded as a triangle with an ideal vertex, C$2 may be considered the bi-

sector of the angle AUB. It follows that the bisectors of the angles of such a triangle

are concurrent

Theorem 2. If three points P, Q and R lie one on each of three

lines which are parallel to one another in the same sense, and if O
corresponds to P and R corresponds to O, then the three points

cannot be collinear.

For, if P, Q and R (Fig. 57) were collinear, the sum of angles

PQSl and Rjpfi would equal two right angles and therefore so also

would the sum of angles QKl and QRSt. But that would be absurd

under the circumstances.

Theorem 3. If three points P, O and R lie one on each of three

lines which are parallel to one another in the same sense, and if O
corresponds to P and R corresponds to 0, then R corresponds to P.

Figure 57
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For the perpendicular to PQ(Fig. 57) at its midpoint is the axis of

symmetry for the parallels Ptt and jgQ. Similarly the perpendicular

to QR at its midpoint is the axis of symmetry for the parallels (fl

and 1W2. Since the perpendicular bisectors of two sides of the tri-

angle PQR are parallel, that of the third side must be parallel to

them in the same sense and it follows easily that P and R are corre-

sponding points.

Corresponding Points on Intersecting Lines.

In the theory of corresponding points on intersecting lines, it is

convenient to regard the intersecting lines as rays emanating from

the point of intersection. With this viewpoint the student will be

able to prove for corresponding points on intersecting lines the same

three theorems proved above for corresponding points on parallel

lines. The proofs are simpler than those for parallels.

Corresponding Points on Non-Intersecting Lines.

The reader will have no difficulty in proving, for corresponding

points on non-intersecting lines, the three theorems proved above

for corresponding points on parallel lines. In this case the lines

under consideration have an ultra-ideal point in common, that is,

they have a common perpendicular. There is one exception to

Theorem i in this case.

58. Limiting Curves and Their Properties.

If, on any ray of a sheaf of rays with an ordinary point for vertex,

a point is selected and then points corresponding to this one on

other rays are constructed, these points will all lie on a circle.

Indeed, a circle can be defined as the locus of a set of corresponding

points on a sheaf of rays with an ordinary point for vertex. This

alternative definition; from which can be derived all of the well-

known properties of the circle, is the one referred to in Section 56.

It is introduced here because it affords an easy transition from the

familiar circle to new and strange types of curve. All that is neces-

sary is to change the character of the sheaf of rays upon which the

corresponding points lie.

In particular, let us consider the locus of a set of corresponding

points on a sheaf of parallel lines, that is, on a sheaf with an ideal

point for vertex. This locus is not a straight line in Hyperbolic



114 NON-EUCLIDEAN GEOMETRY

Geometry, for, by Theorem 2. of the preceding section, no three of

its points are collinear. Nor is it a circle, although, owing to the

similarity of its definition to that of the circle, it may be expected
to have many properties in common with it. Since this curve is the

limiting form approached by a circle as its radius becomes infinitely

large, we shall call it a limiting curve. The rays of the sheaf

of parallel lines are called its radii or axes, and we shall occasionally

refer to the ideal center of the sheaf as the center of the limiting
curve.

Let us consider any two limiting curves Pg and P'Q' with centers

fl and &', respectively (Fig. 58). Let A
9
B

9 C, D, etc., be any set of

points chosen on PQ and draw the radii to them. On P'jg' choose

any point A' and draw the radius to it. Then construct angle
ttA'B' equal to angle &AB and measure A'B' equal to AB. If B'fl'

Figure 58

is drawn it is clear that angles ABl and A'B'Sl' are equal and hence

also are angles A'B'Sl' and B'A'Sl'. Therefore B r

is on the limiting

curve jP'jg'. Continuing in this way, points C 9 D', etc., can be

constructed on this limiting curve so that chords B'C
9
C'D'

9 etc.,

are equal to chords BC9 CD, etc., and the angles which pairs of

corresponding chords make with the radii drawn to their extremities

are equal also. We sum up these results by asserting that all limiting

curves are congruent.
17 The correspondence just described can be

16 Also frequently called a horocyclt.
17 See notes on modern ideas of congruence in Heath, loc. cit., Vol. i, pp. 117-118.
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set up on two arcs of limiting curves which arc concentric or even

on two arcs of the same limiting curve. We recognize the latter case

by saying that a limiting curve has the same curvature 18 at all of its

points.

Again, as a consequence of the investigations just outlined, we
conclude that for any two limiting curves, or the same limiting

curve, equal chords subtend equal arcs and equal arcs subtend equal
chords. Here, of course, by equal arcs we mean arcs such as AD
and A'D r

(Fig. 58) between the points of which there is a one-to-one

correspondence of the kind described above. Furthermore, unequal
chords subtend unequal arcs and the greater chord subtends the

greater arc.

A straight line cannot cut a limiting curve in more than two

points, for no three points of such a curve are collinear. If a line

cuts a limiting curve in one point, and is noj: a radius, it will, in gen-

eral, cut it in a second point. For example, let line AC (Fig. 59) cut

Q/

A

Figure 59

the limiting curve PQ in a point B. Draw the radius J3fl. If we assume

that angle CB12 is acute, a distance corresponding to it as angle of

parallelism can be constructed. Then, when BD is measured equal
to twice this distance, D will fall on the limiting curve. Let the

18 We use this word rather loosely here to convey the idea of the amount of bending.
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line BD rotate about B. Point D will approach B as angle DBQ
increases and will coincide with B when angle DKt is a right angle.

Thus a tangent line to a limiting curve at a point is perpendicular to

the radius drawn to that point. In other words, a limiting curve

cuts its axes at right angles and may be regarded as an orthogonal

trajectory of its sheaf of radii. Furthermore, it is obvious that the

curve is concave in the direction of parallelism of the radii.

Finally, it is not difficult to see that a line perpendicular to a

chord of a limiting curve at its midpoint is a radius and that it bi-

sects the arc subtended by the chord. Thus three points of a limiting

curve determine it; when three of its points are given the center can

be determined and other points constructed.

EXERCISES

i. How many limiting curves pass through two given points
5

i. To draw a straight line in Hyperbolic Geometry a straight-edge is used; to draw

a circle, compasses. What instrument is to be used in tracing limiting curves?

3. Prove that the segments of radii included between any pair of* concentric limiting

curves are equal.

4. Show that the radius drawn to the midpoint of an arc of a limiting curve bisects

the corresponding arc of any concentric limiting curve, or, what is the same thing, that

the line joining the midpoints of any two corresponding arcs of concentric limiting

curves is a radius. Corresponding arcs are arcs included by any pair of common radii.

5 . If points Pi, P2 , Pa, . . . . , Pn-i divide the arc AB of a limiting curve into n

equal parts and the radii through these points cut the corresponding arc A'B' of a

concentric limiting curve in points P/, P2 ', P3 ', . . . -
, P'-i, then the latter points

divide arc A'B' into n equal parts.

6. Two corresponding arcs of two concentric limiting curves arc unequal and the

shorter arc lies in the direction of parallelism from the longer.

7. Given a point A on a limiting curve, the radius AH, and nothing else. A line p
is drawn perpendicular to Ail at point C. Construct the two points in which p cuts the

limiting curve. Suggestion.
19 Let B (Fig. 60) be one of the required points, construct

right triangle ABC and use the conventional lettering. The existence of a right triangle

with parts *, b, c
t A, n assures the existence of a Lambert Quadrilateral with parts

, /', /, a', c'. Measure CD on p equal to a' and draw the perpendicular DE from D to

the tangent AE at point A of the limiting curve. Draw Btt and Dil and prove that the

latter,
20 when produced in the opposite direction, is parallel to AE.

19 Max Simon, Nichteuklidiscbe Geometric m Elemcntarcr Bebandlung, arranged and

edited by K. Fladt (Leipzig and Berlin, 1915).
20 The line Dtt is drawn here as though it were curved. The lines of Hyperbolic

Geometry arc as "straight" as those in Euclidean, but it is frequently convenient to

represent them as curved when it is important to exhibit, within limited space, their

asymptotic relationship to other lines, rather than their "straightncss."
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8. Given any point on a limiting curve, find a second point of the curve such that

the tangent line at this point is parallel to the radius drawn to the first point. Do the

same for a circle.

Figure 60

9.
If a given point is so located that tangent lines can be drawn from it to a given

limiting curve, show how to construct them. Sugyestton*
1 Let P be the given point

and draw P12. It will cut the limiting curve in a point Q. Construct the tangent line

to the limiting curve at Q. Then, by using Exercise 7, determine the points R and S in

which the limiting curve concentric with the given one and passing through P is cut

by this tangent. Let V and V be the points in which Ri2 and SO, cut the given limiting

curve. PU and PV arc the required tangents.

10. If a quadrilateral is inscribed in a limiting curve, prove that the sum of one pair

of opposite angles is equal to the sum of the other pair.

59. Equidistant Curves and Their Properties.

Let us turn our attention next to the locus of a set of corresponding

points on a sheaf of rays with an ultra-ideal vertex. This locus is

not a straight line, nor is it a circle in the strict sense. From the

theory developed for corresponding points on such a sheaf, we know
that the curve is the locus of points which all have the same per-

pendicular distance from a straight line and are on the same side of

it, this line being the representative line of the ultra-ideal point
which is the vertex of the sheaf. For this reason it is called an

equidistant curve. The representative line is referred to as its base-

line, and the distance from every point on it to the base-line as the

21 The construction described is essentially that given by Euclid for drawing the

tangent from a point to a circle (III, 17). The fundamental character of his construc-

tion is indicated by the fact that it is independent of the parallel postulate and that it

remains valid when the center of the circle becomes ideal.
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distance. The rays of the sheaf are designated as the radii or axes

of the equidistant curve and the ultra-ideal vertex may be regarded
as its center. As a matter of fact, an equidistant curve properly con-

sists of two branches, one on each side of the base-line. A straight

line can be regarded as an equidistant curve with distance zero. In

Euclidean Geometry the equidistant curve becomes a pair of parallel

straight lines.

By methods similar to those used in the last section, the reader

can readily substantiate the following statements:

Equidistant curves with equal distances are congruent, those with

unequal distances are not. An equidistant curve has the same

curvature at all of its points. Two curves with different distances

have different curvatures, the greater the distance the greater the

curvature. An equidistant curve is concave in the direction of the

base-line.

For the same equidistant curve or congruent equidistant curves

equal chords subtend equal arcs, and conversely. The reference is

obviously to chords joining points of the same branch.

A straight line cannot cut an equidistant curve in more than two

points. If a line cuts such a curve in one point it will cut it in a

second unless it is tangent to the curve or parallel to its base-line. A

tangent line to an equidistant curve is perpendicular to the radius

drawn to that point, hence the curve may be regarded as an or-

thogonal trajectory of its sheaf of axes.

A line perpendicular to a chord of an equidistant curve at its mid-

point is a radius and it bisects the arc subtended by the chord. Three

points of such a curve determine it; when three of its points are

given the base-line can be determined and other points constructed.

As a matter of interest, we call attention to the fact that three

non-collinear points always lie on three different equidistant curves,

since the vertices of a triangle are equidistant from each of the three

lines joining the midpoints of the sides. We have already proved
that the vertices of a triangle lie on a circle, using the word in the

general sense; it will be a proper circle, limiting curve or equidis-

tant curve according as the center is ordinary, ideal or ultra-ideal.

In the latter case the three vertices lie on the same branch of the

equidistant curve. Now we recognize that there are, in the general

sense, four circles through the vertices of a triangle, just as there are

four circles touching its sides.
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EXERCISES

i. Show that the line joining any two points, one on each branch of an equidistant

curve, is bisected by the base-line and makes with the branches, i e., with their tan-

gent lines, angles which are related to one another like those which a transversal

makes with two parallels in Euclidean Geometry.

i. Let A and B be two points on one branch of an equidistant curve and A' and B'

two points on the other so located that AA' and BE' intersect on the base-line. Con-

struct lines AB' and BA' and compare the properties of the figure ABA'B' with those

of a parallelogram in Euclidean Geometry.

3. Given three points of an equidistant curve, construct other points GO when the

three points are on one branch, () when two lie on one branch and the third on the

other

4. The base-line for an equidistant curve and its distance are given Construct the

points in which a given line cuts the curve There are three cases to be considered

5 If a given point is so located that tangent lines can be drawn from it to a given

equidistant curve, show how to construct them.

6 Devise an instrument to be used in tracing an equidistant curve when its base-

line and distance are known.

7. Prove that, if a quadrilateral is inscribed in one branch of an equidistant curve,

the sum of one pair of opposite angles is equal to the sum of the other pair. How
must this statement be modified for a quadrilateral inscribed in an equidistant curve

if all vertices do not he on the same branch ?

8. Carry out for an equidistant curve the instructions of problem 8, Section 58.

60. The Limiting Curve as Related to Circles and Equidistant Curves.

With the completion of our introduction to the elementary prop-

erties of circles, limiting curves and equidistant curves, it wilf

perhaps be helpful to attempt to portray a little more clearly their

relation to one another.

Let / and m (Fig. 61) be two perpendicular lines intersecting at 0.

Choose any point A on m
y say to the right of /, and construct the

circle with A as center and radius AO. If A is allowed to move

toward 0, the radius AO approaches zero and the circle, with its

curvature increasing, approaches the point circle as limiting form.

On the other hand, if A moves in the opposite direction, the circle

increases in size, its curvature decreasing, and approaches as limiting

form a limiting curve through 0.

Next, choose any line n perpendicular to m at a point B and con-

sider the equidistant curve with as base-line and OB as distance.

As n is moved toward /, say from the right, the curvature of the

equidistant curve decreases and it approaches line / as a limiting
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form. However, as n moves away from 0, the curvature increases

and the equidistant curve approaches the limiting curve through
as limiting form.

On the left of / the situation is the same.

Fi'sure 61

EXERCISES

i. Describe six properties common to all types of curve: circle, limiting curve,

equidistant curve.

L. What procedure should be followed in attempting to determine whether three

given points lie on a circle, limiting curve or one branch of an equidistant curve ?

61. Area.

It will be remembered that, almost from the beginning of Book I,

Euclid regards figures as equal when they are congruent. Not until

I, 35 is reached do we find a modification of viewpoint. Here,

without so much as calling attention to the change, he introduces

the concept of figures which are equal but not congruent. The

proposition referred to is the one which states that parallelograms

which are on the same base and in the same parallels are equal to one an"

other. It will be profitable to recall the proof.
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B

If ABCD and EBCF (Fig. 61) are the parallelograms, BC the

common base, and AF and BC the parallels, the student can easily

reproduce Euclid's proof by showing that triangles EAB and FDC
SLTC equal, subtracting from each the triangle DGE and then adding
to each the triangle GBC. The proof is easily modified for the case

in which D and E coincide and the one in which AD and EF have a

segment in common.

Thus the equality of the two parallelograms results from the fact

that congruent figures have been subtracted from congruent figures

and then congruent figures added. Apparently nothing has been

used except the familiar common notions about equals added to and

subtracted from equals. It is to be observed, however, that the

assumption is tacitly made that it makes no difference where these

congruent figures are added or taken off.
22

It is helpful to recognize

this broader type of equality by the use of the word equivalent, as

did Legendre, who reserved the word equal for use in the sense of

congruent.

It should be made very clear that the proposition just stated and

proved is typical of all of those in the remainder of Book I and in

Book II which have to do with equal, or rather equivalent, figures.

These propositions are purely geometric; they are not metric in

character. No unit of area is used, nor indeed is the notion of area

introduced at all.

But from the idea of equivalence it is only a step to the concept of

n Sec Heath, loc. ctt., Vol. i, pp. 317-8.
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area, a concept ordinarily associated with closed figures, just as the

concept of length is associated with line segments. Areas or meas-

ures of area are thought of as magnitudes subject to the processes of

addition and subtraction and the relations of equality and inequality.

The theory of areas involves complications and difficulties. Even

in Euclidean Geometry this is true, although to a degree matters are

simplified there owing to the existence of the square. Attention is

called to the fact that this use of a unit square for measuring areas

implies an intimate relationship between the unit of area and the

unit of length, a relationship which may occasionally be overlooked

with resulting confusion.

In Hyperbolic Geometry there is no square. The quadrilateral

with sides equal and angles equal has all of its angles acute. How-

ever, the general theory of equivalence and area has been placed upon
a firm, logical foundation by modern investigators.

23 We propose

merely to outline briefly for this geometry the theory as it appears in

the light of recent developments.

62. Equivalence of Polygons and Triangles.

When two points on the perimeter of a polygon
24 are joined by a

line segment or, more generally, by a broken line, all points of

which lie within 25 the polygon, two new polygons are formed and

the polygon is said to be partitioned into two polygons. If two

polygons can be partitioned into the same finite number of triangles

and a one-to-one correspondence established so that pairs of corre-

sponding triangles are congruent, the two polygons are said to be

equivalent. As a consequence of this definition the following theorem

on the transmission of equivalence is easily proved.

Theorem 1. If two polygons are each equivalent to a third

polygon, then they are equivalent to one another.

23 Sec Hilbert, he. ctt
, pp. 69-81, the paper by Amaldi in Enriques' collection,

Questtont rtguardantt la gcomctna elementare (Bologna, 190x2), or a translation into Ger-

man, Fragen der Elemcntargeomctru, Vol. i, p. 151 (Leipzig, 1911), Max Simon, Vber dte

Entwicklung der Elementar-Geometne tm XIX. Jahrhundcrt, pp. 115-111 (Leipzig, 1906);
A. Finzel, Die Lehre vom Flachenmhalt in der alltgemetnen Geometric (Leipzig, 1911), or sec

Mathemattsche Annalen, 71 (1911), pp. 161-184
24 We refer here to stmple polygons. See Section 9.
tt Sec Section 9.
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Let polygons F and Q (Fig. 63) each be equivalent to polygon R.

Then to a partition of P into triangles corresponds a decomposition
of R into an equal number of triangles congruent to them. Similarly

to a partition ofQ corresponds a partition of R.

Fisure 63

The lines for the two partitions of R divide it into triangles and

polygons, and the polygons can, by the addition of segments if

necessary, be partitioned into triangles. If, in the partitions of P
and Q, lines are added corresponding to those inserted to complete
the decomposition of R, it will appear that P and Q are thus divided

into the same number of triangles, corresponding and congruent in

pairs.
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Theorem 2. Two triangles with a side of one equal to a side of

the other and having the same defect are equivalent.

M

6

Pi Sure 64

Let ABC (Fig. 64) be any triangle with D, and F the midpoints

of sides BC, CA, and AB, respectively. Draw FE and construct the

perpendiculars AL, BM and CN to it from the vertices. Then right

triangles ALF and BMP are congruent and so also are right triangles

ALE and CNE. As consequences, BM, AL and CN are equal, BCNM
is a Saccheri Quadrilateral which is equivalent to triangle ABC

and has each summit angle equal to one-half the angle sum of

triangle ABC, and FE is perpendicular to the perpendicular bisector

of side BC of that triangle. The reader should verify these results

for all positions of A with reference to B and C.

If one were to start with a second triangle A'B'C, with side B'C

equal to side BC of triangle ABC and with the same defect', it is clear

that, by the same construction, it could be shown equivalent to a

Saccheri Quadrilateral with the same summit and summit angles as

the one obtained above and hence congruent to it. Since the two

triangles are equivalent to congruent quadrilaterals they are equiv-

alent to one another.

Theorem 3. Any two triangles with the same defect are equiv-

alent.

26 This beautiful construction and much of the accompanying argument is due to

Henry Meikle (1844). Sec Frankland, Theories of Parallelism, p. 44 (Cambridge, 1910).
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B

Let ABC and A'B'C (Fig. 65) be any two triangles with the same

defect. It has already been proved that if a side of one is equal to a

side of the other they are equivalent. Assume then that no side of

one is equal to a side of the other, in particular that A'C is greater

than AC.

As before, join F and , the midpoints of sides AB and AC, and

draw the perpendiculars AL
t
BM and CN from A, B and C to FE.

Then locate on F, on either side of N, a point E" such that CE"

has length one-half that of A'C . This can be done, since one-half

of A'C is greater than CE, which in turn is greater than or equal to

CN. Draw CE" and produce it to A" so that E"A" is equal to

CE". Join A" to B. Since FE is perpendicular to the perpendicular

bisector of BC and cuts A"C at its midpoint, it will cut A"B at its

midpoint F". Then it is easy to show that triangles ABC and

A"BC have the same defect and are equivalent. But triangle A"BC
and A'B'C also have the same defect and a pair of equal sides and

are therefore equivalent. Thus triangles ABC and A'B'C arc equiv-

alent to the same triangle and hence are equivalent to one another.

Theorem 4.

same defect.

Any two triangles which are equivalent have the

The proof of this theorem can be simplified by the use of the theory
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of transversals as developed by Hilbert. 27 A segment joining a

vertex of a triangle to a point on the opposite side is called a trans-

versal. A transversal divides a triangle into two subtriangles, and

one or both of these can be subdivided by transversals, and so on.

It is an easy matter to prove that if a triangle is subdivided by

arbitrary transversals into a finite number of subtriangles, the defect

of the triangle is equal to the sum of the defects of all of the triangles

in the partition.
28

Furthermore, if a triangle is partitioned into

triangles in any way at all, this partition, if it is not already a

partition by transversals, can be made one by the addition of lines,

and as a consequence it will follow that the defect of the triangle will

be equal to the sum of the defects of all of the triangles in the

partition. All that is necessary is to draw transversals from any
one of the vertices of the triangle through each vertex in the parti-

tion. These transversals will divide the triangle into a number of

triangles with a common vertex. Some or all of these are divided

by the lines of the partition into triangles and quadrilaterals, and

the quadrilaterals can be subdivided into triangles by the addition

of diagonals to complete the partition by transversals.

