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Problem 1. List as many ways as possible to specify a line in space. Discuss the assumptions and
limitations of individual approaches.

Solution:
There are many possibilities:

• Point on line with the direction vector. Any point on the line tgether with an
arbitrary non-zero vector in the direction of the line.

• Two points on the line. Arbitrary distinct points on the line.
• Two linear equations. Two equations defining two distinct planes, i.e., one equation

is not a multiple of the other. Moreover, their normals must be non-zero in order
to describe a plane.

Problem 2. Find a linear equation defining the plane given by the point [3, 2, 1] and the slopes
(1, 1, 1), (2,−1, 0).

Solution:
The normal of the plane can be found, for example, using the vector product (a.k.a. the
cross product) of the two slopes (1, 1, 1) × (2,−1, 0) = (1, 2,−3). Thus, the equation
defining the plane is of the form x1+2x2−3x3 = d. The constant term d can be found
using the known point on the plane as d = 1 · 3 + 2 · 2 − 3 · 1 = 4. We conclude that
the equation is

x1 + 2x2 − 3x3 = 4.

In case we do not want to rely on the knowledge of cross product, we can find the normal
in the general form (a, b, c) and the corresponding equation in the form ax1+bx2+cx3 =
d. Since the plane contains the point [3, 2, 1], we get an equation

3a+ 2b+ c = d.

Since the slopes (1, 1, 1), (2,−1, 0) must be orthogonal to the normal, we get additional
two equations

a+ b+ c = 0, 2a− b = 0.

And we have a system of three linear equations with four unknowns, which is no surprise
as the sought equation describing the plane is not unique – any multiple of the equation
would work. By solving the system, we get a parametric solution a = t, b = 2t, c = −3t,
d = 4t for t ∈ R. We can choose, for example, t = 1 (or any other non-zero t ∈ R) and
we get (again) the equation

x1 + 2x2 − 3x3 = 4.

Try verifying the equation using the point and the slopes!

Problem 3. Find a parametric description of the plane defined by the linear equation 2x1 + 3x2 +
x3 = 4.

Solution:
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We find one point of the plane by choosing the value of two components arbitrarily
and calculating the remaining one. For example, let’s choose x2 = x3 = 0 and from the
equation, we get x1 = 2. Thus, one point on the plane is [2, 0, 0].

We get the slopes as two distinct vectors (they must not be multiples of each other)
othogonal to the normal (2, 3, 1). It is easy to see that such vector are, for example,
(0, 1,−3) a (1, 0,−2). This follows as any slope (x, y, z) must be orthogonal to the
normal, i.e., 2x+ 3y + z = 0. We find two distinct solution of this equation which are
not multiples of each other (so that we get two distinct directions for the slopes). For
example, we set x = 0, y = 1 and compute z = −3, and for the second solution we set
x = 1, y = 0 and compute z = −2.

Problem 4. Find a parametric description of the line given by the two equations:

x1 + 3x2 + x3 = 2, 2x1 + 5x2 + x3 = 3.

Solution:
We simply solve the system and describe the solution using the parameter t ∈ R.(

1 3 1
2 5 1

∣∣∣∣ 23
)
∼

(
1 3 1
0 −1 −1

∣∣∣∣ 2
−1

)
We can set x3 to be a real parameter and express x2 as x2 = 1− x3. Substituting into
the first equation, we get x1 = 2− 3(1− x3)− x3 = −1 + 2x3. We get the parametric
description of the line as all the points [−1 + 2x3, 1− x3, x3] = [−1, 1, 0] + x3(2,−1, 1)
for x3 ∈ R. In other words, the line passing through the point [−1, 1, 0] with a slope
(2,−1, 1).

Problem 5. Find two equations defining the line [3, 2, 1] + t(1,−1, 1), where t ∈ R.

Solution:
Both equations must be satisfied by the point [3, 2, 1] and the normal must be ortho-
gonal to the slope (1,−1, 1). Moreover, the resulting equations must define distinct
planes, i.e., they must not be multiples of each other.

Let’s choose a normal (1, 1, 0), which is orthogonal to the slope. The corresponding
equation for this normal is x1 + x2 = d and, using the known point [3, 2, 1] on the
point, we compute d = 5. Now, we choose a different normal (0, 1, 1), which is also
orthogonal to the slope. The corresponding equation for this normal is x2 + x3 = d′

and, using the known point [3, 2, 1] on the point, we compute d′ = 3. Thus, the sought
equations are, for example, x1 + x2 = 5, x2 + x3 = 3.

Note that the solution is not unique. In the second step, we could have chosen as
the normal the vector (1, 0,−1), which leads to the equation x1 − x3 = 2. Thus, the
equations x1 + x2 = 5, x1 − x3 = 2 also constitute a valid solution.

Finaly, note that we do not need more that two equations that are not multiples of
each other. If we would add to the equations x1 + x2 = 5, x2 + x3 = 3 the equation
x1 − x3 = 2 then the system x1 + x2 = 5, x2 + x3 = 3, x1 − x3 = 2 also defines the
given line. However, the third equation is redundant. Indeed, you can easily verify that
the the last equation is the difference of the first and the second.

Problem 6. Determine all possible mutual positions of two lines in the space R3. Next, describe
how the positions can be determined if both lines are defined parametrically or by
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equations.

Solution:
Possible positions of the lines:

• Parallel.
Parametrically: The direction vector of one line is a multiple of the direction vector
of the other line, but the lines do not have an intersection.
Usin equations: All normals are in the same plane, i.e., each normal can be ex-
pressed as the sum of multiples of the normals of the equations of the second line.
Furthermore, no point satisfies all the equations at once.

• Identical.
Parametrically: The direction vector of one line is a multiple of the direction vector
of the other line and in addition the lines have an intersection.
Equation: All normals are in one plane, i.e., each normal can be expressed as the
sum of multiples of the normals of the equations of the second line. Furthermore,
at least one point satisfies all equations at once.

• Intersecting.
Parametrically: The direction vector of one line is not a multiple of the direction
vector of the other line, and the lines have an intersection.
Equation: We cannot express at least one normal as the sum of multiples of
the normals of the equations of the second line. Furthermore, at least one point
satisfies all equations at once.

• Non-intersecting.
Parametrically: The direction vector of one line is not a multiple of the direction
vector of the other line and the lines do not have an intersection.
Equation: We cannot express at least one normal as the sum of multiples of the
normals of the equations of the second line. Furthermore, no point satisfies all the
equations at once.

Problem 7. Determine the relative position of the two lines given by a point and a slope

p : [1, 5, 3], (1,−2,−2), q : [3, 1,−1], (−1, 2, 2).

Solution:
Because the slopes are multiples of each other, the lines are either parallel or identical.
We can easily verify that point [1, 5, 3] of the line p lies also on the line q since [1, 5, 3] =
[3, 1,−1] + t(−1, 2, 2) for t = 2. Thus, the lines are identical.

Problem 8. Interpolate a quadratic function through the points [1, 1], [2, 2], [3, 7].

Solution:
A quadratic function has the form y = ax2 + bx+ c. By substituting the three known
points, we get a linear system of three equations in three unknowns

a+ b+ c = 1, 4a+ 2b+ c = 2, 9a+ 3b+ c = 7,

with the solution a = 2, b = −5, c = 4. Thus, the sought quadratic function is

y = 2x2 − 5x+ 4.
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