If two triangles are equivalent they can be subdivided into the

same finite number of triangles congruent in pairs. Since the defect

of each triangle is equal to the sum of the defects of all of the trian-

gles in the partition, it is clear that the two triangles will have the

same defect.

Finally, a triangle is said to be equivalent to the sum of two or more

triangles when the triangle can be partitioned into a finite number

of triangles and the two or more triangles can be partitioned alto-

gether into the same number of triangles congruent to corresponding

triangles in the first partition. Since the defect of a triangle is

equal to the sum of the defects of all of the triangles in any partition

of that triangle, we have the following theorem:

Theorem 5. If a triangle is equivalent to the sum of two or more

triangles, its defect is equal to the sum of their defects.

27
Hilbert, Grundlagen derGeomctnc, 5th edition, pp. 57-60 (Leipzig and Berlin, 1911),

or the Townsend translation of the first edition, pp. 61-66
28 See Ex. 3, Section 44.
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63. Measure of Area.

At this stage we change our viewpoint, with nice distinction.

Since two triangles are equivalent when and only when they have

the same defect, let us define the measure of area of a triangle, or

simply the area, as the number obtained by multiplying the defect,

expressed in terms of the unit described in Section 52., by a constant

C2
. This constant is a proportionality factor which can be deter-

mined once a triangle is selected to have unity as its measure of

area. It will play a prominent part in later developments and be

subjected to some significant interpretations. The measure of area

A of a triangle, with X, /z and v as the measures of its angles, is then

given by the formula

A = 62
(7T

_ x - n - 0-
The student will now have no difficulty in verifying the following

theorems :

Theorem 1. Two triangles. have the same measure of area if and

only if they are equivalent.

Theorem 2. If a triangle is partitioned into triangles in any way,

the measure of area of the triangle is equal to the sum of the meas-

ures of area of all of the triangles in the partition.

Theorem 3. If a triangle is equivalent to the sum of two or more

triangles, the measure of area of-this triangle is equal to the sum of

the measures of area of the two or more triangles.

Generalizing, we define the measure of area of a polygon as the

sum of the measures of area of all of the triangles of any partition of

the polygon into triangles. From what has already been said, it

should be clear that this sum does not depend upon the particular

partition used. If the difference between (n i) straight angles

and the sum of the angles of a polygon of n sides is called the de-

fect of the polygon, we see that the defect of a polygon is equal to

the sum of the defects of all of the triangles in any partition. We
conclude that the last three theorems can be generalized by replacing
the word triangle by the word polygon wherever it occurs.

29 See Ex. 4, Section 44.
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64. The Triangle with Maximum Area.

In a letter
30 written in 1799 to the elder Bolyai, Gauss, who was

at that time still trying to prove the Fifth Postulate, wrote:
44

1 have arrived at much which most people would consider

sufficient for proof, but which proves nothing from my viewpoint.

For example, if it could be proved that a rectilinear triangle is

possible with an area exceeding any given area, I would be in a

position to prove rigorously the whole of (Euclidean) geometry.
"

But he could not prove that there is no largest triangle. In fact,

upon the assumption that there exists a triangle of maximum area,

Gauss arrived at the formula, given in the preceding section, for the

area of a triangle. This notable derivation, which he disclosed to

Bolyai in 1831 in his letter
31

acknowledging receipt of the Appen-

dix, is a beautiful bit of analysis. We present the essence of it here

to conclude the discussion of area.

Gauss recognized, to begin with, that if there exists a triangle of

maximum area it can be none other than that limiting form of

triangle, with all of its vertices ideal points and its angles all zero

angles, constructed by drawing a line parallel in opposite senses to

two parallel lines. All such triangles are congruent and we shall

assume that their common area is a constant 5.

Assume that the area enclosed by a straight line and the parallels

to it through any point is a function of the angle between the

parallels, say /(TT
-

<p). Then /(IT)
= 5 and /(o) = o. An exami-

nation of Figure 66(a) shows that

flr -*)
while Figure 66(b) reveals that

/GO + /WO+/C*-*-*)-*.
Whence

X*) +/&T -<>-*) -/( -fO.

and we conclude that the function satisfies a functional equation of

the form

/00+/GO-/0 + M).

30 Sec Section 30.
81 Sec Section 30.
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The solution 32 of this equation is

/CO - *,

where c* is a constant. Then

6 - AT.

129

Turning now to any triangle, the angles of which measure X, M
and v (Fig. 67), we produce its sides and draw common parallels to

32 If the function is assumed to be continuous and to have a derivative, then it

follows, since

that /'() = /'GO.

Thus /'(0) . ,

and /(0) . ^ + b,

where ^ and ^ are constants. But b = o since /(o) o.
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them, taken in pairs. Then, designating the area of this triangle by

A, we have

A+/00+/GO+/00 = <
2*

or finally

A = C\TT
- A - M -

")

Figure 67

EXERCISES

i Prove that the locus of the vertices of all triangles on the same base and having

the same defect is an equidistant curve.

2. If E and F are the midpoints of sides AC and AB of triangle ABC, and
'

and F r

arc the midpoints of sides A'C and A'B' of triangle A'B'C, prove that, when EF and

E'F' are equal and the perpendiculars from A to EF and A' to E'F' are also equal the

triangles arc equivalent

3. On the hyperbolic plane, a regular network of regular polygons with n sides is

to be constructed, p of them to meet at a point. Prove that the area of each polygon is

mrC\ i ), with the condition -+ - < - Show also that the area of the

\ n p/ n p 2.

smallest finite regular quadrilateral with which the plane could be paved is -irC2 .

(Chrystal, 1880)
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". . . . I can solve any problem in it with the exception of the deter-

mination of a constant, which cannot be designated a prtort. The

greater one takes this constant, the nearer one comes to Euclidean Geom-

etry, and when it is chosen infinitely large, the two coincide." GAUSS

65. Introduction.

We turn next to an investigation of the trigonometry of the Hyper-
bolic Plane. In their developments of this theory, both Bolyai and

Lobachewsky made use of the limiting surface or horosfherc, the sur-

face generated by the revolution of a limiting curve about a radius.

It can be shown that upon that surface the geometry of the geodesies,

which are limiting curves, is analogous to the geometry of straight

lines on the Euclidean Plane. 1 But we shall derive the formulas for

plane trigonometry without any appeal to solid geometry.
2

66. The Ratio of Corresponding Arcs of Concentric Limiting Curvet.

We begin by recalling certain relationships, already verified by
the reader,

3 between corresponding arcs of concentric limiting curves,

that is, between arcs included by a pair of common radii.

1 See Sommerville, The Elements of Non-Eucltdean Geometry (London, 1914), pp. 56,

ff. and 84, for an elementary treatment from this standpoint.
2 The development which we use follows closely that of Licbmann, Ntchttukltdiscbe

Geometrte, ind edition, Chapter iii (Leipzig and Berlin, 1911). Sec also Gerard, Sur la

Geometrte Non Eucltdtenne, Nouvellcs Annales dc Mathematiques, 1893, pp. 74-84. For

a particularly careful treatment based upon the fact that Hyperbolic Geometry is

Euclidean in character in an infinitesimal domain (Section 74), consult Coolidgc,
Non-Eucltdean Geometry, p. 48, ff. (Oxford, 1909). For still another method with a

different viewpoint, see W. H. Young, On the Analytical Basts of Non-Euclidtan (sic)

Geometry, American Journal of Mathematics, Vol. 33, 1911, pp. 149-186.
1 Sec Section 58.

131
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GO Segments of radii included between any pair of concentric

limiting curves are equal.

()*The radius which bisects an arc of a limiting curve also bisects

the corresponding arc of any concentric limiting curve.

(c) The lines joining the midpoints of any two corresponding
arcs of concentric limiting curves is a radius.

00 If points' Pi, P2 ,
P3 ,

P4 ,
. . . . , Pn-i divide an arc AB of a

limiting curve into n equal parts and the radii through the points of

division cut the corresponding arc A'B' of a concentric limiting

curve in points P/, P2 ', Pa', P/, . . . . , PV-i, then the latter

points divide A'B' into n equal parts.

Theorem 1. If A 8, Care three points on d limiting curve and

A 1

,
B'

t
O are the points in which the radii through A, 8, C cut a

concentric limiting curve, then

arc AB : arc AC - arc A'B' : arc A'C'.

There are two cases to be considered.

First assume that arcs AB and AC (Fig. 68) are commensurable,

Q

Figure 68

and let arc AP be a common unit of measure such that arc AB : arc

AP = w and arc /4C : arc /4P =
, w and being integers. Draw the

radius through P; it will cut A'C in a point P'. Then it is clear

that arc A'B 1

: arc A'P' - w and arc A'C' : arc A'P' - w and thus that

arc AB : arc AC = arc A'B' : arc A'C.

Next assume that arcs AB and XC are incommensurable. If arc AP
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is a unit of measure for arc AB, this unit can be applied to arc AC
an integral number of times with arc QC as a remainder, where arc

QC is less than arc AP. Draw the radius through jg; it will cut A'C'

in a point Q'. We have, from the case already proved,
arc AB

=
arc A'B'

arc AQ arc A'Q''

If the unit of measure, arc AP, is decreased, arcs QC and jg'C' arc

decreased, and arcs AQ and A'Q approach arcs AC and A'Cr

, respec-

tively, as limits. Then

arc AB _ arc AB
hm^J&~^~AC

and

arc A'B' arc A'B'
lim

arc A'Q' arc A'C

But if two variables are always equal and each approaches a limit,

then the limits are equal. Therefore

arc AB : arc AC - arc A'B' : arc A'C'.

Next, on the line P12 (Fig. 69), choose A, any point at all, and

points B, C, D, , /..., etc., so that AB BC - CD - DE -

. . . .
, etc. Let Qp be any line parallel to K2 and points A\ 9 BI, Clt

Di, Ei, . . . . , etc., be the points on it corresponding
4 to A, B, C, D,

,...., etc. Then AiBi = Bid = CiDi - DiEi =
. . . .

, etc.

Draw the corresponding arcs of concentric limiting curves AA\ 9 BB\ 9

_ C, 0. E,

Figure 69

i, etc. Since the arcs grow shorter in the direction of

parallelism, arc AA f

can be marked off on arc AA\ equal to arc BB\.

If A'to is drawn, it will cut Bl^ in a point B'. As a consequence of

4 Sec Section 57.
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the congruence of figures AA'B'B and BB\C\C, it follows that arcs

BB' and CCi are equal and hence

arc AAi : arc BB {
= arc BB { : arc CC\ = arc CCi : arc DDi =

. . .
,

etc.

Furthermore, if the distance AB between concentric arcs is increased,

the ratio arc AA\ : arc BB\ is increased, and conversely. Thus we in-

fer that the ratio of two corresponding concentric arcs depends not

upon their position along the radii, nor yet upon the length of

either arc, but only upon the distance between them.

Theorem 2. The ratio of two corresponding arcs of two con-

centric limiting curves depends only upon the distance between

them, measured along a common radius.

At this point we are ready to select a unit of length. Since the

ratio arc AA\ : arc BBi (Fig. 69) is greater than unity, it can be

made equal to <?,
the base of the natural system of logarithms, by

proper choice of the length of AB. It is convenient to use AB, under

these circumstances, as the unit of length. Thus again we recognize

the absolute character of the unit of length in Hyperbolic Geometry.

The particular unit just suggested is the one best adapted to the

theoretical developments which are to follow. As a consequence

of its transcendental character, it cannot, unfortunately, be con-

structed with straight edge and compasses.
5

Thus, if we designate the arcs AA\, BBi, CCi, etc., in Figure 69

by J-, j-i, J2, etc., and if AB = BC = CD =.... =
i, we may write

s _ Jl _ J2 _ _ Sn~ l _
si sz s^

" ' ' '

Sn

and therefore

Sn
- S*~\

where n is a positive integer,

It is now mere routine to prove the following theorem:

6 Sec Licbmann, Ntchteukltdtschc Geometric, ind edition, 17 (Leipzig and Berlin,

1912.).
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Theorem 3. If s and 5* are the lengths of two corresponding arcs

of concentric limiting curves, the direction of sx from s being the

direction of parallelism for the common radii, and if the radial dis-

tance between the arcs is x, then

Of course if x is irrational, that is, if the radial distance is in-

commensurable in terms of the unit of length, it will be necessary

to use a limiting process such as the one used in the proof of Theo-

rem i.

A more general treatment results if the unit of length is so chosen

that the ratio arc AA\ : arc BBi (Fig. 69) is any constant a, greater

than unity, when AB is the unit of length. Then we have

sx
= sa~

x
.

Letting

, =,"*,

we have

*--"*,, (0

where, since c
l/k

is greater than unity, k is greater than zero. The

number k is a parameter for Hyperbolic Geometry which depends
for its value upon the choice of the unit of length, or, looked at from

another angle, it is a constant, the choice of which determines the

unit of length. It is the second constant which has been intro-

duced. 6

EXERCISES

i Show that if s and s arc the lengths of two corresponding arcs of concentric

limiting curves, the direction of st from s being the direction of parallelism for the

common radii, then the radial distance x between the arcs is given by

L. Given, in Euclidean Geometry, two intersecting lines PR and QR with distinct

points A, B, C, D on PR such that AB ~ CD and the corresponding
7
points A\, Bu Ci,

D, on QR. Draw the arcs AA it BBJf CCit DD { of concentric circles, center R. Prove

that the ratio arc AA\ arc BBi cannot equal the ratio arc CC\ : arc DDi.

3. Derive Formula (i) by assuming that the ratio s . s^ is a continuous function of

x, say /(x). Show first that /O)/GO = f(x + j) and then, if log /(*) - K*), that

FGO+ F(y) = FO + jO and consequently FO) = bx, where b is a constant.

6 Sec Section 63.
7 Section 57.
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67. Relations between the Parts of an Important Figure.

We shall utilize the results of the preceding section to obtain some

important formulas. But first it is to be observed that, given a point

on a limiting curve, another point can be found on the curve such

that the tangent line at the second point is parallel to the radius

through the first. The length of this arc of limiting curve, such

that the tangent at one extremity is parallel to the radius to the

other, will be computed by the methods of calculus in Section 78,

length of arc being defined in the usual way. We shall designate

this length by S. It is obviously a constant, since a chord of length

ip (Fig. 70), where II(jO
= -t subtends an arc of length iS. This

4

is the third constant which has thus far appeared. It will ultimately

be revealed that they are all the same.

Fisure 70

Let us start with an arc AB, of length s, of a limiting curve, center

12 (Fig. 71), such that j- is less than S. Then if the tangent line is

drawn to the curve at A
y
it will intersect the radius drawn to point

B in a point C. Designate the length of AC by /, that of BC by u.

By drawing chord AB, it is easy to show that in triangle ABC angle
ABC is greater than angle CAB and hence t greater than u.

If arc AB is produced through B to D so that arc AD is equal to S,

then the tangent line ACSl' will be parallel to the radius through D.

Next produce BC through C to a point E such that CE is equal to t.

It follows that the perpendicular to CE at E will be parallel to C12'
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and consequently to D12'. Construct the limiting curve, center ft,

through E and denote the point in which it intersects Dft' by F.

Arc EF is equal to S. The following relation is then easily obtained

by the use of Theorem 3 of Section 66:

J-j- JV-+>. (i)

Figure 71

Now produce arc BA through A to point G such that arc AG is

equal to S and draw the radius ftGft". This radius is parallel to the

tangent line at A. Produce CB through B to a point Hsuch that CH
is equal to t and draw the limiting curve, center ft, through H.

This curve cuts SlG in a point /. It is not difficult to show that the

line through H parallel to /4ft" is perpendicular to CH and therefore

is tangent to the limiting curve through H. We infer that arc HJ
is equal to S and finally that

S + s - A 1-". CO
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The addition of equations (i) and (i), member to member, gives
8

e - cosh /, (3)

and subtraction yields, after a slight reduction, the result

j-
= S tanh /. (4)

Formulas (3) and (4) describe the relations between the parts of

an important figure, the one composed of an arc of limiting curve of

length less than S, the tangent at one extremity and the radius

through the other. The student should be prepared to recognize

this figure when it occurs and to recall these relations.

68. A Coordinate System and Another Important Figure.

At this stage it will be convenient to introduce a system of co-

ordinates for the points of the Hyperbolic Plane. Let OX and OY

(Fig. 72.) be the familiar rectangular coordinate axes and P any

Figure 72

point. If Pz is the orthogonal projection of P on OX, then OPX

will be called the abscissa of P and PXP the ordmate, with the usual

convention for signs. It should be observed that, if Py is the or-

thogonal projection of P on OY, the figure PPxOPy is a Lambert

Quadrilateral and consequently that OPy is not equal to y nor

PyP tO X.

As an application of these ideas let us derive the equation of the

limiting curve passing through the origin, with center the ideal

point in the positive direction on the .v-axis, and consequently with

the j'-axis as tangent at the origin. Choose on the curve (Fig. 73)

8 The reader who is not acquainted with the hyperbolic functions and their properties
will find a synopsis of the theory in the Appendix.
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a representative point P(x, y) with Px its projection on the .v-axis.

Fisure 73

Let s represent the length of the arc OP. Designate by <2 the point
in which the concentric limiting curve through Px cuts the radius

through P and by s' the length of arc PZQ. Then the equation of the

limiting curve is readily obtained:

e
1 = cosh^. (i)

Incidentally another important figure is encountered, namely,
that formed by the arc of limiting curve of any length j, the per-

pendicular of length y from one extremity to the radius through the

other and the segment x of this radius between the point in which it

cuts the curve and the foot of the perpendicular. This is another

figure to be recognized when it occurs. Since

j' - se~*

and

/ = S tanh y,

we obtain

s = ^sinhj/. (i)

Formulas (i) and (i) describe important relations between the

parts of this figure.

In passing, we note that 12? (Fig. 73) will intersect Oy, be parallel

to it or non-intersecting with respect to it, accordingly as s is less

than, equal to or greater than S.
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EXERCISES

i. What is the nature of the Jocus of the equation y = c, where c is a constant? of

x-c?
i. Show that the equation of the limiting curve P*Q (Fig. 73) is e*~

l - cosh y%

where OPX = /.

3. If QP (Fig. 73) cuts the j-axis in a point R, prove that tanh b = sinh_y, where
b = OR.

4. Determine the equation of the straight line parallel to the x-axis withjx-intcrccpt

equal to b. Consider the special case when b is infinite, that is, when the line is parallel

to the .y-axis also.

5 . If s is the length of the arc of a limiting curve subtended by a chord of length /,

show that s - iS sinh -

69. The Relations between Complementary Segments.

We have already learned how, given a line segment, to construct

the complementary segment. We are now in a position to find the

analytical relation between any pair of complementary segments

% and ^'. Our objective can be easily attained if first we find the

equation of the straight line parallel to each coordinate axis in the

positive direction.

Let

Figure 74

(Fig. 74) be this line and P(x, f) a representative point

on it. Draw the arcs of concentric limiting curves OA and PXB,

center fl2 , passing respectively through the origin and the projec-

tion Px of P on the x-axis, and included between that axis and the

line &il22 . Designate by s the length of arc PXB; the length of arc

OA is S. Immediately we obtain the relations

s = S tanh y
and

s - Sr*.
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Elimination of s yields the equation
t~* tanh y. (i)

To obtain the relation between any pair of complementary seg-

ments and ', measure off from the origin in the positive direction

on the x-axis (Fig. 75) segment OPX equal in length to %. At Pz draw

A,

the perpendicular to the x-axis. It will cut fiift2 ,
the common

parallel to the coordinate axes, in a point P, as is easily shown by

drawing Pl\ through Px parallel to the j-axis in the positive direc-

tion. Produce PXP through P to Q so that PQ is equal to PXP.

At jg draw the line perpendicular to PXQ. This perpendicular is

parallel to P12i and Pjtii. It is obvious that PXQ is equal to ',

the complementary segment of %. Since the coordinates of P are ^

*'
and , we obtain from (i) the desired relation

2. /

e~* - tanh
i

This result can be resolved into a more useful form as follows:

Since / /

cosh 2 - sinh2

-L i

i sinh cosh
1 2.

sin

we have

sinh ^ = csch ^'.
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It is important to be able to recognize this relation also in the forms

cosh % = coth jj',

tanh =* sech ^',

csch = smh ^',

sech = tanh %\

coth = cosh %'.

70. Relations among the Parts of a Right Triangle.

In Euclidean Geometry we have an important relation, embodied

in the remarkable Pythagorean Theorem, connecting the sides of a

right triangle. There is also a useful relation between the acute

angles. In Euclidean Trigonometry there are simple formulas re-

lating the acute angles to pairs of sides in such a way that if two of

these parts are given the third can be found. It is our next task to

discover for Hyperbolic Geometry the analogous formulas relating

the parts of a right triangle to one another by threes.

Let ABC (Fig. 76) be any right triangle and letter it in conven-

P

tional fashion. Measure off from A on the hypotenuse the segment

AP equal to /, the segment which has X for its angle of parallelism.

Attention is called to the fact that in the drawing / has been as-

sumed to be greater than c. This is not necessarily the case, but the

reader can easily verify that the results will be the same when / is

equal to or less than c. At P draw the line perpendicular to AP;

it is parallel to ACSl. Draw also the line JK2 through B parallel to

ACSI. Next construct two arcs of concentric limiting curves having

AQ, M, P12 as radii, namely, the one through B cutting A$l in point
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D and the one through P cutting B12 in point Q and ASl in point R.

Designate the lengths of arcs BD, Pjg, QK by si, J2 , Js, respectively,

and of segment BQ by 0. The following relations are readily ob-

tained :

si = S sinh a,

si
=

Jar",

*
tt - cosh (/

- 0,

^2 + ^a = S tanh /,

j2
= S tanh (/

-
r).

Then

= cosh (/
-

c) [tanh / - tanh (/
-

c)]

sinh / cosh (/
-

c)
- sinh (/

-
c) cosh /

~
cosh /

_ sinh c

cosh /

or

sinh c = sinh <* cosh /. (i*)

This is a relation connecting the hypotenuse, one leg and the op-

posite angle of the right triangle. The companion formula is

sinh c = sinh b cosh m. (li)

It will be remembered that associated with every right triangle

are four other right triangles, the existence of the first implying the

existence of the others. We have learned that in order to recall this

series of right triangles it is convenient to use a pentagon with sides

lettered as directed in Section 53. If Formula (10) is ^written

cosh / = sinh a sinh c,

it appears that the hyperbolic cosine of a middle part of the penta-

gon is equal to the product of the hyperbolic sines of the adjacent

parts. By using each side in turn as the middle part, we pass from

triangle to associated triangle and thus acquire other relations

among the parts of the original right triangle. In this way, in

addition to Formula (i^), we obtain

cosh c = sinh / sinh m, (i)
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which is the formula relating the hypotenuse and two acute angles

to one another, and

cosh a
f = sinh V sinh /,

or

i sinh b , ,

tanh a =
-T-J , (3*)
sinh /

^ '

and its companion,

, , sinh a ...
tanh b -r-r (3*)

sinh m J

each of which provides a relation connecting the two legs with one

of the acute angles.

If the values of sinh / and sinh m, obtained from the last two

formulas, are inserted in Formula (i), we obtain

cosh c = cosh a cosh b. (4)

This is the equivalent, in Hyperbolic Geometry, of the Pythagorean

Theorem. When this result is interpreted in connection with the

pentagon referred to above, we see that the hyperbolic cosine of a

middle part is equal to the product of the hyperbolic cotangents

of the opposite parts. By moving around the pentagon, we obtain,

as results of the application of this- rule, four more formulas:

cosh m = coth a' coth /

or

cosh a = tanh / cosh m, (5*)

and

cosh b - tanh m cosh /, (5*)

each of which relates one leg to the acute angles, together with

cosh a' = coth c coth m
and

cosh b' = coth c coth /,

which are equivalent to

tanh a = tanh c tanh m (6a)

and

tanh b - tanh c tanh /.
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Each of the latter two results connects the hypotenuse, a leg and the

included angle.

All ten of these formulas, important in the study of the Hyperbolic

Right Triangle from both the practical and theoretical viewpoints,
can be written down easily by the use of the following rules sug-

gested above and referring to the pentagon with sides lettered as in

Section 53:

i. The hyperbolic cosine of a middle fart is equal to the product of the

hyperbolic sines of the adjacent parts.

2.. The hyperbolic cosine of a middle part is equal to the product of the

hyperbolic cotangents of the opposite parts.

The reader will immediately recognize the analogy between these

rules and Napier's Rules for the spherical right triangle. These

modifications of Napier's Rules are due to Engel and are known as

the Napier-Engel Rules.

EXERCISES

i. Show that the equation of the line perpendicular to thc^-axis, with ^-intercept

equal to 6, is tanh y = tanh b cosh x.

i. For the right triangle ABC, let the altitude CD from the vertex of the right angle
to the hypotenuse have length h and divide the hypotenuse into the two segments
AD - p and DB -

q. Prove that GO tanh2 a =- tanh c tanh q, () sinh2 h - tanh p
tanh q.

71 . Relations among the Parts of the General Triangle.

Directing our attention next to discovering formulas which relate

the parts of triangles in general, we find ourselves in a position to

derive the analogues of the Sine and Cosine Theorems, as we know

them, in Euclidean Trigonometry. Just as those familiar formulas

are usually obtained by dividing the triangle, through the construc-

tion of an altitude, into two right triangles, so are the corresponding
formulas for the Hyperbolic Plane derived.
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Let ABC (Fig. 77) be any triangle at all, X, p and v its angles, a
y

I

and r, respectively, the sides opposite these angles, and /, m and a

the segments for which they are the angles of parallelism. Construct

the altitude BD and designate its length by h. Then, applying

Formula (i) of the preceding section to right triangles BDC and

BDA, we obtain

sinh a = sinh b cosh w,

sinh c = sinh h cosh /,

and consequently
sinh a cosh n sech /

sinh c cosh / sech n

By constructing a second altitude, we find that

sinh b sech m
sinh c sech n

so that

sinh a : sinh b : sinh c = sech / : sech m : sech n. (i^

The reader will have no difficulty in proving that this result is

valid even when an angle of the triangle is obtuse and an altitude

must be drawn to a side produced, or when the triangle is a right

triangle.

Returning to Figure 77, designate the length of AD by d and

consequently that of DC by b - d. Then, by applying Formula (4^
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of the last section to the right triangles BDC and BDA, the fol-

lowing relations are secured :

cosh a - cosh h cosh (b
-

*/),

cosh c = cosh h cosh d.

Then .

cosh c cosh (b - /)
cosh a

cosh ^

cosh c (cosh i cosh d - sinh 4 sinh <f)

cosh </

= cosh b cosh c - sinh b cosh c tanh </.

This is easily reduced by means of the result obtained by applying
Formula (6) of Section 70 to the right triangle BDA, namely,

tanh d = tanh c tanh /.

Thus we obtain the analogue of the Cosine Formula, expressing the

length of any side of a triangle in terms of the other two sides and

the included angle :

cosh a - cosh b cosh c - sinh b sinh c tanh /. (i)

Again the result will hold when one of the angles of the triangle

is obtuse. When X is a right angle, this relation resolves into

Formula (4) of Section 70.

EXERCISES

i. If a transversal cuts the sides of triangle ABC, dividing side a into segments a\

and *2> side b into segments b\ and 2 , and side c into c\ and c<i (Fig. 78), prove that

T,
Figure 78

sinh a\ sinh b\ sinh c\
- sinh a^ sinh &g sinh c^.

(The analogue of the Theorem of Menelaus.)
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i. If the lines joining point P (Fig. 79) to the vertices of the triangle ABC divide

A

B
Figure 79

the angles at A, B and C, respectively, into the pairs of angles i and 2 , 0i and &,
7i and y2 , prove that

cosh a\ cosh l>\ cosh ci
= cosh *2 cosh 2 cosh c2 ,

where *i is the segment having a t as angle of parallelism, etc.

3 . If the lines joining point P to the vertices of triangle ABC (Fig. 80) divide the

sides into pairs of segments a\ and *2 , ^i and 2 , fi and c2 , prove that

sinh a\ sinh b\ sinh o = sinh ^ smh ^2 sinh r2 .

(Compare with the Theorem of Ceva.)

72. The Relation between a Segment and Its Angle of Parallelism.

We have already pointed out the fact that there is a functional

relationship between a segment of line and its corresponding angle
of parallelism. It is our next task to discover the formula which
relates the two. If a is the length of any segment and a its angle of

parallelism, we propose to prove that

tanh a = cos a.
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We begin
9

by examining the continuous function /(a), defined by
the equation

tanh a = cos /(a).

The following facts are readily verified:

When a - o, we have

a = oo
,
tanh a =

i, cos /(a) =
i, /(a) = o;

when a = -, we find that

a = o, tanh * = o, cos /(a) =
o, /(a) * -i

and when a =
TT, it follows that

a = - oo
, tanh <? = -i, cos /(a) = -i, /(a) = T.

Thus

Consider any two angles Xi and X2 . For simplicity we shall as-

sume that each is acute and that their sum is acute. This restriction

can be removed later without. difficulty. Place these angles adjacent

to one another (Fig. 81) and measure off on their common side, from

A

Fisure 81

their common vertex A, a segment AD less than either of the seg-

ments corresponding to Xi and X2 regarded as angles of parallelism.

Through D construct the line perpendicular to AD. It will cut the

9 This treatment follows that of Licbmann, Nichtcukltdische Geomttrtt, ind edition,

PP- 75-77 (Leipzig and Berlin, 1911).
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t

other sides of angles \\ and X2 in points C and B, respectively. Desig-

nate the segments AC, AB, CD, DB and AD by b
y c, q, r and h, re-

spectively.

Apply to the triangle ABC the Cosine Formula (Formula (i),

Section 71) to obtain the relation:

cosh (^ + r)
= cosh b cosh c - sinh b sinh r tanh /,

where

11(0 = Xi + x,.

Then

r/x x N cosh b cosh c - cosh (a + r)
COS /(Xi + X 2)

= r-r-r r
^

7V '
sinh A sinh c

,
. . cosh a cosh r sinh sinh r= coth com c

i 1 T i 1 i_
sinh b smh r sinh b sinh r

We shall reduce, in turn, the three terms on the right.

Observing, for right triangles ADC and ADB, that

tanh h = tanh b tanh A

and

tanh h - tanh ctanh /2 ,

respectively, we conclude that

coth b coth c = coth2 b cos/(Xi) cos/(X2).

For the second term, since

cosh q _ cosh # cosh h _ cosh 6

sinh b sinh A cosh h sinh i cosh A

_ tanh h _ tanh /i

sinh A tanh sinh h

and similarly
cosh r _ tanh /2

sinh sinh A
'

we have
cosh a cosh r U9 . .. . -. .

. . I u
= csch 2

Acos/(Xi)cos/(X2).smh A smh c
J -1

Finally, since

sech a * sin /(a),
it is easy to see that

sinh a sinh a , . . ,x, ^
. i l

= -T-T Srr = scch *i
= sin /(XOsmh b smh q cosh /i
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and, in the same way,
sinh r . .

. .
- sm/(X2).

sinh c
J ^ '

The net result is

cos /(Xi + X2) = cos /(Xi) cos /(X2)
- sin /(Xi) sin /(X2)

= cos[/(XO+/(X2)],

and we are led to the conclusion that the function under investigation

satisfies the condition

Then we are able to write

/G*i + A) ~
/fat) _ flat + *)

-
/(q2)

h h

and thus deduce, by allowing h to approach zero, that

r(o= rco
and hence that /'GO is constant. By integration we obtain the

result

/(a) - *a + r,

where k and r are constants easily evaluated by taking into account

the values of /GO for a equal to o and -. And so it is manifest

that

/(a) ^ a

and finally that

tanh a - cos a. (i)

This relation carries with it the following, as the reader can easily

verify:

coth a = sec a, (i)

sech a = sin a, (3)

cosh a * esc a, (4)

sinh * = cot a, (5)

csch * = tan a. (6)

This important relationship connecting a segment and its angle of

parallelism can be put into a somewhat more compact form by

making use of the fact that

e ~ sinh a + cosh a.
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We have at once that
= cot a + esc a

cos a -f i a
=

:
= cot -

sin a i

and thus

a s ^
tan - = <r, (7)

a result obtained by both Bolyai and Lobachewsky.

73. Simplified Formulas (or the Right Triangle and the General Tri-

angle.

The important formulas obtained in Sections 70 and 71 can now be

modified by use of the relations just obtained. Those for the right

triangle become:

. x sinh a ^ N
sin A =

. ,
-- (ia)

sinh c

sinh b , ,^
sin /x

=
. ,

> (ib)
sinh c

cot \ cot n = cosh c, (i)

tanh <* x N
tan \ =

. > (3^)
sinh b

tanh ^
tan JLI

=
.

,

sinh ^

cosh c = cosh ^ cosh b, (4)

cos X x Ni

cosh a
sin

- , cos /i x ix
cosh b = -r > (5*)

sin X

tanh a
cos M =

cos X

-
:

tanh c

tanh b-r
tanh c

For the general triangle, we have

sinh * : sinh b : sinh r = sin \ : sin /* : sin i>

and

cosh a = cosh cosh c - sinh 4 sinh c cos X.
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74. The Parameter.

In Section 66, we chose as our unit of length the radial distance

between corresponding arcs of two concentric limiting curves, the

ratio of the arcs being e. It was observed at the time that a more

general treatment results if the unit is chosen as the radial distance

when the two corresponding arcs have an arbitrarily chosen ratio a,

where a is a constant greater than unity. In this way there is intro-

duced into Hyperbolic Geometry a parameter k, greater than zero,

such that l/ka =

The formula _ -x r \
&x = se {i)

of Theorem 3 ,
Section 66, then becomes

,, = -'*. co
The preceding development made use of formula CO- ^ formula

CO is used, the results are the same, with the exception that in the

formulas the lengths of all segments are divided by k. Thus the

fundamental formula of Section 72. assumes the form

a
tan - = r*'*

2.

while those of the last section become

. x sinh a/k , ^
sin X =

. .

'

(i<0
sinh c/k

sinh b/k .,

,^

(O

(3-)

C4)

cosh */* -^ C5*)
sin A

tanh a/k
cos /*

-r TT>
tanh c/k

x tanh A/^
COS X -r;-tanh c/k
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The Sine and Cosine Formulas become, respectively,
. , a . , b . , c . vsmh 7 : smh 7 : smh 7 = sin X : sin fj, : sin u

and

cosh 7 = cosh 7 cosh 7
- sinh T sinh 7 cos X.

k k k k k

If the parameter k is allowed to become infinite, it is significant
that

lim tan - = lim ra/* = i,

and the angle of parallelism for any distance approaches a right

angle. We conclude that Hyperbolic Geometry becomes sensibly
Euclidean if the parameter is chosen very large in comparison with
the measures of the segments involved. As a matter of fact, all of

the above formulas become those of Euclidean Geometry and

Trigonometry as k tends to infinity.

For example, since

.. sinh a/k'

formula (i#) becomes

i,
a/k

sin X = -
c

Formula (4) becomes, upon replacing each hyperbolic cosine by the

corresponding series and neglecting infinitesimals of higher order,

or finally,

r
2 = a* + A2 .

The Sine and Cosine Formulas take, in the limit, the familiar forms

sin X : sin p : sin v = a : b : c

and

a* = b* + c* - 2.bc cos X.

But there is another viewpoint which throws further light upon

the situation. We can make y infinitesimal by allowing a itself

to approach zero, instead of letting k become infinite. Thus, for

sufficiently small figures, we should expect the Euclidean formulas

to hold approximately even in Hyperbolic Geometry. If careful
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experiments in the space in which we Jive, errors of measurement

being taken into account, should seem to indicate that the sum of

the angles of a triangle is always two right angles, that would not

be convincing evidence that our space is strictly Euclidean in

character. The sides of a triangle even though the vertices arc,

for example, widely separated stars may be too small in com-

parison with the parameter k and thus our space only apparently
and approximately Euclidean.

That the formulas of Euclidean Geometry hold for the Hyperbolic
Plane in the neighborhood of a point, that is, in an infinitesimal

domain, is a fact of utmost importance. It affords the basis for the

investigations to be made from the viewpoint of the calculus in the

next chapter.

Finally, there is to be pointed out another fact which carries some

significance. Any reader who is acquainted with spherical trigo-

nometry has already recognized the resemblance which the formulas

just derived for the right triangle and general triangle have to those

for the triangles on a sphere. The constant k plays the role of the

radius. Indeed, if k is imaginary the formulas are the same. Thus

Hyperbolic Geometry may be regarded as analogous to geometry on

a sphere with imaginary radius. 10

EXERCISES

i. If / is equal to one-half the sum of the sides of the general triangle ABC, prove
that

cos x_
J**j**4-'

2- W . , * . , f
t smh - smh -

and

sinx_J^^
1 f . ^ . C

smh - smh -sinh - sinh -

i. Prove that the radius r of the inscribed circle of a triangle is given by

tanh

111 Sec Section 13.

lUa f V/l Lllb JUJSUllLrbU k.llL.Jb VI * LlAAUgJl. .

Vsinh

sinh sinh

sinh -



156 NON-EUCLIDEAN GEOMETRY

3 Obtain the limiting form, as k becomes infinite, for each of the formulas given
in this section, connecting the parts of the right triangle and of the general triangle.

4. Obtain the limiting forms for the formulas of Exercises i and 3 of Section 71.

5
. If the tangent at one extremity of an arc of a limiting curve of length s makes

an angle with the subtending chord, prove that s = iS tan 8. (k= i.)

6. If the tangent at one extremity of an arc of length s of a limiting curve makes

an angle <p with the radius through the other, show that j = S cos <p.

7. Prove that the radius of the inscribed circle of a triangle of maximum area

(Section 64) is \k loge 3.

8. If in a quadrilateral of maximum area, formed by drawing the four common

parallels to two intersecting lines, the lengths of the common perpendiculars to the

two pairs of opposite sides are a and b, prove that

. ,
a . b

smh smh - = i .

ik ik

9. Three limiting curves are each tangent to all three sides of a triangle. Prove

that the triangle is equilateral, that the measure of each side is cosh" 1
L (using k = i)

and that each angle is cos"1
5. Also show that the measure of the radius of the in-

scribed circle of the triangle is tanh~ l
\ and that of the radius of the circumscribed

circle is tanh~l
J. The three limiting curves here play the roles of the escribed circles

of the triangle.



VI
APPLICATIONS OF CALCULUS TO THE
SOLUTIONS OF SOME PROBLEMS IN

HYPERBOLIC GEOMETRY

"It is upon the exactness with which we follow phenomena into the in-

finitely small that our knowledge of their causal relations essentially

depends." RIEMANN

75. Introduction.

There remain to be obtained a few results which are not to be

omitted even from a brief introduction to the study of Hyperbolic

Geometry. But such problems as the derivation of the formulas for

the circumference and area of a circle call for the use of the calculus.

Consequently, we direct our attention to finding the formulas for the

differentials of arc and area in the geometry under consideration.

These investigations are made comparatively simple by the fact dis-

covered in the preceding chapter, namely, that the Euclidean

formulas hold for infinitesimal triangles.

157
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76. The Differential of Arc in Cartesian Coordinates.

Let the equation of a continuous curve in Cartesian coordinates

be

y -

Let P (Fig. 8i)> with coordinates x and j, be any point on the curve

and A a fixed point. Designate by s the length of the arc AP. Then

s is a function of x. Following the usual procedure, we allow x to

Y

Figure 82

assume the increment Ax. Then y and s become y + A? and s 4- AJ,

respectively. Denote by Q the point (x -h Ax, y -h A?). Next con-

struct the perpendiculars PS and QT from P and <2 to the x-axis, and

draw PR perpendicular to QT. Designate the lengths of PR, QR and

RT9 respectively, by u 9
v and w. Then PS = y 9 ST = Ax and J^T

t; -f w/ = jf -|- Ay. Finally allow Ax to approach zero. We have, for

the infinitesimal right triangle PQR 9

and thus

pg
"

Ax2 + Ajc2
' (0

It is to be observed next that PSTR is a Lambert Quadrilateral,

acute-angled at P. The reader will readily recall 1 that this quadri-

lateral implies the existence of a right triangle with parts a, c, I and

m'
9 according to the conventional lettering, equal to Ax, u

9 y and w y

respectively. Using relations connecting these parts of the right

1 Sec Section 53.
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triangle (Section 70, Formulas la and 5*), we have
u Ax v

sinh 7 = sinh -y-
cosh

^ (i)
K, K K

and
, Ax , y , w , x

cosh -r- = tanh
j
com -7- (3)

From the first we observe that, except for infinitesimals of higher

order,
v

u = cosh Ax,x

while, for the second, it is clear that y and w differ by an infinitesi-

mal, since the limit of the ratio of tanh
^
and tanh -7 is unity. We

shall show that this infinitesimal is of higher order than Ax. Let

w = y .

Then from (3) we have

tanh -f
= tanh cosh -p

which can be written

tanh
^
- tanh 7

tanh 7 = cosh -7-*
k

, y , k
i tanh j tanh 7

or, except for infinitesimals of higher order,

tanh^i~|tanh^(tanh^-^
Thus

= -i
sinh^ cosh^ Ax

2
,

i/t A K

and c is an infinitesimal of second order with respect to Ax. Fur-

thermore, since

v = y -f Ajf w Ajy +
it is clear that v and by are infinitesimals of the same order.

Returning to equation (i), assuming that arc AJ and chord PQ
are equivalent infinitesimals, we may replace Pjg, u and v by A/,

v
cosh 7 Ax and Ay, respectively, before taking limits to obtain the

result
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and finally the formula for the differential of arc

77. The Differential of Arc in Polar Coordinates.

Polar coordinates as used in Hyperbolic Geometry arc defined in

exactly the same way as in Parabolic Geometry Thus, in Figure 83,

Figure 83

is the pole and OX the polar line; the coordinates of P arc r and 6,

r being the radius vector and 6 the vectorial angle. We shall obtain

the formula for the differential of arc in polar coordinates.

Given the equation

of a continuous curve in polar coordinates, let P (Fig. 83) be any

point on the curve with coordinates r and 0, and A a fixed point.

Denote by j- the length of arc AP. When acquires the increment

A0, r becomes r + Ar and s becomes j- + AJ. Designate by Q the

point (r + Ar, + A0). Draw the radius vector Qg and chord PQ
and also the perpendicular PR from P to OQ. Use the letters u, v and

w to designate the segments PR, Rg and OR, respectively. Then, if

A0 is allowed to approach zero, we have for the right triangle PjgR

A02
" =

A02 + A0"2
* '*'

Using relations connecting the parts of right triangle ORP, we
have (Section 74, Formulas i and 4)

4
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sinh 7

sin A0 ---
(i)

sinh
J

and
,r t_

*
t.
w X-N

cosh 7 = cosh 7 cosh -7- (3)

From the first it follows that u and k sinh 7 A0 arc infinitesimals

of the same order, while, from the second, we conclude that

r = w + c,

where c is an infinitesimal. But is of higher order than A0, since

. w + .w ,
,

. >
i

cosh :
= cosh -7 cosh T -f sinh -r sinh T

A k k k k

and thus, neglecting infinitesimals of higher order,

, W . , W
cosh 4- sinh - i +

U2
\ , W

jpj
cosh T

so that u >2 w
c = -7 coth -7 .

Then v and Ar are of the same order, since

to the lowest order.

Thus, in the limit, formula (i) becomes

f

78. The Circumference of a Circle and the Lengths of Arcs of Limit-

ing Curve and Equidistant Curve.

We are now ready to apply the formulas of the last two sections

to the solutions of some important problems. We obtain first the

formula for the circumference of a circle, using the polar form of the

equation, namely,
r a.

Then

ds* - k* sinh 2 -
k
J + dr*

- k* sinh2

1
<#2

,

and
a C*t a

s - 4* sinh 7 I d& iJuF sinh 7- (i)
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We turn next to the equidistant curve, using Cartesian coordinates

and the equation

so that the x-axis is the base-line. Then, if s is the length of an arc

qf equidistant curve, the projection of which on the base-line is a,

and if b is the common distance of all points from the base-line,

.* f* , b
*

s = cosh 7 I ax = a cosh r (2)'J o

the length varying, as might have been predicted, directly as the

projection.

We have already obtained, in Section 68, the equation in Carte-

sian coordinates of the limiting curve through the origin, with

center the ideal point in the positive direction on the .v-axis. In

general form it is

*/* =cosh

In order to find the length of an arc of this curve from the origin to

any point (AT, y), we note that

dx = tanh
^ dy

and hence

so that

s = k sinh (3)

The reader will be interested in determining the limiting forms of

these results when k becomes infinite.

A particularly important discovery is made by obtaining the

length S of an arc of limiting curve such that the tangent at one

extremity is parallel to the radius through the other. All that is

needed is to find the ordinate of the point of intersection of the

limiting curve

and the line2

2 Sec Section 69.



CALCULUS APPLICATIONS, HYPERBOLIC GEOMETRY 163

parallel to both coordinate axes in the positive directions, and to

use it in Formula (3). The ordinate is given by

y = k sinh ~*
i,

and substitution yields
3

S = k.

Thus it eventuates that two characteristic constants of Hyperbolic

Geometry, introduced independently, are one and the same.

79. The Area of a Fundamental Figure.

Thus far, our investigations of area have been confined largely to

that of the triangle. A very natural approach to the consideration

of area from a more general viewpoint, and one which is quite in the

manner of Euclid, is afforded by the ideas presented first in Section

66. It will be profitable and interesting to proceed a little way along
this line of reasoning before taking up the study of area from the

standpoint of the calculus and obtaining formulas for the element of

area.

Let ABC (Fig. 84) be an arc of a limiting curve with center &,

B B,

and AI, BI, C\ the points in which the radii to A, B and C, respec-

tively, cut a concentric limiting curve, which lies on the side of ABC
in the direction of parallelism for the radii. Then, as a consequence
of the results obtained in Section 66, and the fact that our concept of

area includes the idea that congruent figures have equal areas, we
conclude that

Area ABBiAi _ arc AB
Area ACC\A\

~~

arc AC
9

3 This relation can also be obtained by comparing Formula (5) with Formula (i)

of Section 68.
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whether arcs AB and AC are commensurable with regard to one an-

other or not. Furthermore, if the radii to A and C cut a third con-

centric limiting curve in points A* and C2 , respectively, this third

curve lying on the side of A\C\ in the direction of parallelism for the

radii, and if the radial distances AA\ and A\A2 are equal, we have

Area ACC\A\ _ Area A\C\CzAz

arc AC
"

arc A\C\

Thus it appears, for a figure comprising two corresponding arcs of

concentric limiting curves and the segments of radii connecting their

corresponding extremities, that the ratio of area to major arc de-

pends not on the length of the arc, but on the radial distance be-

tween the arcs. Consequently we conclude, using the notation of

Theorem 3, Section 66, that the area Ax (Fig. 85) included between

Ay 5x

Figure 85

the corresponding concentric arcs s and sx ,
is given by

4r-j/GO,
where /(AT) is a function to be determined. Then, if

A,-* /GO,
we have

and thus

+->)

In order to solve this functional equation, we interchange x and y,

obtaining

and then eliminate f(x + jy). The result is

/OO /OO

so that
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where C is a constant. The choice of C will determine the unit of

area; it will be convenient to choose its value as k. Thus we finally

have

For the case in which s is equal to S, we see that

and, as x becomes infinite, that the limit of this area is

A. - k*.

This limit may be regarded as the area included by an arc of limiting
curve of length S and the radii through its extremities. The unit of

area has been so chosen that this area is 42
.

80. Limiting Curve Coordinates.

In order that we may take proper advantage of the results just

obtained, we need to introduce a new system of coordinates peculiar

to Hyperbolic Geometry.
As basis for reference in a system of limiting curve coordinates, we

choose an axis Oft (Fig. 86) being used as an origin, and ft being

Figure 86

one of the ideal points on the axis together with the limiting

curve OH passing through 0, and having ft as center. Through any

point P construct the limiting curve DP, concentric with the curve

OH and cutting the axis at D, its radius Pft, when produced, cutting
OH sit M. Designate the lengths of OD and arc OM by and i;, re-

spectively. These are the limiting curve coordinates of ?.

We shall obtain the formulas for the transformation from limiting
curve coordinates to Cartesian coordinates, when the axis and origin
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of the limiting curve coordinate system become the x-axis and origin

of the Cartesian system. Then, if PF (Fig. 86) is drawn perpendic-

ular to 012, OF is the abscissa and PF the ordinate of the representa-

tive point P. Denoting arc PD by j, we know that

<*-*)/*
cosh r

17
- set

1

*,

s = J'sinh Y

so that the desired equations are

= x - k log, coshv
(0

81 . The Element of Area.

The formula for the clement of area is easily found in limiting

curve coordinates by use of the ideas of area explained in Section 79.

Let P ( , 77) (Fig. 87) be any point and Q a neighboring point with

/H

coordinates + A and 17 + Aij. Let the radius ?Q cut the limiting

curves QE and OH in points R and M, respectively; let <gQ cut the

limiting curves PD and OH in points S and N. We choose the

fundamental figure PRQS as the element of area. Then, since

arc

we have

area PRQS
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But, as A and Aiy approach zero, e~**
/k

differs from i by infin-

itesimals of higher order, and the element of area becomes

e~*
/k

d% di\. (i)

The formula for the element of area in Cartesian coordinates can

be obtained from this one by transforming it, using Formulas (i) of

Section 80. From them come the total differentials

d% = dx - tanh "7 dy,

e*'
k t&nh^dx + **/* sech 2

1 dy.

GO

(3)

But when (i) is used to obtain areas by integration, { must be re-

garded as constant while 17 is allowed to vary. Setting, under these

circumstances, d = o and eliminating dxy we have

Jt/*

so that (i) becomes

Since, when varies,^ does not, we have from (2.)

^ - dx,

and thus (4) finally becomes
y

cosh*^ dxdy.

(4)

(s)

This formula for the element of area in Cartesian coordinates can

also be obtained directly as follows:

Let P (Fig. 88) have coordinates x and^, and jg be the neighboring

Y

R

y

A A*

Figure 88
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point with coordinates x + Ax and y -\- Ay. Draw PA and QB
perpendicular to OX. Let the equidistant curve through ?, with

OX as base-line, cut QB in R, and the one through Q cut PA in S.

From Formula (i), Section 78,

y
arc PR cosh ^ Ax^

But, as Ax and Ajy approach zero, the figure PRQS becomes in the

limit a rectangle. Thus for the element of area we have, as before,

y
cosh -

dxdy.

The element of area in polar coordinates can be obtained by trans-

forming (5). However, we choose to obtain it directly from a

figure.

Let P (Fig. 89) have coordinates r and 0, and Q be the point with

Q

Figure 89

coordinates r + Ar and 6 + A0. Let the circle through P, with cen-

ter at 0, cut the radius vector through jg in point S, and let the circle

through Q cut the radius vector through P in point R. From

Formula (i), Section 78,

Since, as A0 and Ar approach zero, the figure PRQS becomes rec-

tangular in form, we have for the element of area

-. (6)
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82. The Area of a Circle.

By making use of Formula (6) of the last section, we obtain the

formula for the area of a circle. If the equation of the circle is taken

as

we have for the area

which becomes

or, more compactly,

sinh 7

2.7T*
2

(cosh \
-

x),

:

2 sinh 2
-7-
i*

It is to be observed that this area approaches *v*
2
, as k becomes

infinite.

83. The Area of a Lambert Quadrilateral.

We next locate a Lambert Quadrilateral in a convenient position
with reference to the coordinate axes and obtain its area.

m

B

a Q A

Fisure 90

At any point A on the positive extension of the x-axis (Fig. 90),

draw the perpendicular AB; from any point B on this perpendicular,
draw BC perpendicular to the^-axis. Figure OABC is then a repre-

sentative Lambert Quadrilateral. We use the standard notation
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adopted in Section 53, designating segments 0/4, AB, BC and CO,

respectively, by a, /, c and m', and angle ABC by ft.

We shall need the equation of line CB. In order to obtain it, we

locate upon CB a representative point ?, with the perpendicular PQ
as ofdinate and Ojg as abscissa. For the Lambert Quadrilateral

OQPC, we have OQ = x, QP = y and OC = m f

. Using the relation

between the corresponding parts of the associated right triangle, we

get for the equation of CB
1.
x

cosh -y

, y k
tanh -{
- >

k ,m
cosh ^

or, what is easily shown to be the same thing,

i_
X

COsh-r

u* u*
-4/smh^ -r - sinn- -r

In order to find the area of quadrilateral OABC, we evaluate the

integral
ft Cy y
I I cosh -

dy dx,
Jo Jo ^

obtaining, upon the first integration,

//0

u X
cosh -T

, . n tn .
, .,

x
smh2

-r - sinh 2
-7

L
sinh T

arcsin m

k

and, upon the second,

But, from the results of Sections 70 and 71,

sinh T i

= tanh 7 cos ^,
. * m k
smh -7-

K

so that

Area (MBC -
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84. The Area of a Triangle.

We arc now but a step from the formula for the area of a triangle.

The reader will recall how it was proved, in Section 61, that every

triangle is equivalent to a Saccheri Quadrilateral for which the sum

of the summit angles is equal to the angle sum of the triangle. But

every Saccheri Quadrilateral can be divided into two congruent
Lambert Quadrilaterals. Thus, if X, /* and v are the angles of a

triangle, its area is given by
X + M + v~\

or

Reference to the formula for the area of a triangle, given in Section

63, shows that the constant C2
, introduced there, is equal to kz .

EXERCISES

z. Show that the relation connecting the radius r of a circle, an arc of length s,

and the angle 0, which the arc subtends at the center of the circle, is

/ = kB sinh

i. Show that the formulas for transformation from Cartesian coordinates to polar

coordinates are

X Y
tanh - = tanh - cos 8,

, y f
sinh - sinh - sin 6.

3. Use the transformation of Exercise 2. to change Formula (5) of Section 81 to

Formula (6) of the same section.

4. Show that the equation of the equidistant curvey = b is, in polar coordinates,

sinh - sin 6 = sinh -,

and, in limiting curve coordinates,

-*,/* sinh
^.

5. Obtain the area bounded by the equidistant curve y =
,
the x-axis and the

ordinates x = o and x = a. Ans. ka sinh
-

6. Obtain, by integration, the area of the segment bounded by a chord of length i/

of a limiting curve and the subtended arc. Hint: Use the equation
*/* = cosh -, and
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find the area bounded by this curve, the x-axis and the ordinate x = k log cosh -

Ans. iJk
2 ( sinh r - arctan sinh - Y

7. Find, by integration, the area bounded by the x- and ^-axcs and the line **/* -

-
TT, parallel to the x-axis, and having its ^-intercept equal to /.

Ans. *2 - - \\ where X -

8. By combining half the area of Exercise 6 with the area of Exercise 7, obtain the

formula for the area bounded by an arc of limiting curve of length s and the radii to its

extremities. /

Ans. k2 sinh -r - ks.



VII
ELLIPTIC PLANE GEOMETRY AND TRIGONOMETRY

"The unboundcdncss of space possesses a greater empirical certainty than

any external experience. But its infinite extent by no means follows from

this." RIEMANN

85. Introduction.

The characteristic postulate of Euclidean Geometry states that,

through a given point, one and only one line can be drawn which is

parallel to a given line. On the other hand, the distinctive feature

of Hyperbolic Plane Geometry is the assumption that an infinite

number of parallels can be drawn to a line through a point. It is

now incumbent upon us to investigate, although briefly, the conse-

quences of a third supposition, namely, that no line can be drawn

through a given point, parallel to a given line. This we recognize
as equivalent to the hypothesis of the obtuse angle of Saccheri. He
and others were able to rule out the geometry based upon it, because

they expressly or tacitly assumed that straight lines are infinite.

It will be recalled that we have already shown1 that these two

assumptions are incompatible. To make this clearer, we remark

that, if straight lines are infinite, then the proof of Euclid I, 16 is

valid and consequently that of 1, 17. But in this case there is always
one parallel, at least, to a line through an exterior point.

It was Riemann2 who first pointed out the importance of distin-

1 See Chapter II.

2 Sec Section 6.

173
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guishing between the ideas of unboundedness and infinitude in con-

nection with concepts of space. However strongly convinced we

may be of the endlessness of straight lines, it does not necessarily

follow that they are infinite in extent.

Therefore, before formally stating the characteristic postulate of

Elliptic Geometry, we replace Euclid's tacit assumption of the in-

finitude of the line by a milder one:

POSTULATE. Every straight line is boundless.

The characteristic postulate of Hyperbolic Geometry is compatible
with all of the postulates of Euclidean Geometry except the one

which it replaces. Indeed, it was the similarity of those two geom-
etries in their foundations and early propositions which enabled us

to present an account of Hyperbolic Geometry without long and

confusing preliminaries.

But the transition from Euclidean Geometry to Elliptic is not

so easily accomplished. The characteristic postulate of Elliptic

Geometry, stated in the next section, is not only incompatible with

the Euclidean postulate which it replaces, and with the one which

asserts that straight lines are infinite, but with others, as we shall

see. Furthermore, it should be observed critically that those prop-

ositions in Euclidean Geometry which depend explicitly on the

infinitude of the line in particular I, 16 and its consequences
will no longer be valid in general. A more extensive account than

we propose to give here would require a very carefully laid founda-

tion.

86. The Characteristic Postulate of Elliptic Geometry and Its Im-

mediate Consequences.

We are now in a position, having made the above change, to intro-

duce the Characteristic Postulate of Elliptic Plane Geometry.

POSTULATE. Two straight lines always intersect one another.

Let / (Fig. 91) be any line at all. At any two points A and B
on this line draw the lines3

perpendicular to it. These, as a conse-

8 Some of the lines in this figure and subsequent ones are drawn as though they were

curved. The lines of Elliptic Geometry are as "straight" as those of Euclidean or

Hyperbolic Geometry. It is frequently convenient to represent them as curved when
it is of more importance to show, within limited space, their relation to each other

than to exhibit their "straightness."



ELLIPTIC PLANE GEOMETRY AND TRIGONOMETRY 175

qucncc of the characteristic postulate, will meet at a point and,

since the angles at A and B in triangle AOB are equal, it follows that

OA and OB are equal.
4 If AB is produced in either direction, say

AQ,Q2Q5Q4

Figure 91

through B, to C, so that BC is equal to AB, and if OC is drawn, then

it is easy to show that OC is perpendicular to / and is equal to OA
and OB. 6

By repeating this construction, we are led to conclude

that, given a segment AB of a line /, if P is any point on / such that

AP equals m- AB, where m is a positive integer, then the perpendic-

ular to I nt P passes through 0, the intersection of the perpendiculars

to I a.t A and B, and OP is equal to OA.

Next divide AB into n equal parts, QiyQzyQz, - - -
, Qn-i being the

points of division. The perpendicular to / at jgi will cut AO at 0,

for, if it were to meet it at another point, so also as is clear from

what has already been proved would the perpendicular at B.

The same is of course true for the perpendiculars at the other points
of division. Reasoning in this way, we conclude that, if segments
AB and AP are commensurable, the perpendicular at P will pass

through and OP will equal OA. When AB and AP are incom-

mensurable, the same results are obtained by limiting processes in

the usual way.
Thus the perpendiculars at all points of a line are concurrent in a

point called the pole of the line. Every line joining a point of a line

4 It will appear presently that A and B may, by chance, be so situated that the two

perpendiculars will be the same line. This complication can be avoided by changing
the position of one of the points. The proof of Euclid I, 6 holds here if A, and B
are not collinear.

6 The proof of Euclid I, 4 holds for Elliptic Geometry. See Section 5.
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to its pole, or, what is the same thing, every ray emanating from

the pole of a line, is perpendicular to the line. The reader will have

no difficulty in showing that not only is the perpendicular distance

from the pole to the line the same regardless of which perpendicular

is used, but that the distance from pole to line is the same for all

lines. Let us designate this constant perpendicular distance by q.

Continuing our investigations, let (Fig. 92.) be the pole of the

line /. Draw any two lines through 0; they will cut / at right

O

angles m two points A and B. Produce OA through A to 0', so that

A0 f

is equal to q. Then if 0' and B are joined, it is easy to show that

O'E is perpendicular to /, that 0, B and 0' are collinear, and that

BO' is of length q. Thus, rejecting for the moment the possibility of

conceiving that and 0' are the same point, it appears that every
line has two poles. Furthermore, lines OA and OB have a common

perpendicular and intersect m two points, forming a digon, or hi-

angle, each side of which is of length 14. This is true of every pair

of lines, as we shall now show.

Let / and m (Fig. 93) be any two lines. They will intersect at

some point 0. Measure off from on each line, and in each direc-

tion, a segment equal to q. In particular, let OA, OB, OC and OD be

of length q. Then A, B, C and D will all lie on a line n for which

is a pole.
6 As a consequence, / and m intersect in another point 0',

6 Sec Exercise i, Section 90.
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the second pole of n. It follows that two lines in Elliptic Geometry

always have a unique common perpendicular and always intersect

one another in two points, enclosing an area. Furthermore, it is

now apparent that each line returns into itself, i.e., is closed or

93

re-entrant, and is thus finite and of length 4^. Two points do not

always determine a line, for if the two points are the poles of a line,

an infinite number of lines can be drawn through them. It should be

recognized here that while, as a consequence of the finitude of the

line, Euclid I, 16 and the propositions dependent upon it are not

valid, in general, for Elliptic Geometry, nevertheless, they will

continue to hold if the figures involved are small enough. For ex-

ample, if each median of a triangle has a length less than q, then

each exterior angle is greater than either of the opposite, interior

angles. For figures in Elliptic Geometry which are sufficiently

restricted in size, Euclid I, 17, 18, 19, 2.0 and n will continue to

hold.

87. The Relation between Geometry on a Sphere and Elliptic

Geometry.

Under the assumption made above, that a line has two distinct

poles, there arises a geometry like that on a sphere, if great circles

are regarded as representing straight lines. As far as we have gone
the analogy is easily traced. For example, two great circles on a

sphere always intersect one another in two points and enclose an

area; every great circle has two poles through which pass all of the

great circles orthogonal to it; two points determine a great circle,
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unless they are the poles of a great circle; the great circles of a

sphere are finite, closed, and all of the same length.

It must not be inferred at all, however, that this type of Elliptic

Geometry is spherical geometry. It merely happens that, on the

curved surface known as a sphere, we find an exact representation of

this kind of plane geometry, entity for entity, postulate for postulate,

proposition for proposition. The reader will understand the signif-

icance of this relation better, if he is informed that there are curved

surfaces in Hyperbolic Geometry and Elliptic Geometry upon which

analogues of Euclidean Plane Geometry can be constructed. 7
It

should be noted, in passing, that spherical geometry itself is entirely

independent of the postulate on parallels.

In any attempt to visualize Elliptic Geometry, this resemblance to

spherical geometry will be found quite helpful. Comparison makes

it easier to understand how the sum of two sides of a triangle can be

less than the third, how a triangle with a pair of equal angles may
have the sides opposite them unequal, how the greatest side of a

triangle may not subtend the greatest angle, how a Saccheri Quadri-
lateral can have its summit angles larger than two right angles, why
even Pasch's Axiom will not always hold.

This is perhaps an appropriate place to remark that there also exist

curved surfaces ,in Euclidean Space upon which can be constructed

representations of Hyperbolic Plane Geometry. The fact that the

sphere of radius r is a surface of constant positive curvature -
sug-

gests
8 that for this purpose one should seek a real surface of constant

negative curvature. An example of such a surface is that obtained

by revolving the curve known as the tractnx about its asymptote.
The equation of the tractrix is

a 4- Vra*~ V* ,
1 **T^V*f Jf /*> 9x = a log v a2 - y

L
.

This surface, called the pscudosphcn, has a constant total or Gaussian

curvature
-^
and is one upon which, with restrictions, a geometry

analogous to Hyperbolic Plane Geometry can be constructed, the

geodesies playing the roles of straight lines. But further investi-

7 Sec Section 65.
8 Sec Sections 13 and 32..
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gations in this direction require the employment of the methods of

differential geometry
9 and carry us beyond the scope of this book.

88. The Two Elliptic Geometries.

Thus far we have proceeded on the assumption that the two

points and 0' of Section 86 are distinct. However, it is con-

ceivable that they are the same point and that a line has only one

pole. This viewpoint leads to a perfectly consistent geometry.
If a line is regarded as having but one pole, two lines intersect in

only one point and two points always determine a line. Straight

lines are finite and closed, but of length z#. The distinguishing fea-

ture of this type of Elliptic Geometry is the fact that a straight line

Figure 94

does not divide the plane into two regions. In other words, it is

always possible, on such a plane, to pass from one side of a line to

the other without crossing the line.

The distinction between the two Elliptic Planes can, perhaps, be

made clearer by calling attention to the fact that the plane in the

geometry sometimes described as of the spherical type has the charac-

ter of a two-stdedsurfa.ee. On the other hand, the plane in the Elliptic

Geometry with a single pole for each line is one-sided in character.

One usually conceives the Euclidean Plane, for example, as having
two faces, and a sphere as having two distinguishable surfaces,

referred to, very likely, as inside and outside. The concept of a strictly

one-sided surface is less familiar. It will aid in formulating our

ideas of such a surface to consider what is called a Leaf (or Sheet) of

Mobtus (Fig. 94). This can easily be constructed by twisting, half-

way around, a long, narrow, rectangular strip of paper, and then

9
Sec, for example, Eisenharr Differential Geometry, Chapter VIII (Boston, 1909),

or Graustein- Differential Geometry t p. 179 (New York, 1935).
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pasting the ends together. Thus the two faces of the rectangle be-

come indistinguishable and the resulting surface has only one side.

The drawing suggests how it is possible to pass from one side of a

line to the other, so to speak, without crossing the line.

These two types of Elliptic Plane are generally distinguished by

designating one as the Double Elliptic Plane and the other as the

Single Elliptic Plane. As remarked previously,
10 the first the

spherical type is probably the one which Riemann had in mind.

The following brief treatment of Elliptic Geometry and Trigo-

nometry is confined chiefly to that portion of the theory common to

both planes.

EXERCISE

Construct a Leaf of Mobius, but first draw a straight line lengthwise down the

middle of the rectangular strip of paper, before pasting the ends together as in-

structed above. Then cut the Leaf along the line. Interpret the result. Repeat,
this time cutting along a line drawn lengthwise, but only one-third of the distance

across the strip, and produced when the ends arc pasted together.

A

B "0

Figure 95

89. Properties of Certain Quadrilaterals.

In the subsequent developments we shall need the following
lemma :

Lemma. In any triangle which has one of its angles a right angle,

each of the other two angles is less than, equal to, or greater than

a right angle, according as the side opposite it is less than, equal to,

or greater than q, and conversely.

Let angle C in triangle ABC (Fig. 95) be a right angle. Measure

off from point C on side CB, in the direction of B, a segment CO
10 Sec Section 35.
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equal to q. Line AC then has point for pole. If is joined to A,

angle OAC is obviously a right angle. Hence, if CB is less than f,

as in the drawing, angle CAB will be less than a right angle, while,

if CB is equal to or greater than q, that angle will be equal to or

greater than a right angle. The converse is then easily proved.

Theorem 1. The line joining the midpoints of the base and sum-

mit of a Saccheri Quadrilateral is perpendicular to both of them,
and the summit angles are equal and obtuse.

It will only be necessary for us to show here that the summit

angles are obtuse. The proof of the remainder of the theorem is the

same as that given for the corresponding theorem in Hyperbolic

Geometry.
Let ABCD (Fig. 96) be a Saccheri Quadrilateral with base AB

and with MH the line joining midpoints of base and summit. We
need only consider cases in which each summit angle is known to be

less than two right angles. Produce HC and MB until they meet in a

>0

Fisure 96

point 0. The line HM then has for pole and segments HO and MO
are of length q. Then the length of BO is less than q and angle BCO
is acute. It follows that the summit angles are obtuse.

Theorem 2. In a trirectangular quadrilateral (Lambert Quadri-

lateral) the fourth angle is obtuse and each side adjacent to this

angle is smaller than the side opposite.

The proof that the fourth angle is obtuse is left to the reader. To
show that the sides of the obtuse angle are less than their respective
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opposite sides, let ABCD (Fig. 97) be a Lambert Quadrilateral with

obtuse angle at C. Then BC cannot equal AD, for then the angles at

B
Fisure 97

D and C would have to be equal. Nor can BC be greater than AD.

For, if such is the case, measure off segment BE on BC equal to AD.

Then angles ADE and BED will be equal. But angle ADE is acute

and another contradiction has been reached. We conclude that BC

is less than AD.

90. The Sum of the Angles of a Triangle.

Theorem 1. If any triangle has one of its angles a right angle,

then the angle-sum of the triangle is greater than two right angles.

One needs to consider only cases in which each of the other two

angles is acute and thus each side adjacent to the right angle less

A

Figure 98

than q. The proof, which is almost the same as that for the corre-

sponding theorem in Hyperbolic Geometry, may be supplied by the

reader.

Theorem 2. The sum of the angles of any triangle is greater than

two right angles.
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Let ABC (Fig. 98) be any triangle at all. If one of the angles is a

right angle, or if two of the angles or all three of them are obtuse,

the theorem follows at once. We consider then only the cases in

which at least two of the angles, say those at B and C, are acute.

Draw the altitude AD from A to BC. The foot D of this altitude

will lie on segment BC, for, if it did not, the altitude AD would

have to be, by the lemma of Section 89, both greater than and less

than q at the same time. It should now be clear, since the angle-sums
of right triangles ADB and ADC exceed two right angles, that so

also does the angle-sum of triangle ABC.

A

E
Figure 99

The difference between two right angles and the sum of the angles
of a triangle is called the excess of the triangle.

Corollary. The sum of the angles of every quadrilateral is greater
than four right angles.
\

In concluding our brief survey of the purely geometric aspects of

the Elliptic Plane, we remark that there are, of course, no limiting

curves in this geometry, that circles are equidistant curves and that

equidistant curves are circles. As a matter of fact, an equidistant

curve properly consists of two circles, symmetrically situated with

regard to the base-line. On the Single Elliptic Plane the two

branches of an equidistant curve are connected. 11

As in Hyperbolic Geometry, there is associated with every right

triangle in Elliptic Geometry a Lambert Quadrilateral. Figure 99
11 Sec Figure 94.
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exhibits the relations between the parts of a right triangle ABC and

its associated Lambert Quadrilateral BCDE. We define c' by the

relation c
f + c =

q, n' is the supplement of /u, and / is the segment of

line which subtends an angle X at its pole. Here again appears, as

is easy to show, the series of five associated right triangles.

EXERCISES

i. Prove that the line joining the midpoints of two sides of a triangle is greater than

one-half the third side.

i. If two points are each at a distance q from a point 0, the line determined by the

two points has for pole. What are the exceptions
?

3. Make a list of three or more statements which are true for all three geometries.
Make a list of three or more statements which are true for GO Parabolic Geometry

only, 0) Elliptic Geometry only, 0) Hyperbolic Geometry only, (</) Parabolic and

Elliptic Geometries only, (V) Parabolic and Hyperbolic Geometries only, (/) Elliptic

and Hyperbolic Geometries only.

The following exercises refer to geometry on the Double-Elliptic Plane. They
suggest the results to be obtained, with proper modifications, for the Single-Elliptic

Plane.

4. Choose the unit of line so that q
= ~k and the unit of angle so that a right angle

7T X
measures -. Then show that an angle has the measure ~r if the length of the segment

of line having the vertex for pole and included between the sides has the measure x.

5. Given a triangle, construct the three lines which have its vertices for poles.

These lines divide the entire plane into eight triangles. Of these eight, that one is

called the polar triangle of the given triangle which has its vertices lying in the same

relative positions with regard to the corresponding sides of the given triangle as the

vertices of the given triangle itself. Prove that, if one triangle is the polar of a second,

then the second is the polar of the first. Restrict the discussion in this and the next

three examples to triangles which have no angles larger than IT.

6. If a triangle ABC is lettered in the conventional way, a, b, c designating the

measures of the sides and X, /i, v the measures of the angles, the corresponding parts of

ff

the polar triangle being denoted by a', b
f

, c' t X', /i', v' t prove that X + ir,

V
M + ~ - *, etc.

7. Prove that two triangles with the three angles of one equal, respectively, to the

three angles of the other arc congruent, in other words, that there are no similar tri-

angles in Elliptic Geometry.

8. Show how to construct a triangle, given its three angles.

9. Choose the unit of area so that the area of a digon or bianglc with angles
-

is *. Prove that the area of a bianglc of angle a is 2Jk
2
a, and that the area of the

entire plane
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10. Prove that the area of a triangle with angles X, p, u is given by A2[X + /c + v

*]. Suggestion: Complete the sides of the triangle, the three lines dividing the plane
into eight triangles, congruent in pairs.

91 . The Trigonometry of the Elliptic Plane.

We turn briefly to the trigonometry of the Elliptic Plane. The dis-

cussion will add a degree of completeness to this hasty survey of

Elliptic Geometry and at the same time will serve to introduce an

ingenious treatment12 of Non-Euclidean Trigonometry. The method

to be used here is quite different from the one employed in our study
of Hyperbolic Trigonometry; the contrast should prove interesting.

The reader will find it a profitable exercise to return to the study
of the trigonometry of the Hyperbolic Plane and apply to it this al-

ternative treatment. 13

92. The Trigonometric Functions of an Angle.

For simplicity, we shall define the trigonometric functions only
for acute angles. The definitions can be extended later to other

angles. This, it will be recognized, is the procedure frequently

followed in elementary presentations of Euclidean Trigonometry.
Let 6 (Fig. 100), with vertex at 0, be any acute angle. From any

point P on one side draw PQ perpendicular to the other.

TL Q
Figure 100

Designate by AT, y and r the lengths of segments Qg, QP and OP,

respectively. It will be convenient, and will not affect the gen-

erality of the results, to choose P so that r is less than 4. As will

/y *f

presently appear, the ratios and arc not constant, when the

12 This method is due to P. Mansion. See Mathcsis, Second Series, Vol. IV (1894),

pp. 180-183.
13 As a matter of fact, the method was devised first for Hyperbolic Trigonometry

by M. Gerard. See footnote, Section 65. It was later modified by Mansion to fit the

Elliptic Hypothesis.
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position of P varies, as in Euclidean Trigonometry. We propose to

show, however, that these ratios approach finite limits as r ap-

proaches zero. These limits, which can be shown to be continuous

functions of the angle, we define as the sine and cosine of 0, so that

y
sin 6 = lim -

r*>-o r

and
.. x

cos = lim ->
r-^o'

the other trigonometric functions ensuing in the conventional

fashion. We shall need to prove a sequence of theorems.

Theorem 1. As r decreases, the angle OPQ decreases.

Let PI and P% (Fig. 101) be any two positions of P such that OFi

is less than OP2 - Draw the perpendiculars P\Q\ and PZQZ . Then

the sum of angles OP\Qi and Q\PiP% is equal to two right angles,

while that of angles Q\P\Pi and PiPzQz is greater than two right

Q, Q 2

Fisure 101

angles. Therefore angle OPijgi is less than angle OPzQ*. It follows

as a consequence that the angle at P (Fig. 100) is acute and ap-

proaches a right angle as r approaches ^.

Theorem 2. As r decreases continuously; so also does /_
As before, let OPt (Fig. 101) be less than OP2 . It is clear that

Pifii and PzQ* cannot have the same length, for then angle PiPtQz
would have to be obtuse. Nor can PiQi be greater than P^Qz- For

in this case, if QiR is measured off on (giPi equal to Q^Pz and ?2

joined to R, it follows that angle RP^Qz is obtuse, contradicting the

fact that angle P\PzQz is acute. We conclude that PiQi is less than

and that jr decreases as r does.



ELLIPTIC PLANE GEOMETRY AND TRIGONOMETRY 187

Theorem 3. As r decreases continuously, so also does the ratio
-

In order to prove this, divide OQ (Fig. 101) into n equal parts,

J& &, fis, . . .
, Qn-\ being the points of division. Draw the

perpendiculars to OQ at these points; they will intersect OP in

points PI, P2 ,
P3 ,

. . . . , P_I. These divide OP into n parts which

are not equal, as we shall see. Select any representative set of three

consecutive perpendiculars, say PkQk, Pk+\Qk+i and P*+ 2j2*+2. Since

p,

Q,

Figure 102

Pk+*Qk+* is greater than PA-J^A, segment Qk+*R can be measured off

on Qk+tPk+z equal to J^P* and R joined to PA+I. Then the equality of

angles QtPkPk+i and Qk+zRPk^ i, and of segments PjtP^+i and Pfc+ iR,

follows from congruence theorems, leading to the conclusion that

angle P^+iPk+zR i$ greater than angle Pk^iRPk+^ Consequently,

since triangle P*+ 2P*+iR is of limited size, side P*+iR is greater than

side Pk+iPk+2, or, what is the same thing, PkPk+i is greater than

Turning our attention now to the ratio -, we start with r equal

to OPi. In this case the ratio is less than unity. As r becomes sue-

x
ccssively OP2 ,

OP3 , . . . . , OP, the ratio - increases, since x receives

equal increments and r decreasing ones. Then for any two positions

of P, for which the x's are commensurable, the corresponding ratios

are unequal, and that is the greater for which r is greater. The same

conclusion can be reached if the x's are incommensurable by the use



188 NON-EUCLIDEAN GEOMETRY

x .

of limiting processes. Thus we conclude that the ratio increases

continuously as r increases, and hence decreases as r does.

For later use, we call attention to the fact that if, assuming that

OP and OQ (Fig. 101) are of length q, the angles at P and jg being

right angles, we start with the Lambert Quadrilateral PQQ n-\Pn-\ 9

PP
we can easily show that the ratio 7*7^ increases as QQn-i does and

decreases as QQn-\ decreases.

fifin-l

Theorem 4. As r decreases continuously, the ratio
-

increases.

This time, divide OF (Fig. 103) into n equal segments, with points
of division PI, P2 , PS, , Pn-i, and draw the perpendiculars

PiQi, PzQ.2, PzQs, , Pn-iQn-i to OQ. Select, as before, any

representative set of three consecutive perpendiculars, P*jQ*, Pk+iQk+i

Q, Qn-iQK QK+I QM>Z

Figure 103

and Pjk+2j2*+2. From Pk draw PkR perpendicular to Pk+iQk+i- On

Qk+iPk+\ produced through P^+i measure off PA+I^ equal to P^+iR

and join P*+ 2 to S. Since triangles PkRPk+i and PA-+i^P^42 are con-

gruent, angle Pk+iSPk+z is a right angle. Designate the common

length of Pk+iS and P^+iR by d. Then

^+2*2^+2 < SQ,L+l
~ Pk+lQk+l -f d

and

Therefore

and

> d,
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so that y receives decreasing increments as r receives equal ones.

Arguing as before, we are led to the conclusion that the ratio -

decreases continuously as r increases, and increases as r decreases.

We are now ready to show that the ratios under consideration

actually approach limits as r approaches zero. Theorem 3 convinces

x
us that, as r decreases, the ratio -, since it is always positive and

decreasing, approaches a limit which may be a positive proper
fraction or zero. On the other hand, Theorem 4 alone fails to give

"V

us sufficient information to conclude that- also approaches a limit.

That this is, however, the case can be shown as follows:

Starting with the angle used in the other drawings, and employing
the same letters, construct (Fig. 104) OT perpendicular to OQ at 0,

and draw PR perpendicular to OT. Designate by x
1

and y
1

the lengths

of segments PR and OR, respectively. Then, since angle FOR is

acute, the theorems just proved can be applied to it, as well as to

angle POQ. Figure OgPR is a Lambert Quadrilateral. Consequently

x is greater than x' and y is less than y'. Since, as r decreases,

X .

is positive and increasing, and - is always greater than , it is now

x y'
clear that the limit of - is not zero. It immediately follows that

also approaches a positive limit less than unity from above, and, since

y y'- is always less than and continuously increases as r decreases, it

must approach a finite limit, which is less than unity, from below.
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93. Properties of a Variable Lambert Quadrilateral.

Figure 104, of the last section, is to play an important part in the

investigations to follow. Of particular interest to us are the conse-

quences of fixing side y' of the Lambert Quadrilateral OQPR and

allowing x to vary. Then x'
y jy, r, and the obtuse angle RPQ will

be variable also. We wish to consider, in particular, the character

x 1

of the variation of the ratio as x approaches zero, y
1

being fixed.

The following theorem serves to introduce an important function.

Theorem. If the sides of a Lambert Quadrilateral are x, y, x',

y ,
where x and x'

, y and y
r

are pairs of opposite sides, x' and y

including the obtuse angle, and if y' is kept fixed while x is allowed
y'

to approach zero, then the ratio decreases and approaches a fi-

nite limit

In order to prove this theorem, we shall need two lemmas.

Lemma 1. If two Lambert Quadrilaterals ABCD and A'B'CD'
have their obtuse angles at A and A', and if /46and A'B' are equal,

while BC is less than B'C
1

and each is less than q, then angle BAD
s less than angle B'A'D'.

The reductio ad absurdum proof is left to the reader.

Lemma 2. If ABCD is a Lambert Quadrilateral, obtuse-angled
at A, then, if AB is kept fixed and BC allowed to decrease continu-

ously and approach zero, the ratio -n increases.

Divide BC (Fig. 105) into n equal parts, C\ 9
C2 ,

. . . .
, d-i

Deing the points of division, draw the perpendiculars to BC at these

Doints, and to these lines draw the perpendiculars AD\, AD^ . . . .
,

4Dn-i from A to form Lambert Quadrilaterals. From Lemma i,

t is clear that the obtuse angle decreases as BC does. Let ABCkDk ,

4BCk+iDk+ i, ABCwDk+t be three representative successive quadri-

laterals. Produce ADk to cut Ci+\Dk+\ in
, CJ^k to cut ADk+i in F,
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B C, 2 CK CK-M CK+? Cn-i

Fisure 105

and ADk+i to cut CA+ 2A+2 in G. Since quadrilaterals Dk+\Ck+\CkF
and DA+iC]fe+iGt+2G are congruent, FDk+\ is equal to Dk+\G. Further-

more, AG is greater than ADk+i and /4D* less than /4F. Then
A1T\ i Z77") "*. >l r")
^A-'AH-l ~T "Lsk+l ^ SlJL/ic+2,

so that
^ 7"*i A E ^

SLLJk+\ /iJr

and finally
JH >^n

yii-Xfc-j- 1 /IjLXJt

Thus, starting with quadrilateral ABCiD\, as BCi takes on equal

increments, AD\ takes on decreasing ones. Arguing as in Section 91,

we conclude that the ratio -^ decreases as BC increases and hence

increases as BC decreases.

Returning to the theorem, we point out first that, as a consequence
of the remark made at the end of the proof of Theorem 3 of the last

x'
section, the ratio decreases as x approaches zero. It therefore

approaches a limit less than unity. We shall show that it is not

zero.

In Figure 104, draw RS perpendicular to QP produced. As a

RS
consequence of Lemma i, the ratio increases as x decreases.

x'
But, since RP is greater than RS, it follows that the ratio is always

RS x'
greater than . We deduce that the ratio has a limit which

x x
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is greater than zero. This limit depends upon the length of y' and

we designate it by ^O'). It should be noted that, at least as far as

this discussion is concerned, y
1

is restricted to lie between zero and q.

As y' approaches zero, vOO approaches unity; as y' approaches ^,

approaches zero.

We have shown that, for quadrilateral OQSR (Fig. 104),

Applying this result to quadrilateral QgPR, we have

and thus obtain the relation

X

for which we shall have use later. Since y' is greater than y, it

shows that as x increases v?00 decreases.

94. The Continuity of the Function <p(x).

Let ABCD (Fig. 106) be a Lambert Quadrilateral with obtuse

angle at C. Designate the lengths of segments AB, EC and DA by

x, u and v, respectively. We have shown that, if x is fixed and v

allowed to approach zero, the ratio -
approaches from above a

limit less than unity, which depends upon the length of x and is

K

A ,- B
~u

x
Figure 106

denoted by <f>x). We wish to prove that <p(x) is a continuous func-

tion.

In order to do this, produce DC through C until it cuts AB pro-
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duccd in 0. The point is a pole of line AD. Measure off on AO,
in both directions from B, segments BE and BF of length h

t
and at E

and F draw perpendiculars to AO, cutting DO in G and H. From G
and H draw GK and HL perpendicular to BC. From Theorem 3 of

Section 92., we have
CK CB
CG

<
CO'

which can be written
BK - u u CG

v
<

7CO'
or

GE BK _ u CG u

v'GE v
<

CO'v

Then, as v is allowed to approach zero, the line DO rotating about

0, we have, proceeding to the limit,

<p(x H) , ^ b , ^

or

(*-*)- *(*X*) s
^4^>OX<&).

CO

Again, starting with the relation

CL CB
CH <

CO'

we obtain, in exactly the same way, the relation

CO

Combining (i) and (z), we find that

Thus, no matter what value x has in the interval under consider-

ation, a value of b can be found such that the difference of <p(x
-

fr)

and v>C* -f A) will be less than any assigned positive quantity, how-

ever small, and the continuity of ^?00 is assured.

95. An Important Functional Equation.

We turn next to a figure very much like the preceding one, and use

it to derive a fundamental condition satisfied by the function ^(x).
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Let ABCD (Fig. 107) be a Lambert Quadrilateral, obtuse-angled at

C. Designate the lengths of segments AB, BC and DA by x, u and t> 9

respectively, and produce AB and DC to meet at 0.

D

M

Measure off on AO segments BE and BF equal to y and draw the

perpendiculars to AO at E and F. Let them cut DO at G and H.

This time draw the perpendicular to CB at C and let it cut EG in M
and FH produced in N. It is easy to see that CM and CN are equal.

Finally, since CH is greater than GC, segment CP equal to GC can be

measured off on CH and P joined to N. Then NP is equal to GM.
As v is allowed to approach zero, the angles GMC and HNC ap-

proach right angles, angle PNH becomes infinitesimal and so do

segments NH and PH. It can be shown that PH is an infinitesi-

mal of higher order than v, and we shall assume this here. Then

since

(NF - HF) - (GE - M) = NH - GM - NH - NP < PH,

it follows that

.. TNF u HF GE ME u~\hm ------- + --- = o,
^o \_

U V V V U VJ

or

or finally

*>O - y)

96. The Function vK*).

The discovery that the function ^>(V) satisfies the condition ar-

rived at in the preceding section together with the facts that it is

less than or equal to unity, decreases as x increases, is equal to unity
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when x is zero and to zero when x is equal to #, suggests a resem-

blance to the familiar function cos x. We propose to show that14

/- -\
x

<P\.X) = COS T'

where k is a constant depending upon the unit of length.

Choose, to begin with, a particular value of x, say x', the choice

to be governed only by restrictions already imposed on AT, as they

apply to the discussion which follows. Then ^(x) has a value be-

tween zero and unity and is thus equal to the cosine of some argu-

x'
ment. Whatever this argument is, it can be represented by -r-, if k is

properly chosen. Consequently

v?O') = cos ~
Since

ifox) =
2-*>[0

- i>] <*) -
v[(t

" 0*]
and

cos (fx) = 2. cos [(^
-

OAT] cos x - cos [(j>
-

I)AT],

regardless of the value of p, it easily follows by mathematical in-

duction that

/- /N nX '

(f)(jlX ) = COS -r->

where is any positive integer. Then, in a similar way, we find

that

(nx'\ nx f

&[ I = COS ; >

\l
m
/ l.

mk

where m is any positive integer. Thus the relation

<p(x)
= cos -

k

holds for every value of AT, within the interval under consideration, of
/

the form . That it holds for every other value of x in the interval

follows from the continuity of the functions <p(x) and cos x and from

the fact that can, by proper choice of m and #, be made to differ

from any such value of x by as small an amount as we please.

14 The reference here is, of course, to the generalized definition of cos x. See Ap-

pendix II.
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97. The Relations among the Parts of a Right Triangle.

We have now reached the point where we are ready to derive the

basic relations of Elliptic Trigonometry, those which relate the

measures of the sides and angles of a right triangle.

Let ABC (Fig. 108) be any right triangle with the angle at C the

right angle, and designate the measures of the sides in the customary

way by a, b and c. Again we shall restrict the size of the figure so

that the segments involved will be less than q. Extension of the

results to unrestricted figures leads to no great difficulty.

BS 1-1 S C3
Figure 108

On BA, produced through A, mark off a segment AA\ and draw

A\C\ perpendicular to BC, produced through C. On CA and CB

produced measure offCA2 and CB2 equal to CiAi and CiB, respectively,
and join A2 and B2 . Triangles A\EC\ and AJRf. are congruent. Next

produce AB through B, measure AB* equal to A\B, and construct at

B3 angle ABz equal to angle AiBC. If B3C3 is made equal to BC\

and A joined to C3 , triangles A\BC\ and AB$ will be congruent.
It is easy to see that BB2 is equal to CC\ and BB3 to AA\.

Through the midpoint H of B2B draw HI perpendicular to A2B2 .

IfBJ is measured off on &B3 equal to B2I and H joined to/, triangles
HB2I and HBJ will be congruent, points /, H and / will be collinear,

and HJ will be perpendicular to B*A. In a similar way LKM,
through the midpoint K of BB3 and perpendicular to B and

can be drawn.
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Since angle BA\C\ is greater than angle BAC, AC$ will intersect

BCi between C and C\. Produce AC to cut B-A in S. Then AS is

greater than ACa, which in turn is equal to A. Thus CS is greater

than AZA. Consequently segment CT, equal to AA^ can be marked

off on CS, the point T lying between C and S. Draw the perpendic-
ular TU from T to LM. Finally, to complete this elaborate figure,

draw A\P perpendicular to AC and A%Q perpendicular to AB.

If we allow AAi to approach zero, we see that

t._AiP fi A0

Similarly

so that

.. LK .. JHhmm = hm
iff-

LAf

Then, from the first and third of these equations, we obtain by
division

.. AJ .. AZQ. CCihm -p-rj = hm -~ hm -7-7-1
LAI // /i^42

or, what is the same thing,

T/ CC[

We shall consider, in turn, each of the three limits involved.

First, if we apply the last relation obtained in Section 93 to the

Lambert Quadrilateral AJJQ, we find that

Proceeding to the limit, /g and L42 both approach /IB and thus, on

account of the continuity of the function tf>00, both ^C/fi) and

<p(IA^) approach <p(AB). Hence

Jim =

and, in exactly the same way by use of quadrilateral AiPCCi,

Hm^ = ^AC).

The third limit is not quite so easily disposed of. However, since
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is equal to AC$ and AC is less than AR, we observe that RC3 is

less than AA^ and consequently

Also
AA2 AA CT

Then, since MC3 and UT both approach BC, as AA } approaches

zero,

Thus we conclude that

or

cos 7 = cos T-COS 7-
k k

This is the relation connecting the three sides of a right triangle.

It leads immediately to the important conclusion that the Pythag-
orean Formula holds for infinitesimal right triangles in Elliptic

Geometry. From this fact, it follows that the trigonometric func-

tions of angles, as defined in Section 91, are connected by the familiar

relationships of Euclidean Trigonometry, namely,

sin
2 B +vcos

2 8 =
i,

sec
2 - tan2 =

i, etc.

To obtain a second formula relating parts of a right triangle ABC,

produce CA (Fig. 109) through A any convenient distance u to point

?, and draw the perpendicular PQ from P to BA produced. Desig-
nate the measure of PQ by v and of AQ by w. Finally draw BP.

Then
BP a b + u

cos -r- = cos 7 cos 7

cos T
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and
BP c + w

199

so that

u
cos

k

cos
l
[c

w . c . w\
cos 7 cos -r - sin 7 sin -7 >

k k k *J

tanj

w

If u is allowed to approach zero, the right-hand member of this

equation approaches cos A, so that we have

tan-

cos A = > CO
tan

the formula relating an angle not the right angle C to its in-

cluding sides.

It is no great task to convert this into a third formula, for we

obtain at once
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sin2 A = i -

tan 2
7
K

or

9- COS 2
7
k

sin 2
T

. a
sin 7

sin A - --
(3)

sin T

The other three formulas,
. b

sin 7

cot A =- >
. (4)

cos A = cos 7 sin B, (5)

cos 7 = cot A cot B, (6)

are then easily obtained.

The reader will recognize these formulas as those for the spherical

right triangle for a sphere of radius k.



VIM
THE CONSISTENCY OF THE NON-EUCLIDEAN

GEOMETRIES
"
In respect of soundness inner consistency self-compatibility

logical concordance among the parts of each the three geometries arc

on exactly the same level, and the level is the highest that man has at-

tained. The three doctrines are equally legitimate children of one spirit,

the geometnzing spirit, which Plato thought divine, and they are

immortal. Work inspired and approved by the muse of intellectual har-

mony cannot perish it is everlasting." CASSIUS J. KEYSER

98. Introduction.

Sooner or later, in the study of Non-Euclidean Geometry, the

following question is certain to arise: which of the three geometries
is the

"
true

1 '

geometry, or, in other words, which geometry actually

describes our physical space? In this connection it is hoped that

enough has already been said about the Kantian space philosophy
to convince the reader of its weakness and, from the standpoint of

the geometer at least, to discredit it entirely. That space is an idea

existing a priori in the minds of humans and without which there

would be no space phenomena as we know them, is a viewpoint no

longer considered satisfactory. Geometry, when applied to space,

becomes experimental in character and should be looked upon, as

Gauss remarked, from the same standpoint as mechanics. The space
which we recognize through the organs of sense, composed as it

is of a multitude of discrete impressions, lacks much of being a

mathematical continuum.

201



202 NON-EUCLIDEAN GEOMETRY

Thus we conclude that there is no point to the question at the

beginning of this section. One geometry is no more
"

true" than

the others. As a matter of fact, when a geometry is applied to space,

a postulate of parallels becomes an empirical law, like the law of

falling bodies, which at best appears to describe very well things as

they seem to be. As pointed out in the first chapter, the application

of geometry to physical space is but an attempt to supply a body of

logical doctrine which will correlate, with sufficient accuracy for all

practical purposes, the data of observation and experiment. And it

is true that any one of the three geometries does this about as well as

either of the others. If indirect measurements were made and

engineering projects constructed on the basis of Hyperbolic or

Elliptic Geometry, the results weald be as satisfactory as those ob-

tained under the Euclidean Hypothesis. Indeed, the differences

jwould very likely not be perceptible within this modicum of space

to which we are physically restricted. But even if there were

accruing evidence that one of the Non-Euclidean Geometries de-

scribes our space in some respects more precisely than Euclidean, the

latter would still continue to be largely used because of its com-

parative simplicity.

As pointed out in Section 74, we can never ascertain that space is

Euclidean, even if that is the case, because of experimental errors

which cannot be entirely eliminated. But it is not altogether im-

possible that improved instruments and new methods, leading, for

example, to the fixing of an upper limit to the space constant, may
eventually enable us to assert definitely that the universe is essenti-

ally Non-Euclidean. However, to such an end there are very

effective barriers. One of these is the fact that the methods of

indirect measurement, as well as the very instruments of measure-

ment themselves, must be fashioned upon one or other of the

geometries as basis. Conclusions of the kind sought, based upon
csults obtained by the use of such methods and instruments, would

lardly be convincing.
But there is another question which must be disposed of in another

ivay: are the Non-Euclidean Geometries consistent? As far as we
Durselves have gone with the development of the two geometries, no

:ontradiction has been discovered. As a matter of fact, no contra-

diction has ever been discovered by anyone. However, are we sure,
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as investigations are continued, that contradictions will not arise to

show that the postulates of one or the other are incompatible?

Many proofs of the fact that the Non-Euclidean Geometries arc

consistent have been given, from the earliest one, presented by
Beltrami in 1868 and already mentioned,

1 to the significant and far-

reaching, though much more elaborate, demonstrations of Cayley
and Klein. Some proofs, like Beltrami's, depend upon the repre-

sentations of the Non-Euclidean Geometries upon Euclidean sur-

faces of constant curvature; others are analytical in character and

obtain their objective by showing that the analytical representations

lead to sets of consistent equations. Still others appeal to the

methods of projective geometry. The proof
2 which we offer here is

synthetic, and depends only upon simple geometric concepts. No
knowledge of projective geometry or of the geometry of surfaces is

required.

We shall prove that the postulates of Hyperbolic Plane Geometry
form the basis of a consistent logical system by directing attention

to the set of circles in Euclidean Geometry which cut a fixed circle at

right angles. We shall show that the geometry of this family of

circles, when properly interpreted, presents a complete analogue of

geometry on the Hyperbolic Plane, definition by definition, postulate

by postulate, proposition by proposition. As a consequence, we
shall be able to infer that Hyperbolic Geometry is consistent. For,

if any contradiction were ever encountered, there would be a corre-

sponding inconsistency at the corresponding point in the geometry
of the family of circles. But the latter is primarily Euclidean

Geometry. Hence it would have to follow that Euclidean Geometry
itself is not consistent. The plan can readily be extended to solid

geometry.
It will be recognized that this test for consistency is comparative.

1 Sec Section 33.
2 The method is due to Poincare. Sec the English translation of his Science and

Hypothesis by W. J. Greenstreet (London, 1905). We follow the more detailed treat-

ment given by H. S. Carslaw, first in the Proceedings of the Edinburgh Mathematical So-

ciety, Vol. XXVIII (1910), pp 95-110, then in the appendix to his translation of

Bonola: Non-Euclidean Geometry (Chicago, 1911), and finally in his Elements of Non-

Euclidean Plane Geometry and Trigonometry (London, 1916) It is an extension and

elaboration of the treatment of the subject by Wellstcin in Weber and Wellstcin's

Encyclofadie der Elementar-Mathemattk, Vol. ii, pp. 18-83 (Leipzig. 1907)-
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But so arc all of the others. In fact, no absolute method for testing

the consistency of a set of assumptions has ever been found. 3

99. The Geometry of the Circles Orthogonal to a Fixed Circle.

Let us consider a geometry in which the circles orthogonal
4 to a

fixed circle, called the fundamental circle, play the roles of lines. This

geometry is to be basically Euclidean, but we shall interpret it in such

a way that it will satisfy the postulates of Hyperbolic Geometry.

Any circle may be chosen as the fundamental circle. Every point

inside this circle is regarded as a point of our geometry; the points

on the circumference and outside the circle are not considered

as points of the geometry at all. Those arcs of circles cutting the

fundamental circle orthogonally which lie within this circle consti-

tute the lines of the geometry. Since they are not lines in the strict

sense, we shall call them nominal lines* It will be recalled that one

and only one circle can be constructed through two points within a

circle and orthogonal to it, provided, of course, we count straight

lines through the center of a given circle as belonging to the aggre-

gate of circles orthogonal to it. Thus it is clear that nominal lines

satisfy a prime requisite of lines in Hyperbolic Geometry, namely,

that a line is determined by two of its points. Furthermore, the

axioms of order hold. Since a nominal line is not closed, it is always

possible to designate one of three points on it as lying between the

other two. On account of the fact that two circles which intersect,

and are both orthogonal to a third circle, have one point of inter-

section inside and the other outside the third circle, it follows that

if two nominal lines intersect, they intersect in one point only.

We shall define the angle of intersection of two intersecting

nominal lines as the angle of intersection of the tangent lines, at the

point of intersection, to the circles with which the lines coincide.

Thus two intersecting lines form four angles, equal in pairs and

supplementary in pairs. Two nominal lines are said to be perpendic-
8 A test for the consistency of a geometry does not depend necessarily upon com-

parison with another geometrical system. The ideas of geometry can, for example, be

transferred to the realm of numbers. Sec, in this connection, Hilbert's proof of the

consistency of the axioms of Euclidean Geometry (Grundlagen der Geometrie, 7th ed.,

p. 34, or Townscnd's translation, p. 17) and the proof offered by Vcblcn and Young for

the miniature mathematical system described in their Projective Geometry, Vol. i, p. 3

(Boston, 1910). In the latter place there will also be found references to the literature

on the subject of the possibility of an absolute test for consistency.
4 See the Appendix for a brief account of the theory of orthogonal circles.

* As suggested by Carslaw.
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ular when they intersect at right angles. One and only one circle

can be drawn through a point and orthogonal to two intersecting

circles. Hence, through a given point, there can be drawn in our

geometry one and only one nominal line perpendicular to a given
nominal line.

But two nominal lines may not intersect at all. We distinguish

between two cases. If the circles with which two nominal lines

coincide do not intersect one another, we call the lines non-inter-

secting. If the circles are tangent to one another at a point on the

fundamental circle, we call the nominal lines parallel. It is easy
to see that two nominal lines have a common perpendicular if and

only if they are non-intersecting. Through a given point two

nominal lines can be constructed parallel to a given nominal line.

These parallels separate all of the nominal lines through the given

point into two sets: those which intersect the given nominal line

and those which do not. Parallel nominal lines may be regarded as

intersecting at a zero angle.

The sum of the angles of a nominal triangle, a triangular figure

the sides of which are nominal lines, is less than two right angles.

To prove this, let ABC (Fig. no) be such a triangle, the funda-

FisurellO
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mental circle having its center at 0. Complete the circles with

which the nominal lines forming the sides of the triangle coincide.

In particular let the circles AC and BC intersect again at R. Invert*

the entire figure with R as center of inversion. Circles AC and BC

will invert into intersecting straight lines A'C and B'C (Fig. in).

The fundamental circle will invert into a circle orthogonal to lines

Figure 111

A'C' and B'C' and hence with center at C'. Circle AB will invert

into a circle orthogonal to the inverse of the fundamental circle and

thus with center outside it. Obviously the angle sum of the tri-

angular figure A'B'C is less than two right angles, and, since angles

are preserved under inversion, the same is true of triangle ABC.

The reader will have no difficulty in constructing a figure which may
be regarded as a triangle with each angle a zero angle; each side

will be parallel to the other two in opposite directions.

EXERCISES

i. Prove that the two nominal lines through a given nominal point, parallel to a

given nominal line, make equal angles with the nominal line through the given point

and perpendicular to the given line. We thus have in the geometry of the nominal

lines an analogue for the angle of parallelism in Hyperbolic Geometry.

%, Prove that such an angle of parallelism is always acute.

100. The Nominal Length of a Segment of Nominal Line.

Our objective is, as has been explained, to prove that the entities

of the geometry which we are describing, when assigned the roles

6 See the Appendix for a discussion o*f the elements of the theory of inversion.
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of entities in Hyperbolic Geometry, satisfy the postulates which

form the foundation of that geometry. Thus far the evidence has

accumulated rapidly. In fact, we have reached a point where we can

announce that every proposition of Hyperbolic Geometry which

involves only properties of angles has its analogue in the geometry of

the nominal lines.

But we have not yet given any attention to the idea of the length

of a segment of nominal line. Until the nominal length of a nominal

segment has been denned for our geometry, it will contain no counter-

parts for any of the beautiful metric theorems which so vividly

characterize Hyperbolic Geometry.

112

There are three requisites for nominal lines which must be kept in

mind in selecting a definition for the nominal length of a nominal

segment, if the analogy to Hyperbolic Geometry is to be preserved:

i. A nominal line must be infinitely long.

i. If A, B and C are any three points at all on a nominal line, then

nominal length AB + nominal length BC = nominal length AC,

sense being taken into account.

3. The nominal length of a nominal segment must be unchanged

by displacement.

The following definition satisfies these requirements. Let the

circle with which the nominal line AB coincides cut the fundamental

circle in points S and T (Fig. i n). Then we define the nominal length

of the nominal segment AB as
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where AT, AS, BT, BS designate chords of the circle. 7 A segment
AB will be a unit segment when this logarithm is unity, i.e., when

AT BS

The nominal length of the nominal segment AB may be defined

more generally as

, . AT.BT
""frZf/aT

where k is a parameter, the choice of which determines the unit of

length. Or, what is the same thing, the base for the logarithms

may be taken as a instead of e
,
a change in a amounting to a change

in the unit of length. For simplicity, we shall in what follows,

unless otherwise indicated, take k equal to unity and the base for the

logarithms equal to e.

The reader will not find it hard to show, as a consequence of this

definition, that the nominal length of AB becomes infinite as A

approaches S or B approaches T. Nor will he have any difficulty in

proving that the second condition is satisfied. But the third is an-

other matter, for we have yet to tell what we mean by a displace-

ment in the geometry we are devising.

For the purpose of comparing figures, Euclid made use of super-

position, assuming that figures can be displaced or moved in a plane
without any change in size or shape. We have used this principle,

or what is equivalent to it, in our studies of Hyperbolic Geometry
and Elliptic Geometry. We choose to treat congruence and allied

topics in the geometry under investigation by this familiar method.

Let us consider how such displacements can effectively be brought
about.

101. Displacement by Reflection.

In any one of the three geometries, any plane figure can be re-

flected with regard to any line in its plane, called the axis of reflection.

If P is any point of the figure, and the perpendicular PQ is drawn to

the axis and produced to P' so that QP' is equal to PQ, then P is said

to have been reflected and P' is its image. This simple transformation

7 As evidence that there is nothing forced about the representation of length as a

logarithm, the reader is referred to Exercise i, Section 66. The relation of this defini-

tion to the cross-ratio of four points will be recognized by the advanced student.
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does not change the size and shape of a figure; lengths and angles are

preserved.
We are interested in reflection because it is a transformation which

can be used to move a plane figure from one position in the plane to

any other. To prove this it will suffice to show that a line segment
AB (Fig. 113) can, by reflections with regard to properly chosen

axes, be made to coincide with any equal segment A'B'.

A
B

6

Figure 113

If segments AB and A'B' do not lie in the same straight line and

are neither parallel nor segments of non-intersecting lines, let AB be

reflected about the bisector of the angle formed by producing lines

AB and A'B' until they meet. Its image A"B" will be coljinear with

A'B' and have the same length. The modification in the method of

determining the axis of reflection to obtain the same effect when
AB and A'B' are parallel segments or segments of non-intersecting

lines, will suggest itself to the reader. If, at this point, A'B' and

A"B" have the same sense and do not coincide, segment A"B" must

be reflected about its perpendicular bisector so that its sense will be

opposite that of A'B'. Then a final reflection about the common

perpendicular bisector of A'A" and B'B" will bring the segments
into coincidence.

The identifying characteristics of reflection are: (i) The segment

joining a point to its image is perpendicular to the axis of reflection

and bisected by it. (i) A segment of line and its image have equal

lengths and, if produced, meet on the axis of reflection, provided

they intersect, and make equal angles with it.

102. Displacement in the Geometry of the Nominal Lines.

We are ready now to disclose the analogue of reflection in the

geometry which we are constructing. Once it has been described,

we shall be able to study the problem of displacement for that
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geometry. We shall show that inversion of any figure in our

geometry, with regard to the circle with which any nominal line

coincides as circle of inversion, is a transformation possessing all of

the characteristics of reflection about that line, our definitions of

nominal length and angle being taken into account.

Figure 114

Let the circle with center (Fig. 114) be the fundamental circle

and AB any nominal line. Then AB coincides with an arc of a

circle which is orthogonal to the fundamental circle, let the center

of that circle be C. If P is any nominal point and P' its inverse with

regard to the circle with center C, then the nominal line PP' coin-

cides with a circle which is orthogonal not only to the fundamental

circle but also to the circle with center C. In other words, the nomi-

nal line PP' is perpendicular to the nominal line AB. We have next

to show that the nominal segment PP
f

is bisected by nominal VmcAB.

Let the circle on which the nominal line PP' lies cut the funda-

mental circle in points S and T and the nominal line AB in point Ai.

It is easy to see that S and T are inverse points with regard to the

circle with center C. Then
pr _ cr
P'S CP'

and
P'T _ CP f

PS
"

CS
9
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so that

and the nominal lengths of nominal segments PM and MP' are equal.

We conclude that the inversion of a nominal point, with regard
to the circle upon which a nominal line lies, may be regarded as a

reflection of the point with the nominal line used as axis of re-

Fisure115

flection. We shall determine next how the inverse of a segment of

nominal line, with regard to such a circle, is related to that segment.
Let the circle with center (Fig. 115) be the fundamental circle
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and AB any nominal line. We again wish to consider inversion with

reference to the circle, center C9 upon which AB lies. If PQ ^s anv

nominal segment, the circle upon which it lies will invert into

another circle orthogonal to the fundamental circle, so that the

nominal segment PQ will invert into a nominal segment P'Q'.

Furthermore, if nominal line PQ meets the nominal line AB in a

point M, the nominal line P'Q' meets AB at the same point and

makes the same angle with it. Moreover, the length of nominal

segment PQ is equal to that of P'Q, as we shall show, regardless of

whether PQ and AB intersect or not.

Let the circle upon which the nominal line PQ lies meet the

fundamental circle in points S and T, and that upon which the

nominal line P'Q' lies meet it in S' and T'. Then points S and S'

are inverse points and so also are points T and T'. It is easy to show
that

FT_ CT
PV CP'

J

=
PS

~
CS*

QT CT

Q'T CQ
and

Q'S' CQ
QS

""

CS*

so that

lo^/^-W^'/^'.g
PS'QS

" g
~P'S

f/

Q
f

S'

Thus we infer that nominal length remains invariant under such

an inversion. Consequently, in the geometry of the nominal lines,

we may define reflection about any nominal line as axis as inversion

with regard to the circle upon which the nominal line lies. Dis-

placement in this geometry may be accomplished by a series of these

nominal reflections exactly as in Hyperbolic Geometry. Such dis-

placement alters neither nominal length nor angle and thus leaves

figures unchanged in nominal size and shape.
It follows that our definition of nominal length satisfies all of the

requirements which must be met if the analogy to the idea of length
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in Hyperbolic Geometry is to be complete. With nominal length
and displacement defined, every proposition of Hyperbolic Geom-

etry will have its counterpart in our nominal geometry.

EXERCISES

i. Prove that there are no similar triangles in the geometry of the nominal lines,

i.e., that two triangles with the three angles of one equal, to the three angles of the

other are congruent.

i. Regarding a diameter ST of the fundamental circle as a nominal line, prove that

PS
if P is a point on it such that its distance from the center is unity, then *

e,

where k = i. This unit OP can be used for the purpose of comparison, every other

unit segment can be made to coincide with it by displacement.

3. Extending the analogy between this nominal geometry and Hyperbolic Geom-

etry, prove that the angles of parallelism for unequal distances are unequal and that

the smaller angle corresponds to the greater distance.

4. Show how to construct on a diameter of the fundamental circle, regarded as a

nominal line, the nominal distance corresponding to any given angle of parallelism.

103. The Counterparts of Circles, Limiting Curves and Equidistant
Curves.

In Hyperbolic Geometry, a circle was regarded as the orthogonal

trajectory of a sheaf of lines with an ordinary point for vertex.

Since a sheaf of nominal lines with a nominal point for vertex consists

of the system of coaxal circles passing through this point and its

inverse with regard to the fundamental circle, the analogues of

circles in the nominal geometry are the circles orthogonal to such a

system and lying within the fundamental circle. Such circles are not

orthogonal to the fundamental circle and hence are not nominal

lines. They are nominal circles in the sense that each is the locus of

points at a constant nominal distance from the vertex of a sheaf of

nominal lines, this vertex being the nominal center. That these

nominal radii are equal can be proved by moving the sheaf so that its

vertex is at the center of the fundamental circle. As a consequence
of this displacement, the system of coaxal circles becomes the sheaf

of lines through the center and the orthogonal trajectories a system
of concentric circles with nominal radii obviously equal.

Limiting curves are represented in this geometry by circles also.

For a sheaf of parallel nominal lines consists of a coaxal system of

circles of tangent type orthogonal to the fundamental circle, each

tangent to all of the others at a point on the fundamental circle.
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The orthogonal trajectories of such a sheaf are circles lying within

and tangent to the fundamental circle at that point. They are not

nominal lines, for they do not cut the fundamental circle at right

angles. Nor are they nominal circles, for they are not closed.

Each may be regarded as a circle with infinite radius, center at the

nominal ideal point at which it touches the fundamental circle.

Finally, we consider a system of nominal lines all of which are

perpendicular to a given nominal line. They will coincide with the

Fisure 116

coaxal system of circles orthogonal to the fundamental circle and

the circle on which the given line lies, having the points of inter-

section of those two circles as limiting points. The circles orthog-
onal to this coaxal system, that is, all circles through the two

limiting points, are nominal equidistant curves. They are obviously
neither nominal circles nor nominal limiting curves, for they do not

lie entirely within the fundamental circle.

104. The Relation Between a Nominal Distance and its Angle of

Parallelism.

By this time we have gone far enough with the development of

the geometry of the nominal lines to convince the reader of the
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completeness of the resemblance to Hyperbolic Geometry. Further

elaboration would be logically superfluous. Indeed, one does not

need to do more than establish a one-to-one correspondence between

the entities of the two geometries and recognize the analogy between

the definitions and postulates of one and those of the other. But,

in conclusion, it will prove interesting to derive for the nominal

geometry the relation between a nominal distance and its corre-

sponding angle of parallelism.

\

Figure 11 7

Choose the circle with center (Fig. 116) as fundamental circle.

Let P be any nominal point, AB any nominal line with coinciding
circle cutting the fundamental circle at U and K, Pjg one of the

nominal lines parallel to AB through P with its coinciding circle

touching that of AB at V, and PR the perpendicular nominal line

from P to AB coinciding with a circle cutting the fundamental circle

at S and T. Designate the nominal length of PR by a and the

measure of the nominal angle of parallelism RPQ by a, the usual

angular unit being implied.
Invert the figure with regard to the circle with center at C, the

point of intersection outside the fundamental circle of the circles

with which nominal lines AB and PR coincide, and orthogonal to

the fundamental circle. This circle of inversion coincides with a

nominal line and the inversion thus brings about a nominal dis-

placement. The result of inversion is shown in Figure 117. The

fundamental circle remains as it was. The perpendicular nominal
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lines AB and PR invert into perpendicular lines A'B' and P'R'

orthogonal to the inverse of the fundamental circle and hence

passing through its center. The parallel Pig is transformed into a

circle, center D' 9 through P', orthogonal to the inverse of the

fundamental circle and tangent to A'B' at V . This nominal reflec-

tion has left angles and lengths unchanged, hence, if P'H1

is the

tangent line at P' to the circle with center D' t angle R'P'H' is equal

to a and nominal segment P fR f

is equal to a. Designate by <p the

measure of angle R'H'P', H' being the point in which the tangent

P'H' cuts A r
B'. Note that angle P'D'V also has measure <?.

Then, using for nominal length the formula involving the param-

eter,
PTRT . . PT'R'r

P'T
* l />'

But, since

and

we see that

V - - - a

ZR'F'P' -,
2.

P'R' /TT a\
' = tan ( l

r \4 V
where r is the radius of the fundamental circle, so that

and

It follows that

or

a = k log cot -

tan -i
2.

a formula exactly like the corresponding one in Hyperbolic Geom-

etry.
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105. Conclusion.

There is no point to presenting here proof of the compatibility of

the postulate system of Elliptic Geometry. Many such proofs exist.

One, for example, much like the one above, compares Elliptic

Geometry with a nominal geometry, essentially Euclidean, in which

the nominal lines are circles intersecting a fixed circle in such a way
that the chords which they have in common with that fundamental

circle are its diameters. 8 But there are methods which are easier,

although not based upon such elementary principles. The brief

outline of the test for the consistency of Hyperbolic Geometry, just

completed, suffices to reveal the nature and spirit of such proofs.

We conclude then that each of the three geometries is as con-

sistent as either of the others. We are as thoroughly convinced

that there is no contradiction to be encountered in Hyperbolic or

Elliptic Geometry as we are that there is none in Euclidean. And
we are as certain that Euclidean Geometry is consistent as it is

possible to be about any body of reasoned doctrine.

It is clear now why all of the efforts to prove Euclid's Parallel

Postulate were destined to end in failure. The Postulate can never

be proved, for its proof would order the rejection of the parallel

postulates of the equally consistent Non-Euclidean Geometries.

8 Sec Carslaw : Elements of Non-Euclidean Plant Geometry and Trigonometry, pp. 171-174.



APPENDIX

I. THE FOUNDATION OF EUCLIDEAN GEOMETRY 1

1. The Definitions of Book I.

i. A point is that which has no part,

i. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on

itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight

lines on itself.

8. A plane angle is the inclination to one another of two lines in a

plane which meet one another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle

is called rectilineal.

10. When a straight line set up on a straight line makes the

adjacent angles equal to one another, each of the equal angles is

right, and the straight line standing on the other is called a per-

pendicular to that on which it stands.

n. An obtuse angle is an angle greater than a right angle.

11. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or

boundaries.

1 From The Thirteen Books of EucluTs Elements, a translation from the text of Hei-

bcrg, with introduction and commentary, by Thomas L. Heath. By permission of

The Macmillan Company, representing the Cambridge University Press.

218
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15. A circle is a plane figure contained by one line such that all

the straight lines falling upon it from one point among those lying

within the figure are equal to one another.

16. And the point is called the centre of the circle.

17. A diameter of the circle is any straight line drawn through the

centre and terminated in both directions by the circumference of the

circle, and such a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the

circumference cut off by it. And the centre of the semicircle is the

same as that of the circle.

19. Rectilineal figures are those which are contained by straight

lines, trilateral figures being those contained by three, quadrilateral

those contained by four, and multilateral those contained by more

than four straight lines.

2.0. Of trilateral figures, an equilateral triangle is that which has

its three sides equal, an isosceles triangle that which has two of its

sides alone equal, and a scalene triangle that which has its three

sides unequal.

n. Further, of trilateral figures, a right-angled triangle is that

which has a right angle, an obtuse-angled triangle that which has

an obtuse angle, and an acute-angled triangle that which has its

three angles acute.

ii. Of quadrilateral figures, a square is that which is both equi-

lateral and right-angled; an oblong that which is right-angled

but not equilateral; a rhombus that which is equilateral but not

right-angled; and a rhomboid that which has its opposite sides and

angles equal to one another but is neither equilateral nor right-

angled. And let quadrilaterals other than these be called trapezia.

2.3. Parallel straight lines are straight lines which, being in the

same plane and being produced indefinitely in both directions, do not

meet one another in either direction.

2. The Postulates.

Let the following be postulated:

i. To draw a straight line from any point to any point.

i. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any centre and distance,

4. That all right angles are equal to one another.
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5. That, if a straight line falling on two straight lines make the

interior angles on the same side less than two right angles, the two

straight lines, if produced indefinitely, meet on that side on which

are the angles less than the two right angles.

3. The Common Notions.

i. Things which are equal to the same thing are also equal to one

another.

2.. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one an-

other.

5.
The whole is greater than the part.

4. The Forty-Eight Propositions of Book I.

i. On a given finite straight line to construct an equilateral tri-

angle.

i. To place at a given point (as an extremity) a straight line equal

to a given straight line.

3. Given two unequal straight lines, to cut off from the greater a

straight line equal to the less.

4. If two triangles have the two sides equal to two sides respec-

tively, and have the angles contained by the equal straight lines

equal, they will also have the base equal to the base, the triangle

will be equal to the triangle, and the remaining angles will be equal

to the remaining angles respectively, namely those which the equal

sides subtend.

5. In isosceles triangles the angles at the base are equal to one

another, and, if the equal straight lines be produced further, the

angles under the base will be equal to one another.

6. If in a triangle two angles be equal to one another, the sides

which subtend the equal angles will also be equal to one another.

7. Given two straight lines constructed on a straight line (from
its extremities) and meeting in a point, there cannot be constructed

on the same straight line (from its extremities), and on the same

side of it, two other straight lines meeting in another point and

equal to the former two respectively, namely each to that which has

the same extremity with it.
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8. If two triangles have the two sides equal to two sides re-

spectively, and have also the base equal to the base, they will also

have the angles equal which are contained by the equal straight

lines.

9. To bisect a given rectilineal angle.

10. To bisect a given finite straight line.

11. To draw a straight line at right angles to a given straight line

from a given point on it.

IL. To a given infinite straight line, from a given point which is

not on it, to draw a perpendicular straight line.

13. If a straight line set up on a straight line make angles, it will

make either two right angles or angles equal to two right angles.

14. If with any straight line, and at a point on it, two straight

lines not lying on the same side make the adjacent angles equal to

two right angles, the two straight lines will be in a straight line

with one another.

15. If two straight lines cut one another, they make the vertical

angles equal to one another.

1 6. In any triangle, if one of the sides be produced, the exterior

angle is greater than either of the interior and opposite angles.

17. In any triangle two angles taken together in any manner are

less than two right angles.

18. In any triangle the greater side subtends the greater angle.

19. In any triangle the greater angle is subtended by the greater

side.

10. In any triangle two sides taken together in any manner arc

greater than the remaining one.

n. If on one of the sides of a triangle, from its extremities, there

be constructed two straight lines meeting within the triangle, the

straight lines so constructed will be less than the remaining two sides

of the triangle, but will contain a greater angle.

11. Out of three straight lines, which are equal to three given

straight lines, to construct a triangle: thus it is necessary that two

of the straight lines taken together in any manner should be greater

than the remaining one.

13. On a given straight line and at a point on it to construct a

rectilineal angle equal to a given rectilineal angle.

14. If two triangles have the two sides equal to two sides re-
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spectively, but have the one of the angles contained by the equal

straight lines greater than the other, they will also have the base

greater than the base.

15. If two triangles have the two sides equal to two sides re-

spectively, but have the base greater than the base, they will also

have the one of the angles contained by the equal straight lines

greater than the other.

2.6. If two triangles have the two angles equal to two angles re-

spectively, and one side equal to one side, namely, either the side

adjoining the equal angles, or that subtending one of the equal

angles, they will also have the remaining sides equal to the remain-

ing sides and the remaining angle to the remaining angle.

17. If a straight line falling on two straight lines make the

alternate angles equal to one another, the straight lines will be

parallel to one another.

18. If a straight line falling on two straight lines make the ex-

terior angle equal to the interior and opposite angle on the same side,

or the interior angles on the same side equal to two right angles, the

straight lines will be parallel to one another.

19. A straight line falling on parallel straight lines makes the

alternate angles equal to one another, the exterior angle equal to the

interior and opposite angle, and the interior angles on the same side

equal to two right angles.

30. Straight lines parallel to the same straight line arc also

parallel to one another.

31. Through a given point to draw a straight line parallel to a

given straight line.

31. In any triangle, if one of the sides be produced, the exterior

angle is equal to the two interior and opposite angles, and the three

interior angles of the triangle are equal to two right angles.

33. The straight lines joining equal and parallel straight lines (at

the extremities which are) in the same directions (respectively) arc

themselves also equal and parallel.

34. In parallelogrammic areas the opposite sides and angles are

equal to one another, and the diameter bisects the areas.

35. Parallelograms which are on the same base and in the same

parallels are equal to one another.

36. Parallelograms which are on equal bases and in the same

parallels are equal to one another.
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37. Triangles which are on the same base and in the same parallels

arc equal to one another.

38. Triangles which are on equal bases and in the same parallels

arc equal to one another.

39. Equal triangles which are on the same base and on the same

side are also in the same parallels.

40. Equal triangles which are on equal bases and on the same

side are also in the same parallels.

41 . If a parallelogram have the same base with a triangle and be

in the same parallels, the parallelogram is double of the triangle.

41. To construct, in a given rectilineal angle, a parallelogram

equal to a given triangle.

43. In any parallelogram the complements of the parallelograms
about the diameter are equal to one another.

44. To a given straight line to apply, in a given rectilineal angle,

a parallelogram equal to a given triangle.

45. To construct, in a given rectilineal angle, a parallelogram

equal to a given rectilineal figure.

46. On a given straight line to describe a square.

47. In right-angled triangles the square on the side subtending
the right angle is equal to the squares on the sides containing the

right angle.

48. If in a triangle the square on one of the sides be equal to the

squares on the remaining two sides of the triangle, the angle con-

tained by the remaining two sides of the triangle is right.

II. CIRCULAR AND HYPERBOLIC FUNCTIONS

5. The Trigonometric Functions.

It is assumed that the student is acquainted with the following
infinite power series, the Maclaurin expansions for the exponential
function e* and the trigonometric or, as they arc frequently called,

circular functions sin x and cos x:

X* X8 Xn~ l

f -1 + *+^ +
3 ,

+ ...

X8 X& X2n~ l

sin x - x - - + - - + (-!>+'^ ,

31 51 ^i i
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It will be recalled that these series are convergent and that each

defines a continuous function of x for all real values of x. We regard

these series as the definitions of the functions e
x
, sin x and cos x.

This generalization relieves us of the restrictions imposed by the

special definitions of elementary trigonometry. For example, sin x

no longer necessarily refers to a certain ratio of two sides of a right

triangle with acute angle x any more than the function x2 neces-

sarily represents the area of a square with side x. Indeed, for the

functions sin x and cos x, x is, from the general viewpoint, to be re-

garded as an abstract number and not as an angle at all. When it is

regarded as the measure of an angle, there result merely special

applications of our definitions.

It is known that these series may be added to and subtracted from

each other, multiplied and divided, one by another, and the resulting

series will converge for all values ofx also, excepting those for which

in division the divisor converges to zero. They may also be differen-

tiated or integrated term by term. Thus we can easily obtain the

infinite power series representations for the other trigonometric

functions, for example,
sin x x* 2.x5

tan x = = x H 1 h
cos x 315

From these general definitions, all of the well-known properties

of the trigonometric functions can be derived, such as

sin 2 x + cos 2 x -
i,

sin 2.x i sin x cos x,

cos x cos y sin x sin y = cos (x + y),

x + y x y
cos x H- cos y = i cos cos ->

d .

-j- sm x = cos x
ax

and, where sec x is defined as
cos x

sec2 x - tan2 x = i.

This new freedom allows us to extend our ideas of **, sin x, cos x
and tan x even to the cases where x is an imaginary number. Thus

if x = a -f bi, where a and b are real and / = V-i, we define, for

example, sin (a + bft as follows*:
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r , z.^ r , i^ O + *0*
,
O + *0*

sin O + */)
- O + *0 - --

j

^ + --
\^~

From this broader viewpoint we recognize that the trigonometric

identities and relationships hold for complex and not only real

arguments.
Of special interest are the cases in which x is a pure imaginary.

We have in particular

or

exi = cos x -f / sin x.

Similarly
*~x * = cos x / sin x.

These last two results yield the remarkable formulas,

exi _ g-xi
sin

cos x

L/

-f ^

1

These formulas may be used as alternative definitions of sin x and

cos x. Starting with these, all of the familiar formulas and relations

connecting the trigonometric functions can be derived.

6. The Hyperbolic Functions.

The last two formulas of the preceding section suggest two new

functions of x which are called the hyperbolic sine of x and the hyper-

bolic cosine of x and arc defined thus :

. , e
1 - e~x

sinh x = >

cosh x
i

Related to these are four other hyperbolic functions, hyperbolic tan-

gent, secant, cosecant and cotangent, defined as follows:

sinh x e* - rx
e2x - i

tanh x =
cosh x e

x + e-x e*x + i

sech x = r >

cosh x
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T

csch x =

coth x

sinh x
i

tanh x

Reversing the procedure of the last section, we can obtain power
series definitions for the hyperbolic functions by substitution of the

power series for e* and c~* in the formulas defining sinh x and cosh x

above. We obtain

X3
AT
6

AT
7

sinh x = x + : H : H : + ....,
3! 5! 7!

COsh * = ,+_ + _ + _ + .....

The similarity of these series to those for sin x and cos x suggests a

simple relationship between the circular and hyperbolic functions.

By replacing x by xt in the power series for sin x and cos x, we obtain

sin xi = / sinh x,

cos xi = cosh x,

from which follow

tan xi * / tanh x,

esc xi = / csch x,

sec xi sech x,

cot x/ =* - / coth x.

Thus the hyperbolic functions can be defined in terms of the ex-

ponential function, by infinite power series, and in terms of the

circular functions. From any one of these viewpoints can be ob-

tained the formulas and relations connecting the hyperbolic func-

tions analogous to those for circular functions. Thus, starting with

the familiar identity

sin
2 x + cos2 x i,

we have, on replacing x by xi,

sin
2 xi + cos2 xi = i

or

(/' sinh x)
2
-f cosh 2 x -

i,

and finally

cosh2 x sinh2 x = i .

On the other hand this relation can be verified by substituting the
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exponential forms of the hyperbolic functions, thus

e* + *

or by use of the scries expansions :

X2 X4 X6 2

Other relations will be found in the list of exercises.

The formulas for the differentiation of the hyperbolic functions
* ~x

are readily obtained. For example, by differentiating , or

Xs x* sn xt,
. , i

the series x H
j

H :+..., or : , one obtains the result

-j- sinh x - cosh x.
ax

In Figure 1 18 arc shown the graphs of the functions sinh x, cosh AT

and tanh x. The hyperbolic cosine curve is the familiar catenary.

Fisurc 118

An important limit,

lim
sinh u

can be verified in a variety of ways. For example, the method of

differential calculus for evaluating so-called indeterminate forms
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may be used. Otherwise, sinh u may be replaced by the infinite

series or in terms of the exponential function, or may be

sin tu , c i i i

written as , before the limit is taken.
IU

7. The Inverse Hyperbolic Functions.

Ify = sinh x, then x is defined as a function of y. We say that x

is the inverse hyperbolic sine ofy and write

x ~ sinh" 1

^.

Similarly there is an inverse function corresponding to each of the

other hyperbolic functions.

Since the hyperbolic functions are expressible in terms of the ex-

ponential function, it is to be expected that the inverse hyperbolic

functions can be represented in terms of logarithms. For example, if

y = sinh~ l

x, we have

. <?*
- f-*

x = smny = >

or

eZy

Then

ev = x + Vx2 + i,

the negative sign being deleted 'since ey is positive when y is real, so

that

sinn" 1 x = log (x + Vx2 + i).

The expressions for the inverse hyperbolic cosine and tangent will

be found in the list of exercises.

Again, ify = sinh" 1

x, we have

x = sinh y
and

dx

Whence

dy i i

dx
"

cosh .?

"
Vi + sinh 2/
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the positive sign being used with the radical since cosh y is always

positive when y is real. Thus

'dx
sinh" 1 x =

Vi + x1

This result may be obtained otherwise by differentiating the

expression for sinh~ l x in terms of x derived above. Other differenti-

ation formulas will be found below.

8. Geometric Interpretation of Circular and Hyperbolic Functions.

The equations x = cos , y = sin ^ may be regarded as parametric

equations of the unit circle #2 + j2 = i. The parameter is gener-

ally interpreted geometrically as the measure of the central angle

POQ (Fig. 119). It will be instructive in connection with our study

Figure 119

of hyperbolic functions to interpret this parameter in another way,

namely, as twice the measure of the area of the circular sector swept
out by the radius OP as P moves along the circle from jg to any point

(x, j). The validity of this interpretation is easily verified since

z z
Area of Sector = -TT = -

ITT i

^Turning now to the hyperbolic functions we propose by way of

comparison to regard the equations x = cosh , y sinh as para-

metric equations of the equilateral hyperbola x
1 - y2 = i and show

that the parameter ^ can be interpreted as twice the measure of the
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area of the hyperbolic sector swept out by the vector OP (Fig. no)
as P moves along the hyperbola from Q to any point (x, y*).

Y

Figure 120

xy (**
Area of Sector = I ydx

J *

- cosh g sinh g _ C*

i Jo

u->
sinh 2

cosh z sinh

rcosh

i i

r
cosh z sinh z fsinh i ~|

f

1 L-I- -IJo
cosh sinh cosh sinh

. ^
,

2.

EXERCISES

Verify the following.

i. (a) scch2 x+ tanh2 x *
i,

(b) coth2 x - csch2 x =
i,

(c) sinh x + cosh x = c*

L. (a) sinh (x _y)
= sinh x cosh y cosh x sinh y,

(b) cosh (x y) = cosh x cosh .> sinh x sinh y>

, N ,
. N tanh x tanh y

(c) tanh (x y) =

3 (a) sinh ix =

(b) cosh 2.x =

(c) tanh ix

i tanh x tanh y
L sinh x cosh x,

sinh 2 x 4- cosh2 x * i + 2. sinh2 x - i cosh1 x i
,

i tanh x

i -f tanh2 x

4. (a) sinh - =
:osh x i
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... x /cosh x + i

(b) cosh - - <*/

(c) tanh - :osh x - i

cosh x + i

5. (a) sinh x -f sinh y - i sinh cosh 1

(b) sinh x - sinh y - i cosh sinh 1

(c) cosh x -f cosh y i cosh cosh

(d) cosh x - cosh y - i sinh sinh

6. (a) sinh (-x) - sinh x,

(b) cosh (-x) - cosh x,

(c) tanh (-x) = tanh x.

d
7. (a) cosh x = sinh x,

(b) j-
tanh x = scch2

x,

(c) coth x - - csch2
x,

(d) 3- scch x - - scch x tanh x,

(c) -7- csch x = - csch x coth x.
ax

. . tanh u
8. Inn- = i.

X3 IX6 I7X7

9. tanh x = x - 4-
-- + . . .

3 i5 3i5

10. (a) cosh"1 x log (x + Vx2 -
i),

(b) tanh~l x = -
log

I X
- - tann"1 -

-f- C.
2 - x* a a
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13. (a) sinh = 0,

(b) cosh 0=1,

(c) sinh - =
.511,

(d) lim tanh x i
,

rr-fr-co

(c) cosh - = ?

III. THE THEORY OF ORTHOGONAL CIRCLES AND
ALLIED TOPICS

?. The Power of a Point with Regard to a Circle.

It is well known that if, through a point P in the plane of a circle,

i secant line is drawn cutting the circle in points A and B, then the

product PA-PB is constant. This product is positive, negative or

zero, accordingly as P is outside, inside or on the circle. When P
ies outside, the product is the square of the tangential distance from

:he point to the circle. This constant product we call the power of

:he point with regard to the circle. Then, if is the center of the

;ircle and r the radius,

Power = (PO + r)(PO -
r)

= J6* - r
2

.

10. The Radical Axis of Two Circles.

Theorem 1. If a point moves in such d way that its power with

regard to one of two circles is always equal to its power with

regard to the other, its locus is a straight line perpendicular to the

line of centers of the two circles.

Let P (Fig. in) be any point which has equal powers with regard
:o the two circles with centers at 0\ and 2 and radii r\ and r2 .

Then, if PQ is drawn perpendicular to Oi02 , we haveW -
fiOi

2 - P02
2 -

J202
2

md

jr

r
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Since the product of the factors on the left is constant and one of

them is equal to Oi02 ,
the other is constant and hence so also is

their sum and difference. It follows that as P moves so that its

powers with regard to the two circles remain equal, the foot of the

perpendicular from it to Oi02 is fixed, and thus that P lies on a

straight line perpendicular to 0\0*. It is easy to show that every

point on this line has equal powers with regard to the two circles.

Figure 121

The line which is the locus of points whose powers with regard to

two circles are equal is called the radical axis of the two circles.

Corollary. If two circles intersect, their radical axis is the line
-

joining their points of intersection. If they are tangent to one

another, their radical axis is the common tangent at the point of

tangency.

Theorem 2. The three radical axes of three circles taken m pairs

are in general concurrent.

The proof is left to the reader.

^The point of intersection of the three radical axes of three circles

taken in pairs is called the radical center of the three circles. It has

the property that its powers with regard to the three circles are

equal. Theorem i provides an easy method of constructing the

radical axis of two given circles which do not intersect. To obtain

a point on the radical axis, one need only construct any circle which

intersects both of the given circles; the two radical axes thus deter-

mined intersect in general on the required radical axis.
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A point may be regarded as a circle with radius zero. The results

obtained above hold for point circles as well as circles proper. Thus

the power of a point with regard to a point circle is the square of the

distance between the points; the radical axis of a circle and a point

on its circumference regarded as a point circle is the tangent to the

circle at the point; the radical axis of two point circles is the per-

pendicular bisector of the segment joining them.

1 1 . Orthogonal Circles.

When two circles intersect one another in such a way that their

tangent lines at a point of intersection are perpendicular, they arc

said to cut orthogonally and each is orthogonal to the other. As a

consequence of symmetry, the tangent lines at the second point of

cutting will, under these circumstances, also be perpendicular. It

follows from the definition that two circles are orthogonal if and

only if the tangent lines of each at the points of intersection pass

through the center of the other. Thus the center of each of two

orthogonal circles must lie outside the other.

Theorem. If two circles are orthogonal, the square of the radius

of each is the power of its center with regard to the other. Con-

versely, if the square of the radius of one circle is the power of its

center with regard to another, the two circles are orthogonal.

The reader may supply the proof.

Thus it appears that a circle can be constructed orthogonal to a

given circle with center at any given point outside the given circle;

its radius will be the tangential distance from the point to the

circle. In order to be orthogonal to two given circles, a circle must

have its center on the radical axis of the given circles and outside

those circles if they intersect.

If three given circles have, as is generally the case, a single radical

center, and if it lies outside the circles, one and only one circle can

be constructed orthogonal to all three circles; its center is the radical

center and its radius is the common tangential distance from the

center to the circles.

Any point lying on the circumference of a given circle may be re-

garded as a point circle orthogonal to the given circle. As a consc-
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qucncc, we recognize that an infinite number of circles can be drawn

through a given point and orthogonal to a given circle, provided
the point is not the center of the circle. But only one circle, in

general, can be drawn through a point orthogonal to two given

circles, exceptipns occurring when the point is collinear with the

centers of the circles. Under the latter circumstance, no such circle

can be constructed, unless the two circles are tangent and the given

point is the point of tangency, when an infinite number of such

circles can be drawn. Through two given points can be drawn, in

general, only one circle orthogonal to a given circle. This is always
the case if the points are not collinear with the center of the given

circle. When the given circle has its center collinear with the given

points, no circle can be constructed orthogonal to it and passing

through the given points, unless the points lie on the same side of

the center in such a way that the product of the distances from the

center to the two points is equal to the square of the radius of the

circle. In the latter case, all circles through the two points arc

orthogonal to the circle, because the power of the center of the

latter with regard to every circle through the two given points is

equal to the square of its radius.

TO. Systems of Coaxal Circles.

A system of circles such that the radical axis of any two of them

is the same as the radical axis of any other pair is called a coaxal

system. It should be clear, as a consequence of the definition, that

the centers of the circles of a coaxal system lie on a line perpendicular
to the common radical axis, that every point of this radical axis has

equal powers with regard to all of the circles of the system, and that

a circle orthogonal to any two circles of the system is orthogonal to

all of them. Two circles of a coaxal system determine the system;
if two of the circles are given, any other can be constructed.

There are three types of coaxal system : intersecting, tangent, and

non-intersecting. If two circles of a system intersect in points A and
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B (Fig. 12.1), all of the circles pass through those two points. The

system is called an intersecting system. If the system of circles is con-

structed, each of which is orthogonal to all of the circles of this

intersecting coaxal system, there results another coaxal system.

Figure 122

For every circle of the first system is orthogonal to every pair of

circles of the new one, making the line of centers of the first a com-

mon radical axis for the pairs of the second.

The new system is of the non-intersecting type, since no circle

orthogonal to two intersecting circles can intersect the line of centers

of those circles. The two points of intersection of the intersecting

system, when regarded as point circles, belong to the non-intersect-

ing system. They are called the limiting points of the latter system.

All circles orthogonal to the circles of a non-intersecting coaxal

system pass through its limiting points and constitute an intersecting

coaxal system.

The system of all circles tangent to a straight line at the same

point is a coaxal system of the tangent type. The circles orthogonal

to all of the circles of such a system form another coaxal system of

the same type.

EXERCISES

i. Under what condition will two circles Kave no radical axis? When will three

circles have no radical center ? When will three circles have an infinite number of

radical centers ?
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L. Construct a circle passing through a >

given point and orthogonal to a given
circle.

3 Construct the circle passing through two given points and orthogonal to a given
circle. Under what circumstances is the construction impossible

? When can more

than one such circle be drawn ?

4. Construct the circle through a given point and orthogonal to two given circles.

5 Show that if two circles intersect and each is orthogonal to a third circle, then

one point of intersection lies inside, the other outside, the third circle

6. If two points C and D divide a diameter AB of a circle, center 0, internally and

externally in the same ratio, prove that

OA2 = OB* = OC-OD

j Prove that a circle orthogonal to two given circles will intersect, be tangent to

or not intersect their line of centers accordingly as they do not intersect, are tangent to

or intersect one another, respectively

IV. THE ELEMENTS OF INVERSION

1 3. Inversion.

Choose any point P in the plane of a fixed circle with center at

and radius r. On OP construct the point P' such that OP- OP' = r.

Points P and P 1

are called inverse joints and, since the relationship is

mutual, each is called the inverse of the other. The fixed circle is

called the circle of inversion, the center of inversion and r
2 the constant

of inversion. Thus through the medium of a circle there is set up a

one-to-one correspondence between the points of a plane; to every

point, with the exception of the center of inversion, there is a corre-

sponding point.

Regarding inversion as a transformation of the plane into itself, it

appears that points inside the circle of inversion are transformed into

points outside and vice versa. The points on the circle of inversion

are fixed. If a moving point traces any curve continuously, its in-

verse will trace continuously a curve called the inverse of the first.

If a curve intersects the circle of inversion, its inverse will intersect

it in the same point. The circle of inversion is absolutely fixed.

Straight lines through the center of inversion are also fixed under

inversion, although there is a redistribution of the points. It

should be clear, from what has been said before, that every circle

orthogonal to the circle of inversion is fixed, for the power of the

center of inversion with regard to such a circle is r
2

.
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t

Theorem. If A, A' and B, B' are any two pairs of inverse points
which do not lie on the same diameter of the circle of inversion,

then they lie on a circle and angles OAB and OBA are equal,

respectively, to angles OB'A' and OA'B'.

If A, A
1

and B, B 1

(Fig. ii})
2 are pairs of inverse points, and is

the center of inversion, then

OA-OA' = OB- OB',

which implies that points A, A', B, B f

he on a circle. It is then

easy to see that angles OAB and OB'A' are equal and also angles OBA
and OA'B'.
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14. The Inverse of a Circle and the Inverse of a Line.

While straight lines through the center of inversion invert into

themselves, lines in general do not invert into lines. We have

the following theorem:

Theorem 1. Every straight line which does not pass through the

center of inversion inverts into a circle passing through the center

of inversion, and conversely.

Let / (Fig. 114) be any straight line not passing through the center

of inversion 0. Draw from the perpendicular OA to /. Let A'

be the inverse of A and B' the inverse of B, any other point on /.

2
Frequently one docs not take the trouble to draw the circle of inversion.
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Then, since angle OAB is a right angle, so also is angle OB'A'.

Hence, as B moves along /, B' traces a circle with OA' as diameter.

The proof is easily reversed.

B

A 1

1

Figure 124

Theorem 2. Circles which do not pass through the center of

inversion invert into circles.

Let C (Fig. 115) be the center of any circle not passing through
the center of inversion 0. Draw OC, cutting the circle in points Q
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and R. Let P be any other point on the circle. Designate by P',

jg', JR' the points which are the inverses of P, jg, R, respectively.

Then, since angles OP'jg' and OQP are equal, as well as angles OP'R'

and ORP9 it follows that angle R'P'Q' is equal to angle QPR. But

the latter angle is always a right angle, as P traces the circle. Then

angle R'P'jg' is always a right angle and P' traces a circle with the

points R' and Q
f

as the extremities of a diameter. It is to be ob-

served that the center of this circle is not the inverse of C.
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1 5. The Effect of Inversion on Angles.

Let us turn our attention to any two curves PR and QR (Fig. 116)

intersecting at R, the points P and Q being collinear with 0, the

center of inversion. Then the inverse curves P'R' and Q'R' will

intersect in R', the inverse of R. The reader will have no difficulty

in showing that angles PRQ and Q'R'P' are equal. Now, as P

Figure 126

moves along curve PR continuously and approaches R, the secant

PR approaches as a limiting position the tangent line to curve PR at

R. At the same time Q approaches R and the secant QR approaches
the tangent line to curve QR at R, while secants P'R' and J^'R' ap-

proach the tangents to the inverse curves at R'. Since angles PRQ
and jg'R'P' are always equal, as P approaches R, they are equal in

the limit. We thus discover that the angle between two curves is

the same as the angle between the inverse curves. In other words,

inversion preserves angles. Such a transformation is referred to as

conformal.

Theorem. Inversion is a conforms! transformation.

6. The Peaucellier Inversor.

Although it has nothing in particular to do with our investi-

gations, we must not conclude even a brief resume of the theory of

inversion without directing attention to a beautiful instrument for

accomplishing inversion mechanically. This device, known as the

Peaucellier Inversor, is a linkage consisting of six rigid bars. Four of
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these, AB 9 BC, CD and DA in Figure 117, are of equal length and

hinged to one another to form a rhombus. The other equal bars,

OB and OD, are hinged together at 0, their other extremities being

joined to the rhombus at B and D. It is easy to see that 0, A and C
are always collinear. Furthermore, if the circle with center at D
and passing through A and C is constructed, it is clear that

OA-OC = (OD - DAXOD + DA) = OD2 - DA\
so that C is the inverse of A, with as center of inversion and

OD2 DA2
as constant of inversion. Then if is fixed in the plane

and A allowed to trace a curve, C will trace the inverse curve.

Figure 127

Perhaps the most striking application of the device is its employ-
ment in the conversion of circular motion into straight-line or, as

it is frequently called, rectilinear motion. If, by the addition of a

seventh link, a radial bar hinged to the rhombus at A and to a fixed

point E of the plane, the point A is constrained to move along a

circle through the center of inversion 0, then C will travel along a

straight line.

Euclid postulated the ability to construct a circle with any center

and any radius and to construct straight lines. The reader is ac-

quainted with a simple instrument, theoretically perfect, for the

construction of circles. Here he encounters, perhaps for the first

time, an instrument for the construction of straight lines. The
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straight-edge, which he has been accustomed to use, is but a pattern

to be traced along, and implies some previous construction of a

straight line.

Peaucellier, a captain in the French Army, proposed in a communi-

cation, published in 1864 in the Nouvelles Annales (Second Series,

Vol. Ill, pp. 414-15), the problem of converting circular into recti-

linear motion by means of a linkage, indicating that he himself had

a solution. His communication attracted little or no attention.

Indeed, when his device was rediscovered by a Russian named

Lipkin, the latter was given the credit for the discovery. The matter

was rectified later, however. Peaucellier's solution was published in

1873 . Since then many other inversors have been devised, some with

only four bars. Thus it is possible to convert circular into rectilinear

motion with a linkwork consisting of five bars instead of the seven

used in the original instrument.

EXERCISES

i. If A and A' are inverse points, prove that any circle through them is orthogonal
to the circle of inversion.

i. If A, A' and B, B' arc pairs of inverse points, the center and r
2 the constant of

inversion, show that

3. If two circles are orthogonal, show that the inverse of the center of the first,

with respect to the second as circle of inversion, coincides with the inverse of the

center of the second with respect to the first.

4 Show how to choose the circle of inversion so that each of three given circles

will invert into itself. Under what circumstances will this be impossible
?

5. What is the inverse of an intersecting system of coaxal circles if one of the points
of intersection is chosen as center of inversion and any radius of inversion is used?

6. Prove that if two intersecting circles are orthogonal to a third circle, their

points of intersection are inverse points with regard to the third circle.

7. If a circle with center C does not pass through the center of inversion 0, and if

OC cuts the circle in points P and jg, prove tha.t~ =
~7^,-

^n other words, C1
is

the harmonic conjugate of with regard to P1 and '.

8. If three circles intersect in a point, prove that four circles can be constructed

tangent to all of them by inverting the figure, using the point of intersection as center

of inversion.

9. By inverting a triangle with regard to any point as center of inversion, prove
that the sum of the angles of a triangle is equal to two right angles.
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10. Two circles intersect at and P and their tangents at meet the circles again
at A and B. Show that the circle circumscribing the triangle OAB cuts OP produced
at a point Q such that OQ = i OP. Prove by inverting the figure with regard to 0.

n. If a transversal cuts two parallel lines it makes with them pairs of equal corre-

sponding angles. Invert the figure composed of two parallels and a transversal, using

any point as center of inversion, and obtain the inverse theorem, i.e., the corre-

sponding theorem for the inverse figure.

n. Prove by inversion that there is in general one and only one circle through two

given points orthogonal to a given circle. Invert with regard to one of the given

points.

13. If points 0, A, B, C lie on a circle, angles AOC and ABC are equal or supplemen-

tary. Invert with regard to and derive the inverse theorem.

14. Prove that all circles which are tangent to one fixed circle and orthogonal to a

second, will be tangent to a third.

15. An angle of fixed size rotates about a fixed point P, its sides cutting a fixed

straight line in points Q and R. Prove that the circles circumscribed about the tri-

angles PQR are tangent to a fixed circle.

16. Four bars are hinged together to form a linkwork as shown in Figure 118.

Bars AB and DC are of equal length and so are AD and CB. The joints are at A, B, C
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and D; AB and CD are crossed, but not fastened directly to one another. Points 0,

P and P' are located on DA, DC and AB, respectively, on any straight line parallel to

AC and DB. Prove that OP-OP' is constant. Show how, by the addition of a radial

bar, this four-bar invcrsor may be used to convert circular into rectilinear motion.
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